Activation de la voie NF-kB par les protéines Tax des HTLV : Rôles des modifications post-traductionnelles et de la localisation de Tax

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Activation de la voie NF-kB par les protéines Tax des HTLV : Rôles des modifications post-traductionnelles et de la localisation de Tax"

Transcript

1 Activation de la voie NF-kB par les protéines Tax des HTLV : Rôles des modifications post-traductionnelles et de la localisation de Tax Amandine Bonnet To cite this version: Amandine Bonnet. Activation de la voie NF-kB par les protéines Tax des HTLV : Rôles des modifications post-traductionnelles et de la localisation de Tax. Médecine humaine et pathologie. Université René Descartes - Paris V, Français. <NNT : 2012PA05T069>. <tel > HAL Id: tel Submitted on 28 Mar 2013 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2 ABCDEFDA AAAF FBF EBDAAC C ABCDEFDA BFD C ABCDEFFAFA ABCDDEF BABF CBABD ABBCD CAAAAEFAABCDEFDA AEκ B EFAFAEDC A EDAFB CD CBA EC DA EF DA EABD DDA EA DDAF EDC EFAFA

3 DDDFDAAAABD CAFDDFFABAA ABDADD DADAFAAAAFAFAB DBAFAADAADADDFAD DAFDAF FDDDFFDADDAADBDFDF DDDFFDABABD FFAABADAAAFAF AAAAADABAABADAA A FADDF B B A AADDABFFFADDF DADFDAFAAAFDD DADADDAFADFDDFAA FDFDABABFAFFDAA AFAAABBBFABFDA AAABFAADAAAA DAFDDAFDADFDFA FAFDAACAD FDADAFDDCA FDADABDAABDAAA FADAADAABBBFFDAADAB DADAAAFAFAFADAD ADAA FBFDADDAAAFFDAFD DABABBAFAADAD ABAADAAAADABAF DD A F FA A BDA BAB A A DBD FCDAACAADFDDABAB ABFADAFDBDDDFA DDDAEDDAFDADBAD AAFDADAADAADBBDDFAFD ADBFADBFFADDDA D BFAB DAA D A FBDAD F DDDDAACDAADADBDD AADDDDBABDAAADEDABAB F A F FA A A

4 BFFADFDABD ABADDAADADADADADBDAFDA DDAAADEADADADFAAAA FDAADADFAADAAAABFA DADDDDAB BAADDAADD DDAAFDFDFADDADDFDDADB DA A FA A BA A B D D FA DAAD B A A D F A D DA FDAADAADBFADBABBAA DFAADDDABABDAA DFAADAADADFADAFAAFFAFD DFADADFADDAADF FCDADFDDAADADADDADBDFD FAFDDDAAAAF DDBFDADDAADAADADA D FDAFDBBA ABADAADDADDAABADAFA DAADADADAA FDDBAAADADAA AADDAADA FBDAFDDADDABDFD DFDBADDFDAADDADA FAFADAFFABFFAFDA DADAABFAAADABAFFADF DDFDADD FDADFFDBBADFBABDDED DAAFADFFDBDAFBABD AADDDADFDBD FDACADADAD BDBADAAD FDAAABABAAAFDB ADD AAAFBDDADDBFDBAB DAADBABAADAD

5 D ADAAABCDEDFA DADDFBFDABDADFA EDFADAFAAADκDFADADABD DABBBDDBDAADADDAAD FD D DA D D κ ED FAD D DFA FAAAAFκDDADABBDAF EDDDADAFAADFκDFFBDD ADAADDADABABADABFAFBFD DFADADDFADADDFBDFAADA BFDBDAFDAAADFADAAFA FDDDBABBABDBAADAADDAD DDADBBBAFDDFABBFAADADA DDBFADAADDADD C A AB D DAADAA D D D BA A BFA DA E DC D F FBD BDFBDAADBFDDFDDFABADADFAD κadbfddbdadfae DDDDABFFBDDADABAD FAFAFABDDABFAFAA DDFADADκADADDAFAD DBABFDDFABDFADADκBAADA DAAAFBBDADADDDAFDA ADADADFDAADFADADκ D BAB ADDA A BABDABDFDBFDDAABF DABFABAABADBBBDDADFADA DκDDABDAABDADDAAD DAFFBDFDDBDABDAF ADABDABFDBADFADAFDDAD BADDABDDABDAF A DFA DFADA D BADA DFA D DAABBDABFDFFFADA ADAA EFDADADAFFBDκ

6 AEB DFDAAAFDDADAFD DEFDDFAAADFADAAκDADDDFFD FDADADDAFFFAAFDFDDDFADA AAκDADAFADDDFADAAκDF FAADFAAADAAγAFDFAADFAA AκDAFDAFADDFDAADAD DAADFDFAFDDFADAAFADFFDD FAADDFFDADFAADFDA DFFDADAADADADDADDA ADDAFADFDDFADDADADCFD AAAA FD ADA D DA DC ADADAADAFDADAD CAFDAAAFAADA AADADADFADAAκDADAFADED FADADFDDDAFFD FAFFADADAAAFADADFκ DFADADDADFADADAADADAAD ADA A DFADA A κ DAD A FDA A A ADA A A DAFADAADAADFDADFADA AκDAD FADAAADAADADDAA AADAFDAADADFAA DAFADAAAADDADFDADD ADADFκDFADAAADAD FDDAADADAAAFDDFADA AFDDD FFAADADDDF κ DFADA F DA D D D F A A D ADAAAD FDADADAFDκ

7 DCCEDCC DCCCDAB DCCC DCCDC BDADAB CD BEAFDFFFDFDDDFF ADDDDFBE CBA CBBAAB ADDDAFA BDFBEBEADDFFD BDFBEDFD BDFBEBEAADDAD DBDFD BDFBEDAD BEDFD AD BFDDAFA BFDDAAD BA FDAFDDF FDAFDDAAD CDBCDAEADACACCCCCDCEC EEBDC BFDADFA ADDAFD BD BAADADDADFFFDF BAABFAAB EDDADFAAABDABADFBFFBA

8 DADFDADBADABBDAAD DF DDADDAFDDDAADA AAADADFDAAAAADDDF FA FDDFFADFBEBE BEABDDDFAA DAFF BAAADDDF BFAAA DDDFFBEDADFFDF DDAAFAFAD FAADDDFDFF BFFADDFAFAA BFDADAFFAFDDDFDAAADF ADABBFDADAAD FFAFDDDF BFDDAAAAAA BADADDAAAFAF DFAFFDDAFFDAFDDFA ADDBEADADFFF FBFDA AFADFDAD BFFDDDFBEDADDDA BBDFD AFDFFDA CDDDBDAFDBDADFBC ADFD BEFDDDFF AFDFAFDA CDADADFBD DADFD DBCABAADCBCCACDC FDADFDDDFADFD FFDAAA DADFADADDAAFDADA BDA

9 C D κ DADDAFDF DDFFFDD C κ FADFFDDAA DADADADBDAFD DDFAAFDFFDCD DFAAFDAAAADF DFFBBDADADABDAFDDFFAB DFFBBDADFFABFA DADDADDBBADFFABDFA DDFDDF DBBDAA ADBDDAE DADDADFD DADABA FFA BADDAFAAADF FFAADDAAADFDADA AFD FDDAFDDFABA FADFAFADF FAD FDD DABADAFAB BDDDFDAADFADF D DAB BDADFADAF DFAFDAADFADADκ AD DDDAD AADFDDAB

10 FDAFBF AADκFD ADADAADFADFDκ AD ABABAAB ADκBAA DDADAADFADFDκ FDFAADADDDFBE DADBFAFADC DADBFFDDAFBDFAD DADBFFDAAADFA DADBFDFADAADAκ CEACCDCCDDABCACBκDCDBACCACEDC BDκDDAAAFFDFF BDDADCFAAA FAD ABADD ADAADADDDFADADκFDF FFBDDDFADADκ FDAAADFADDFADADκDD EDCCCDECDAC CC ECCDB BDA DBCDABDBDAC BCCEADABADDDABBCC EEBACDDAB DABBCECBD BDDADFAA BDDADFA EEBAADCDBDDAB DCDCDBDDABCAEADC EEBAACCBC

11 CDD CDDBABCCADCBCDCCDCADCBDCC DBDABCD FAFDDADDDAD FAFDADDDAD BDABDADAA AFAADAD BFDADDADκ DDADFDAFD EADABCDCABCCDBCABDBCCCADDABC ACBκDC BFDADF ADADF ADDADκAD ADFDFADFFDFD DDFABDAFDAAADFAADADC DDFABDADFDDAFDDCBDADA FFBD DCDFADDD DFFAADADκ DAFFDDκ BFADFFDFADDADκ AADFDD BDDDADDAAFADDADκD AD BDDADFDADDDAD ADCBCDDCACBΚBDBDABBEADABB AEDABCABCCDC BFDDDDDADADDDD BFDFFFADF BFDDADκ

12 ABCDCCDC DDABCACBκDDBDABCDCDAEC BBACEACC BADAFDDAAA F BFDDADDDFDF ABAADAADDADD DFADADκ BFFDABADADFBADAABFBA FFDADAD EFAAABAD BDDADκDF ADDDAD DFADADκDDAAAFDBDFAD ADFADADDD FDAAADFADADκ ADADFABDA AFAFAAD DDADADBFDDFADADκ EDADDADκ BFDDD CABCCDABACDC BDDFDB FADFADDDDF AADFAFADF FFBDDADBFDDFADADκ EFAFFBDD BFADFDAAFAAAF DBCADCBCBCCBBDCCEADABADDDABBCC AADDAAADFDF DADκD BFDDDDDADA D

13 DFADAFBDAA CCBECCEADABCD BDDDAD ABFDDAF DFDDDDADAAADD EDAAD BFADAAD ABAB AC BBCC

14 BFAFAFE DFDB FDAA FADDD FF D DDFFDDF DFAADFADFADA D AAABCD FBFDA D AAABCDB FBF DA C DDDF BDDADFD DBCDEDF DFB FF FDF DDFD ABD ADD DBDAFF CD AFA AAAFDDFD ADAFD E FDAFDAAB C A BBABCFF C ADDFD ABDBBAB CFF E FDD BDADFF ADFD FDA B FDD ABDBDAE DDD BAD C FAAAFDAAD DBBDDADFD E BEDA BDADFB BEDADDFF DFAD DCAFA DED CD A ABABAD FAFD DABC FAFA ABFDBDDDA D AABFDEDF AD B ABA κd Dκ FACD A FACDF BFAA κ DDFκ Aκ

15 BD DFDFADAAFAA FDADDDA BDD DDFB FFAFF DFABDAAB D BFFDAA DA DFABDAB D DD B FDAD DDDAADF D FA D FAFAA D BFDA BFBBABAD E DDFFDD BFADAAA E DDFDD ABDDFABDA EE DDFD DAF E DFCD BDAAFA DE EC DDFD DDDDABDFAB DD DAA E FDBCDEDF DFB EE DDF BDDABDDA EDA DFAFDDF FADDAFA B AF FFBD BCEA κdaaf DAAκ BC ADDDDF BDDADFFBA BD AFFDAA DFAFBDFDFAB Bκ AFFκ DFAFBDκ BC ADD DAABAB B κdd DFAκ B FADAAF FDAD B AFBADDDA DFDDAFBD B AFD ABDDAB B FDAD A DF FDAFA E DDD ADDDCE E FDFAAFAA FFBDFFDAD DF DFADFBC AFDD BDFABDAFD

16 ADFDDAA FADDFA CEE DDDD DA E FADBCDFD ABDFBBFA FDAF DBDABFBD DC DDFFDDADF DFAABDAD ADFA D FDAABFDEDF ADA C BAFD B AAFD DDAABDA FFDFD ABADDADFBFA CE FFFF AD A FFCDDAD DDDA FA FF DFABDB DE DDFDBDC ABD DD DAFF DFADADADFAA DFFFDD ADFAD D AABFDEDF A D FDDDBD ADFDAAB B ABDF EA AADDDADCDDF AAFDADA D DDFD ABD D βdcd DDFABDβ 1 D DDFD ABDD D AAF BFAFA D AAADCF BFAA DE ABADDD DB FFDF DFABFAD DB FFDFF BFA DA FFADD ABADFADFAAB BB D FDF DFADFBDBFA D ADDBD DDADAADDAB D DC A BBABD D FABDA

17 D FDADFFD DDDBDAAFD D CAFF AFAADFABD DDDADC FA DDEDF BFFD

18 BFFD BDAAFDFDFDABDFDAD CDAFFBFA DFDABA BBAC BADADADBAA BDAABBAABDA ADBDAC BBAF CBDFD BBB AFADDAFD DDAB DDA A FD BF AB AFAD A DA FAFDADBA AADFAFAFADFADAB DFABDFBFAFDBA DADDD BFDBFDDADFAAABDA FADADADFADAADDD BAD DADADDAFD A A BFA ADDA FAEAEFAA DADFAADBABAAD AFAFAAFFABD ABAA BADDFFD DDAD

19 EADDDADD ADDDADD FDDFABA BA ABDAFADA FAD BADAFBDABBADAD BAC DADCA DACD AFAABDFAκAAκ DADFADA AEDD DDFABDAFFAB EBBDAFFFDDD DAABDDADE DAAFAFF DAADA FBD D BFDADA FD A D F FDDADAADDAF FFBDD EABFFBDFD DDBADBDAFAD FBDDAFAAFDAAADFAD DAFAAAFDA FFDA ADDκ A BF AB A A F DAADFADADκBDABA DAD

20 DFADFADADκFDDD DDAAFADAB BDAAADAD BDABDAADAD DABDABDAADAD AFAADAD DDFADADκDD ADFADADκ ADAACD BFADADADABDF ADAADAADADDAC CFADFDADDDABDF DDFABDAADADADC DDFABDADDADADC FDDAFDFDDFABADABD FDDAFDDADC DADCADADFF DADCFDA DADCDFAADDFADDκ DADCADDFAAABBAB κ DFDBA DADCADDFAAABBAB κ DF F FBD A DA DA F FA FABD BADAFBDADAADA ADAADAADAD BDAAADADADFADAF FADAABDAκADBAADA DD BDAAADADADFADADκ

21 DDDDDDAFFBDDD FAA DADDDFA DDAADADCADFDDFAB ADDFAABBABκ BADAFBDADDAADA ADAADAD FDDAFDD DADAAFDBDAA D DFA D ADFA A BBA B κ BDAA DDFADADκDDAD BFABAD DDADAADABBADFB DDDDABBDAFADDA DDDDF DDDDBFDADABABDAADA

22

23 AFDFDFDDDDA BADBEDCDDABFDF AFDFDFDBADAFACDD DABFFAADA FADABABDFBDBAFDFF AD AA FDFDDB BDAA A FDF BDAFD D A DFDABDDDADDD DFDFFABFDFDFDDA DFDFDDAADA AABFDEDFFBFDA ADDADFFADAAD FDFADFADADDBAD DBBFAFBBDFABDFFA DFBADFB CCDDABCCCBCDCCEC AFFDCFCFFCFFFFFCFCCFCFFDCFF FFDFFCFABCDA FFCFD F FC DCEF FFF D FD DCF F F DF F FDFFDCFFFEFDEFFFFFF FD CD FDFAADBFDDA AADDDFBDDDFDFBD AADAAFDAFDBAFDFAADA BFA BFD FD A BFD F

24 ADDABFDABDFDFADBD AABDFDFADDAAFDFF DDAAADAFBAAAF DDFDDAAA BFAADADAFAA FAA DF DA D FB F ADDA FD FAADDAAAADBDFBF FDABABADAADDBF BAADCDBFDBAFDA DFAADFDFADADA ADFBDABFAAA AAAABBADD DABBDAFDDBAFDAD ADDAFDAFDFADAFAAADκ BB BADADBDBFA BADAFDBAD FDDABADBFAAAABAD BFAFFDDDF B B A B FDFADDFAABAAADFA BABABABDADADBD DDFDADABAADABFDDA AAAFFBBFDADDADDAB ADDABDABDBDF D A AD A D F AA F AB A DFBDDABFDFBADAFDFADD

25 FADDFAABDFA D AD A A FD FAA DD FAA B F BDA D BA D F A FAD BF ADFABFDADAFDD BA FDF DA DF BADA D ADBDFFADAFDFDDFAD DDAADFADBFADAFA F B AA BFA A DAAB EA D BADADDDADDFAADADA DDADAFBAFADAADA DFFFADADDAFDFBA DAAADDADAAFADADA FADAADADAAABAFFAA DFB D BA FAD A A CA D BF F DF DA DFFAAABFADAA FDADAAAADFDDFFBA FDFDDABDFDABFAAFA CADABDDADDAABF AAADDADADAFBFADAB DDADDDAD FABFADADDFFDA DFAFAABFAEDADDABFA DADAADADDFBDDFB ADDABAFBDDDD FBBADADFADAFDFFAABDADAAD DDAAFADAFDBFAC ADBFAFBDADDFDFDA FAFABABFADFDDF DDFBADABDAFD DAADFCAFBEBFAF DADCADDFBDDDC

26 DFBABFAFDD FDBFAFB DAAFDBAFDFADFFABADFF A F A AB F D AD A F AB A DB FF BFA D BAADDBFBB AADEAADDABFBABBB DFAADCDAABFDF FAFDBDAADFBDFDFBDAFD AFDAFDFDADDD DDDADAAADBDBA FDFFABFDDAAD F D BFA DDFB ADA A D FDDFABDADADFADAADADAE DA D BDA D D A ED DA AA BFAFDAFEBADA AADBFDBDADDDDA DA D AD E F DD BDABBBADDDADBA FAD DF BA D F DDA D BAB BFFADDFFDFAAFADDB DABADBBAFAADA D D B DA F FDF DDBFDAADABDAFADDA DBABFBABBDAADD FDBFADDDBADADA DDA FDB E DA FDA DAA AFDA BA D D AA BBA A FADDA D BA DD D DDA D BAFA E BDγDADFADFAABDADADAA DFBDAFDFDDFDAFAF BFADFADDAFAADADA

27 BAFDDBAADFBAFAADABD AFDDBADDBDAAFADFD BA A D D D B FAF D D FDAB FAAFBAF E D DA DBDA AF DA DA D BFABADEDADBAFAAD FDDFABDADFAABDADFADDAABA FDAADAFDADBBAD ADDAADEDADABA DD BADA DFB FB D FF BA D A DAFAFDBFADDDBFADFAFDF FAADDBAADFAFA DDFADFADFDFFBADFFDAD FFDAADABABA DDBFDBADDAFAD DAADAAADDFADBFABD ADAFDFBFDAAAABCD CADAABFDFABBFDBDADD DAFDABBDADFDFEDAF DADFDADDAFFAA BFFBFADFAABADFADD BABBFDADAFBFDAFDDFABAD FDDAFDABDDFAAB ADFADBADABABAFDDFABBDED FDDFDADFADFDDFDAFB FABDFDDFAFFDA DBAADBAAB EDFEDAADFDFDDFABDABABDABA BFFBABADABAFFDA FDDFA D F BA DDDDD A D A A D D BAFADAFBBFAFADABAD BDAADBDADBDADAADAFB

28 FFDABADDBAAA FADDADDAFFAFDBFBA CAD CCECCACDABDCBEAACCCDABC AFCDCFFCFFCFCFCBCDFCEF FCFCDFF FCDCFFDFFCFCFCBCDFCEF FCFCF DDFFAFABDDDB FDBADDAFDAADAAAAAFBF DADBABBFADDDDAAF FDDADAAFBBADADAFDABDFDBADA BDDAAADAABAADADA DBADDBDAA BADABA DDADADAFADDBDD AAABDFBDAAA BAAFFDADDBABDBDBA BADBFABBFFFAB DFFADFFDDDD BADBAFDADBBBDDA ABBFADFDBDADABD F F FAA D AD BA A D ADDA F FAB F D B AD ADFADABDDAF AAFFFAAF BDAD

29 BDAADAAADDAFDDABABAB FABDADAFBFDA DBFDADFDAAB ABADDDBAAFB DAADABAAFBDBDDAF BFDABADFBADABAFA DAADAAFDADAD BAADABDAAADA DAFBFADDDDAFF BFADAFDDF DADFDDFABDAFADABAAB DADDABDADCFDAA FABAFAADFAABADFADDDDAF FDFDAFABDADBF AADFADDDFADABDAF BA DD E FBAD D A A BAFA B D ABB BFA D E F A A D AFDBAABDABDDADB AAABCDEDFAFAA FFBADAADBABFADBDA ADABDADDAD DBFADADDBFADBA DDBDAFDAADDA FB AFFFA DDDDD A D AA BFFDADAD DADBFAFABADAF DDADDDADABADDFFDAD FBBAFFDDBDADDB BBFBDAAFD BABDFDBA FFADADFDFAA AFD

30 BB DADABAABABBFAD BDAADDAABFD EDFCDAAAFDDBF FDBBAAABABB ADACFDAABFDEDFDADDAD BBB EDFDDFABAADAFDDFABABFE BDBFACDDAADD FDFDABADADADDFDFDA BADDABADADADBAD DDFDFDCDDAADAFFDFD DDFFFDFD CDABCCDA FDEFFCDCDFFFDFCFEFDDCF FCCDCFFDCDFFFFCFFCFFCEFCFFFF EAFA D F EFCF AAFA F CFF F B F EFCF FF EFFCFECFDCFCFCCFAFEDFDFFFCBF CFFFCFAAFAFFDFDCFCDFFCCF FFFFCFFCFCFCFDFCDFCDDFFCDF FEFFDFFEFCFAAFACFFCFCFFFF FCFFDCEFDFFFCFFFAAFADFF DFFABDFFFDDFFCDFFCFADCEFDF CFFFCFDFFFCFCEFCFCAAFACFECDF FFFCCDCFDDFDFCDFDDFFC

31 AFFDFADADABAB FDFDABADDDFB DDABABABAFDDFABBDDADBADB ADAFAFA AFBDFFD FADDDFABDDADFDDBF AFCAAADBDAAD FBAAFAAEADDDFD AFFDFDBFDAFADF CAAFDDFDDA B AD ADAB AFDA BFD ADDAADDAFA AFBFDDFABADBBAF ADAADDFADADDABDAD AFDDF BA ACADFDDFABAF F D A D A AB AA DDABFBBAABAD BABAEAABABFDD BFFBAAADADD AFFDFABADFDDABFDDADA BFBBABADBFDA DBBAFAADDAA AAFADCCC EDAFBFADAABAB BFDBDFDDDAD FBAABFDBADDAFFA DDADADAFDAABDDA DAFFADADABFE

32 FFADADB EDDBFABABAABBFAADAA ADADDADAADAA AFADAFADDABDAD AAFFAABBA ADCDAFADBADD DAAAFADFDFB FDDDDAFADADA BABBAFABFADFFDBDADBABDABD CCACBCDCCD FCCFDCCCFFDEFFFFDCFEEDF FDFBDFFFFFFFCCFFECDFF ABBBFBFDFFDCFFECFDF FFFFCFCEFFFBFDCFCFCFCDFB FEFDFCFF A BBAA AFA F C BABFDFE ABDABABBFAFDADAD EDABABBDF A ADA BAB AB F ADA D A BF A DA A D BFA

33 BDADAA BBAAFACCA AABFFDBBAAFA D F D BAB BFA F D DDDDFAFDAABDBFBADA ABFDFAFAA BCDBABBCDADEDA FABABABDFFAD AAADDDAABFBDAD DAFABABABFFDDD DDAAADDDAAADADAD AABFAFBADA BFFADDAAADAD C AB BD ADF C A C D BBA DAADBABABFABFAA FFDDDADDFAF DBABBABFBDBFFBABA AABDFFDFDAABFBABFAA A F BADF DA C D BBA AADDBDFFDBDA FAAADADBABBFBA CBFADADD BBBAB FADDABAADDDABADA ADADADBAF DDFABFDAD FADDDABD DDA A ADA DFFA D D BF D AADABADBDDADFDFAF

34 AFDFDABADDDDAAABD ABAA A AAAFBAD AADDDDAFBFAADDDDA DEDDADBADBABAB ADADAADDDDAFAAFBF DDADFAFAD ADAADFDDFABBBDDDABADFD DA B F AA D DDAB B ADABFDABDBFDFFA BAFDFFDFADDD ADABBBAADFBAFDADAAAD FBFA CCCCBDDABCCDCADABC FCBFBFFFDCFFFFEFFCF CFFFDDDCFFDCFDFFCDCFF FDCFCCDCFFDDFCBCDCFFFF DDFFCFCDEFCFDFFDCFFFFCB FCEDFFFFCCDFFDDFFCEDF FBFF FAADDDABBBAFADFADA ADFAADFADADA AADDABFDDBAFD AADADDAAABDA ABAAABDBBDABAD BACACADF ABADDFADFAA DADDFA DCDD

35 BBB CDAABFDADADD ABFDADAAD DFBFDDABDDAFDEAD CCDDABACBCDCCDCACCAD CDEDECFFCFDFDCFCBFD FFDDEDECFCDCFFDFFCFCDCDFDF FCCDFCDFCFFEFFDFDEFFCFCFFCFFF FFFECDFDCEFFDCCFECFF CF CD ADDBAAAADADA AB D FAB D D A ADADDAAAABDAAB ABADDBDDDDA ADFADFBDCDFEFAABA BDAABBFFDA AAAADADFDDBF BFDAAABDADFFAAF BDFDDC FDAABABDDFBFAABDAABDDAFA DADADBADDAAD

36 DBBDADDA BDDDDADAFAABFD DDADFFFDDFDD FAAFDDDADADEDA FD FAA BDAA DAF A DF DA DDDABABBAFFDAD DFDA AAAFADCFF A A BAB AB D BA D FAD D D DDFBAAFAFABD FD AABDBFBCDD B D D A DDA D F ADFDABDBFA DAAADAADF FDDADADDAD AEABFFADDDAD AEFDAADABABBFCB DDAAFAD AAFAADFAAA FABAAAFADADDDA A BFA BFBA A A A FDDA BD AAAABFADD D FDFDA F DF FABAAAF F BBAA D D BBAFFFDAAD FDAADFFBDA AFAADDBDACDBABDABBF ADAABADADDAD AA DDA BBA AA B BBAB ADAFAABAD

37 BBDDABAABFD DAAADADBAFD DF BDA A DA F A DA A BADA F FB D D D AB BBA ADA A FBDADDABFAFADAAAD FF DDA BBA DFA BA BA AD A A BFA F B F F BA ADAFDFDAA DDDBDDDFDBDFFDFFA DFDADAABDFADA FDFDDDDFADAFFABADFF DDADBDBFADDA AADABFADDDDAD AADADAFABDD DA A ADA A BDA D B D DD BBA F D FAA F D D BDDDDAFDAFDDAADA FABDBDDAA DAFDFAFAD BBDAAADDADAAFAA AAADFAABADFD DFAFAFCDDADAFAA BABBAADFBAADA DAABFBAABD DCADBADAA ADDDBAADBF DADBDBDADDFDACDAF AAAABABBC ACDFADAAD DAAAABBDBAFDA D C B AD AF A A

38 BFBAAA DBABBB ADADDDDADDAF DDAD CEACCCABCCDCCEBDABC FFDFFFCFCFFFECDFDDFFCBDCFF FDFFCFCFFFECDFEFFCFCBCF FECDCDFFCDDFFFBFFFFFFECD CFCCBFFCBFF BB AFABAF AABAAAEAADA ADDABABBDDABFAADDDABABDAADFBD ADADDADFDFDABBAF A FAA BA F BFA BFBA ADDADFDDAA DFFDDABDDAFFADFDA AAADAFDBD BAEA BAAFCBBEBFDA AEAADDADAAE AB A F D CB ADBDBFADAFD ADCAFAD DAAADBADBDD BAABDDAFABDAADAA D

39 B D A DADA D DDAD CCACBCDCCACD FCCFFDCCFFFFFFCBFDFECDF FFCFFDFDFFFFCFCDEFCFDDFFECDCF DFDFFCEDFFFCDCEFEDECFFF DAFDDFABADAFDBBAA ADBADDDFDADDDA BABABDDADABFDBAAD BADDBB DAADBAD DADADFADFA FDFDFBDAAAFDDFABB DA DA D BF ADA D F D DAAAFDDFABBADAADDAD

40 B B B A A ADA F DB F ADAAAFADA FDADDAADBFDFADADDABD DDAD BAFADBFFD AAFDFAADBFDAFBFA ABDDBDCFFBD AFDADABDAAFAABF DCAFDDFFFFBFA D BBB BB A D D A BAAFFABDDDA FADBADADDDBDADBA BBAAAABBDF FABAABBAA DBDFDDAFABFDAD AABDAADAFBDAAFDDFABA FA D A DA BA A DA AD D DADAFDFDDAADFDFBFA ADAFFADDAAAAFBD DADADDABABB BBDBBDFDBBDADACAA AD FD B A BDF A D DDDDBFADADFAD AA BDB A A D D

41 BDF A A A DD A FD D D B BFAB D ADADDBBDFAADADFADB DFADDAADFDADF ADAFDADEDADADDD FABDDBAABDF BBDDDAD DADAFADDFAD DBDFDADDBDFADDDA DFDADFBBDDDD DDABDDBDFDA DBABADDAAD DFDDAADAABABDFBFDADAAA DAAFDADAABDAFADAAD DBDFADDDDABBDAAA BDFDDFDADBA DBFAABADAD FA BDA B B BADFADDAFDDFAD DBDFDFAABFDAD CCCBCDBCEABC FDFCFCFFFDFCFDCFCFFFFDDFFFCED FFDCFFCBFDFFDCEFFFFDEFF CFCFFFCEDFFFDCCFDFDCFDDCFC FFFFCFCEDFFFFCDFF C

42 ADDABBDAADADBDFFAA DBDAFAADABABAD BDFDADBBDDFAABDA ADAFFFAD DAAAFADAADADADBAFAD BAABDDDDABBDDDD DAA ADB FA AA D AA F DA DAFADBADADA DAABADADAF DAABDBDADAAF DAADADDFBAFFAA FABDDBDFBADAADAF FDBDFAFFAADBAD BDFDDDAAADEBAFDADDABBDAF ABBADDBDFBDBBE ADAFABDDD DADABABBDBDADDBDDABDF DBFEAABBBADA ABFAAADAFABFFADA DADAAADAAFABBDBDAFA DADAADADDAD B ABFDADABA CBDABDAABAFADAD FAAFFDABFBAFAB D F D A A A FD BDDABBAF DBDFAADDDDADA DAFAADADBADBFAD

43 BA A A D BBDF A A D BBDF A BDAADADAB AABABDAABAF ADA D FA D A D ADA D BDFDFAADADAFAABA BDA A BA D ADA D FA B ADAADADDAABDFDBABDAB FAFDADFD CCDCBCECACCEC FDCFFEFCFCCFDEFDCFFCDCC ECFFBFF ADCCFDFFFFDCFFDFFDFFFFCF CFEFFFDDFFFCFFCCFFFC FDD DCCFEFFFFDCFFDFFDFEFFFDFDFFF FFFCFCDEFCFDCFCDEDFCFF DD DFDDFABABBAF D DAB BA D A BA DADADFADDAD DFFDBFAADDDDA ABBDDAABAAD ADA D DAB F ED FAA DA ADA D FA D FDDFAB ADA B A DDAFDAADAFADA FDADDAABDFDA ADFDFAADA C

44 BB D AD A A DAA FDF A BFAFADFABBABDADFD A D AD DA FDA D DDAA DAADDFDFABDDA ADBFDAAFDD B DADDFDAAFDDA FDFABDBABABAAADDAAA DDAADFDDFFABDDAAAD AD A DADA BB A DDAA A EDADFAABABABFDDBBFD ADAFDFFAFDAABAA DADADADDAAAD D AD D DA DA D A DFFFA A BDAAAFDFFDAAFAAD B BA D BFBA BAD A BDA AD AAAFAAADDFA ADAABBDADAFADFABBABDF DAD FAB BF F BAD A D FDDFABA D AD A DA BBAADFADFAD BAAADFAABBFCAAAD DADAADDADFDF FDFADBABADBD D D AD D A D AD A DFB D AD A D FADA F FAB A ADA FFABDADDBBDADBA

45 ADDAFDDAFFABEDAD DF BA FA DA ADAADADADDAFDDAD DCACCDBEABDCDDDCCCCCBDABACC B ADADAAFAFADDD DDAB BBA D B D D A DFF AADADFDFDADFBADFFBADA ABBFADAFBABBDBAA FAFAFAADFADABBFA DFAFAFBAD EBABAFDFADBABDFFAAA ADADD D FD B D AD D DA A BAD FA AA FDDA DBDA AA BA DDAA A B A DDAA A AFDFDDBBAADADDEDFD

46 D BA DF D B AD D DA DA DB ADDAADFFAA DFDDBAAADADDAA DAABDDADAAFAFB DA D BF A D A D D BDADDDADFDFFFA AA FA A AD ADA BDAADAFDFDADDA FADDADDAADAD DDADADFBADDAD DFFAADDBABDFDBDAA ABADAADDADA DBABABFDADAAFAD FFAAADADFFAADFD DBAAADAAB BADFADDAADBFDAADA DFADAFFAAFAADA

47 BBAB B ABAAAFDDFABA ABEDFAADADAABAA BFBADBFFDADF B CBADADDADDAF DAADDFADDAFDDFA FDDDFDABAAADA B E D BFA DA FF BFA A FDDFAB D BBD DAF D AADDDABABDBA BABDFFFADABDDAB DDFBDDFADA ADFDAFDAABDDADADADDA EDBADBABDFF FDDDAFBFABDB AB ADDD A DA DF FB D A A FF AB DAF ADAADFDDAD DDAFDDDDDADD BADBFBDAFDAABDAFD ADADDDBABBDFDDA DABDAFAADAADFAAAB DAFAAFABDFAD

48 DADDFDDFDBAFB DDFBDDABDABDAADFADAD FBFDFFBABFAD FBDAFFAABDAADA FDBFDBFDFAF ADADADFAABADADAD A D B D A DA DFB F D CDDCCDCCD A CCD F CF CF CCDC B F CDDF FCDF F CCDCBFDCDDEFCCFFCFFCCFCFCFF CF DFDCEDFCFFCDFFCFFCFFCFFCDFF CFDCFFDDCFDFFCDCFDCEDFCF FFDCDCFCFFCFDFFDFCFFCFFCECFFFFF CCFFEDCDFFFDFFFFDFCFFCDECF CFFFCFFFFCFECFCFFFCF CFCFFCFDFCFEDCDFFFDFFCFCFFFDFCF CFF DFFCFCFCFCBFCDCFF

49 BABFAADAAFAFAFFADA FFAFFFBFADDDAFAFAA DAF D D BFD D AD DAF D B D F AF A F AA F AB BFBAFAAADADEFAABAD ABDAFDDAFADAFD ABDBFABDAFFDAFBFDD D D DAF F DDA AADA BA A DAF D FADA F BADA FBADAD DFDFADDAFDAABB ABAFAADAFDBADADDF A F BA AA FAB BAAADDFFAADFFB DBDAADABAAA DDFABADADAD B BAFDDFABABAAFAAB FADFDFBFA DBBAFBABADADAD FDABABABBFBBABDB ABABAABABABAFADFD BA D A A FB D F B D D BFDDAFDAABDFAABDAADFAD ABBABBAD ADFABADAFDBFAADFBABB DDDDDDF D ADFA D D E D ABB B BFADABAB BFAADBFDDADFADAABAB

50 A B A FAA BDA D DBDA ADFACFDAFBADBB AADFADAFADDFAAAB DBAAFDBD BDDDBDFDDADABAB ABDADBABDB AADFBFAAFADFDDA DDDD BDAAFAAFA FDBDDADDFADAADD FDDA CABDABCBAECD ACEDFCFDFCFFCFFEDFCFCF FCEDFFFFCFFFFFFFFEF CCFFCCDCCACFFFCEDDFCFDFCFFCFF EDFDFFCDFCECFFFDCFFFCEDEFD ΨFFFEDFCBDF CEDEDFCDCFFCCCBDCEDFCF EDFCDCDFFFFFFFCFCCCCF DCCFFDCCFDDFFADFF DDFFFFCDFDFFDFCEFF FFFFCEFFFFDFFCDDFEDF CFCFDFCFFCFFFDCFFCDFFFCDF FCFF

51 CABDABCDCCCCCADCBCDDCCD CBEDCD FCCFCCDFCCCFFDEFCEDFEECDC EFFFCFFFCFFECDDCFEFFFCFFFCFD CCDFCFDCDFCFDCFFCDFACFFDF CDFCDCCFFCFFECFFCCFCFFFDF EFEFFFFDFCFCDFFCFFFFEF DCFFFFFCDCFC BABDAAADAAB ADADFAFDAFAADABD DAEDDBFDDFDFADD DFABFFDADFADABDC DBFDDFDFADDFAADA ADDABCDFDCBFDAA FBDDABDDADABDAF FDAFBFDFDBFDC DFAABAFADDABDDBF DCC A BDA FB A AA AB FAB BFBADDADFADAABD DDFABADDAFD FDFDAADFADAB AAADADFDDFABFDADBBAD AB DA A D A BB D AADADFADABEDD DAABAFADBFAFBDDABDFD

52 ABADDDADF DDDF DBAFDADADAFAFDAADAFB FDAFAAFDAAB BDAF A DD DD D AB BDAFDAAADAFDADDDFADD ABDDCAADDDAFDA DDFDAADAFAABADADFDD DADDAADADAA BBDABFFDADFD FADABDAABAAADADA BAABBDDABD ABBDABED ABBDAFADAAAADADA ABBDADADFAA AAABDBABABDFFABD AAADAABBDDFA FAAABADFDDDFBD DADAAFADABBADABDDA DFDDFABFDA DADFADADADABBDABDDBAB BFDDADFAFADFADADBABB DADDDADDFFDADABBE DADDFFADADADAADFABB BBDDADABBAADFADABA ABABBDDBBDAD ABBDDDADDADADDAAD DABDDDADDFFABA DFDBADADADDABBEABDAA BABABFADDDDA A ADFA DA A BDA FB D B FDAD

53 DDABADF DABAFADADAAA DDADDDADABBDAFADD A A B BF A FD A FA BADDDBFDAABADFAAD FDAABADFABBDADB D DCAEABCADCBCCDCCDCCDCD D A B DAFADDAFDFFAFDA AFDBAADFAFABDDF DDAFDDFBFABFDDFFAA DDBADDFADDDFD DDABDDFADB EDADFADBFDDAF B A D D A DFB D AB FBFD A ABD FFD D A FBD D FDABDDDBBDD BFD ABDDDFADB DDAFABBDAAADDDA DAFDDDDDD

54 C FFFDC FCFCCDFCFF CFFCFDCDC BADADD DFDDF FAD DDFF DDD FAB BF EDFD DAABFBAA ADAD CCEDDABCBCDA CBFFDCCCDCF ECDEDFCFEDFF FEFFDCFFDCF DAADFDDA FDDBAD FADA DCFDAD DAAA DDFDFAB DAFADFAB FABAFB FBDDAFDFD FFCDF CFFF B AA AFDAFA ADA D ADAADFD ABFA DBAB ABDAB FDAA

55 ABDFDABADDDDDA AFADDABDAABABBADABFDF DABDDAAADADFB DABAFBDDADA ADFA DF BFA FD E F DD D A DADEFDADAADFADFDA BFAAFAADFABBDADFDAB DEAEABDBDDFCFAD DDAABDAFAABAFFDA FDA A D A F D AB A ADFADDAFDDFBFAFDCBFAABAB AB D DF F A A ABFD BDDDACFAFAABDA CDDFFDFDDDABAFA FDDAFABDFCAD ADAFDBDABABBDAB FDFDDFABDABADFDFDBD ABEADADABABBFDADFADF DADDABFADBABABBFAD CDABFAFAAABDD ADADFDADABFDFADA FDD D A ADFA BA F D DA C EAFADAFFDBABBFDDBFDA DFDBACABDADFADFCDAAD DFADABADAFBDAFABFAAA DAADFADDFFAABAB ADDADDDAADFD DFDFFADFAADACFDAA AADDFCADFAADAFDA FDAAADAAADFADDF

56 2 # $% C8! DD1*+CECBD8 C8 C8 +D,! 818%BC8*C % C, +ADC8$ 1*C818 4 BDC 1* BDC 1*D AB8 C8 18 A%, %B DC8 % 8 C8 18$ -*A. ADC B. ADC BC8 4 CB C A..C81 C*8 " 8 C*C.DC% 8*C % 1 % 1 C 8 ##C CBD 8 A39 CE6#5"685D#92CD8355*F9&F9769"D*" 355*F9&F9769"D*":*# E2EN29&F9769E774D2CD835#F9&/F#,F7D22F9&*9,5C /F#,F7D22F9&*9,5C*"9 B:' F"894D-2D"3F9&F9F9&D-65#F"9A9*#9&DD-65#F"9A9*#9&D-65#F9&F97565"D#96*69C34F28F*C"9 :8FC-5#679D*9 8FC-5#679D*9! 9*#9&D-65#F9 C549F9 F#9 2CD75#F" F89 *#9 &D-65#F9 &D-65#F :8FC-5#67+9 F"9 C3"5&*"9 5-2DC86#8"9 DC86#8"9 2D*C9 7/5#8FC6485D#9 7/5#8FC6 6,F49 7F"9 &5$$3CF#8"9C34F28F*C"9"D#89-5"9F#93,5&F# "9"D#89-5"9F#93,5&F#4F965#"595*F976947"835#F *3F9&6#"97F92D#89&5 "97F92D#89&5"*7$*CF96,F49769 "D*":*#5839 9F897F"9 :E774D"77685D#"9"D# E774D"77685D#"9"D#895#&55*3"+9 39 D&%7F9&F94DD23C685D#9&F9F9C34F28F*C 685D#9&F9F9C34F28F*C"92D*C97/688649F-F#89&F976926C854*7F9,5C67F9?9769"*C C854*7F9,5C67F9?9769"*C$64F94F77*765CF+9 69 "D*":*# #8FC6E589 8FC6E589 &/64DC&9 6,F49 7F"9 496R#F"9 &/9326C6#F9 "*7$68F9 8F9 &F"9 1 9,569 "D# "D#9 &D-65#F9!9 2FC-F886#89*#92CF-5FC F-F#89&F976 5FC F-F#89&F976926C854*7F9,5C67F9?9769"*C$64F9&F97694F77*7F+9 F"9 1 F97694F77*7F+9 F"9 1 95#8FC6E5""6#89 3E67F-F#896,F49 :' 94F9C34F28F*C9F"89F ' 94F9C34F28F*C9F"89F#"*58F9CF4C*839F897F9-D85$9=;:=E9&*9&D-65#F9!9& E9&*9&D-65#F9!9&F9769"D*":*# #8FC6E5896,F49 :'9F#95-586#897F9-34 '9F#95-586#897F9-346#5"-F9-D734*765CF9*8575"3926C97F975E6#&9#68*CF79&F C97F975E6#&9#68*CF79&F9 :' 9B : 'NG+9 1*58F9?9 4F"9 5#8FC6485D#" 9 8FC6485D#" 9 *#9 496# 496#EF-F#89 &F9 4D#$DC-685D#9 &F9 769 "D*":*#5839 *# ,69 2FC-F88CF9 7/5#8FC6485D#9&F94F88F92CD835#F96,F497F9C34F D835#F96,F497F9C34F28F*C9 '+9 &62839&F90JD#F"9F ;'' F D4A7 74A F 4? 8 DA5 42 F 4 6 4A B 78F A D M 45AB2 7 2 > 52 6D2 549B A ? 95 4<2 8B974A2 /2 ;79A8B 5AB2 &MA78 54D D M 45AB<2 D492 D2 7 )8D472 D9 5> 7, A 7 A ? 95 4<2 A8* )7<2 79A2 A2 D9> B2 D9> D D2 A 1F 8 AB5472 ; D? D92 9;549B8782 D4924;5 8A722 > )8D472 D6D4A2!!2 2

57 DAADFABFABFABADA DFBAAAAFA BFADDFDADDD FFAFADAAF D A AD F D A AA DFA DA AABADFAA DDF D FD D AA BAB BAD A BA DA FAB DDDDAABFDFD BF D BAB FB D AB D FADD FDADFADDAD ADADDFCAADC ADFADAD CEACCCABCCBCACCCDCECEBCEC FFCDFDCCFFEDCDFFFDFFFCFFC FCFFEFFFDDCDDFCFCFFCDFFFDFD FCFFFCDFDDCFFFDF CFFCDFCFCCFFFCFFCFFFFDF CFFCDFDCCDFCFFDFFFDCDCD DCFFCFFFEFFDFF B B A B B BDFDADFADDFAA D FF AFDA F B A D FBA D D F D BD D ADFA FA ADBEAABADAF

58 ABAAAFBFFDADFAD DAEDABBDAAABFABAB ADACBDBFCFDFDD DDADFADDABADBFFBAD BAABABBDDDDFAABDD ADFADBDBDBFBEBABABA AADBBDAABABBDAFB BA D D FD D F DA B A D A E DAB BDA A F DD D BDDADDAFDAAABFFCCA FDFABADADBDDADDADDFD AEDABAEDABBADADBDDAD ADDFBADDABAAF AABABABABDABBDAAA C D BDDAFAADDFAABDAADFFDDADA BDDABFCFDABABEF AAAFFDDADAADADFADFBA EDDABFEDFFDABAB ADAFDABFAD EDADAADBDDAFBDD DAADABFDDBFDDABDD BDEDAABBDBFDFDA BFBAABDABDFFBADABAB EFDBBABABFDFAFDADA ABDFABABAADAADDA EFDFBAADAADADFBDAD A A ABAB FD E D DF E FDDFBAFBADDAFDDAD DADFDAAFFABDABD DBFDAD

59 CECBECEACCCDBDABBCCCDCBDCDAB ACCDFCFDCCDCFCFEDFFCFDFCFCF FFCFECFCFFFCCFFCFDCF FFDCFFFFFCFCFCFFDCDCF FCEFDDCFCFFDCEFCFDCFFFF ECDEDFCDCEFFEDFFCFFFCFECFECF CFFDCFCFFFCEDFCCFCEDECFDCFF FFDECFCFFCDCFDF B B BDABBDBFDDDB A D DF FD ABA FDA D D AB AFAD A DA B D ADADDFFDADFADABABA BFABFBAFAAADFADA AAADFADACDFAFD AFDDDFAADFADDDADAC ADAADDAADDAB

60 BDAFDDADABDFADAAA ADFADADADFADAADAD ADBFAABFDDA BBABDADAFBBA BAFBAFADBDB BFFABFFDADF AAADBBABCFF ABFDADDABDDDD FDDFAB FAA E A BA DFA ADFA FDDDDDFDDDFFDDF AADDDDDADDA DABFDDFAAABADFADA ADADDDADDBFD DADADFDDFDADDFCFDDFABAFAA DDFAADFADDADBDAAAADA DBBABDDDDAF FADADDDBBABA ADBDFADFADDFAAEDDBF AFDFABFADDEDDADDA FDDADFAADFFDFADDFDCA A A FAB D D A D DF DAFADFADABFAD DFDDACFAFDFDDAA DBABFADFDAABDDA D B BADA BFD D DA F DAD EDC ADADFFAAB DABDACDFDADDAD DDAFFBBAB DAADFBADAAAFDBFDADFDAD DAABDDDAFAADDF ADFA FD A ADA DFA ADFA E A BDADADDADAFAA

61 DFACDDFDABFEADF FAFADDFAADFABBDA AADADBFFBDAFADDADADA DFADADADFADADDADDAD A D EDA FDFADA FAB D D A AAA ADDFADAADADABABABBFAAB AFFADDDADAD CDDABCDBDABDAEADCD CDFFFCECFFFFFDFFFCFCCDF FDCFFCCDFFCDFFFF CDFCFFCDDFCCFCFEFFFCFCFFDFF CDFFFFFDFFDDFFCCDF FCDDFCFFCFCFCFFFFCFFCCDFCFDF DCFFFFCFCCDDDFFCCFF FCFCFFFFFFCFCDFFCFFCF CCDFCCDFDFFCFCEEFFFCF DFF DF F DCC FCFCF D F DF F DFDFCDFECFFFFDDCDCFCDFF DDCDDFFCFDCFCDCFCDEDF CCDFDF FAFDFAADFADFAABADFBADA CACDDDFBADAAAFDBFB DFDAADDADFABDFBADEFDAD DAAFDAAD ADFDDFABDFAADADADFADAA DDDABDADBDAFAAADFADADADF DDBDAFFEADCDADFF ABFCDDFFDDADFAFAF FADADDDDDDA

62 DBDADBDFDAADA DDADFAADADFAADA AB F D D FDA D BAB AB A DDADADDFADAADDFDAF ADDBDDFADDBFDAD FDADADAD BADA D AA DFA DFADA ADADCFAADBFBFDD DADFAADFACADADADDAD DAFAFDFADADFA DBFDBFAABFDDFADAAD DAD DABDDFAFDADFADAADDA ADFADADAAFADAADAA ABDAAAADDFA DAF D ADA B D B D F FDA A AD FBD A A FB BD D ABBAABDFADABDAA FADADADFFABDABDAAA ABBABBAFDADFAAB AFADADAADAFDDDAD CDDDBFBBAB ABABADAABFADAAAFABDF A F A A D A D BBA B FDDDBDABABABABABDDD CAFAABBDA ABADADFADFDAFAADF A F D D F D A FBDADDDADADCDDDAD FDDFABDFAAABDADADADAB ADFADADFAFAABBAADABD

63 D A D D AB D F ABAFADADADADFAD DAAAFADDFADADD CBCDCCCABCBE DCFFDFFCFCCFFCFFFFF FDCFFFFFFFFECFFEFCFCF FCFDFFFAFDCFCFFFFFFF FCFDFEFCFCFFCFFFFFCDF FCFFDCFFEEFCDECFFFCFF FFFFFDFCFFCFDFCFCFCF EF C CFF F F FCFD CF FF F EE F F FCFDFEFAFFCDFCFFFCFCDFEFFCFF FFCFFFCFDFCDFCCFFFFCDFCFF FFFCFCFECCFFECFFFFFFFCDFF CFFF D D AB D B B D D D ADFADABDBDDAADFAF BDADAABDDBABFA DBFDADAADADFAD FDAAFADADDD BFFFADDAADADAADAFD DAAABDFADABDADADFA ABDAFAADBDADBFD AFADABADAFDFDABDAADA DABDAAADDABDAAADAAF FDFAADDFAADADADFAFDF DDFABBFAFDFA ADADFFDAFDADAD DBBABBAAADFAD

64 BAAFADDAABFADDFDDDAAB DA DAAA DAD A A AD A D A FB BBDADDBDAFAAFBADAD DABFADFBABAD FADADFDDA DABAABFADFDFADA ADFAFDDABDAAFBD AA DFA F DA A AB BDA AADADADADBFDADDFDADFAAB DADAD CD FA D AB DD DA BDA A BDAFAAABFAB FBDAFBDBFAFDDDFA AAADDFBDADFAAD ADFAAADADAADAD DEDAADAD B A B C D A D FAADA AADBDA ABAADAFDDFBDBAF D A F BB FADFAA D ED F FDAA FD BF A FDABDAAAAFDAA DABDAADDDAFBD ABDFDDDABA AFABDAAAABDDD ABB BF D DC DCC A DA ADA D FADADFAADFDBADABDFDA A ADA D ADA D AB D AA

65 DD A DFD D D D D DD DF FABDADABFD A D FAD FAB F BAD A AFBBBDAFDBFABAB FDA BF ED DF DB D D D B ADDADDADADDBF DDDDDFADEBDABFD D DA DAF D D D DFD D D D D DDADFADFDAADD AA BDA BA B BF D ABAB ADDABDFAABDADAD D A BDA B F ADFA FDA D BDADDAAADBFD AFFABFADDD DDDADAADBDDAFD AADFAFAADABFA ADFDDADAABFD DFADADDDDDFAFD F ABADD A ADA E D A D F A FFABFDDAA FABAABFDDCD CCDFAFDDDDDABDAA FABBDADBADFAAABD FADDFDDABADFDFD BFDDFBFDDAFDDFABDF FBDFFFAD DDDFDAAFDADDAFDD ADDDDDDAAD FAFBADFDD ADABADDCCCADADBDA A A A FAA AB D D ADA AADDA ADA D AA D

66 FADDAAABDABADFDB AD CC D D D BDA A FABFADDAD CEDDABCDCC ACFCFCFEFFCFCDFDFCFFCDDFFCDFC DF FCDFCFCFFEFFCFCFCFFCDF FCFCFCFFACDFFDCEFF D BDA D A BAD DADA DAFDEDAFAABADDABDDFBFDDCA DCC B AA AB D FA BDDA A FFBFADDFDDAFDDAA DBABBABDDDA BA AFAFDF FABBAAFA

67 BB AABAFABDDFA EA EFFABDAFABBAA EABADFFFD AD EAADAFFDABFADA ABDAFABADAFAAB DADDDADABBAD FADA EFFFAD FABFDAADADEDBABABDDFA FDDFADBDA EAEDAD AABFAAAAFBBDBF BDADABFAFDA EBAA DFDFCABFADFAD EA CADFADBDAC DAADFAADFAD AFDDFAD E E A ADA D DF A BAA D FA BF DDFDDFABADFFAD E DDDFDDAADABBAA ED DFAADCDADDADAD BADAFAABFADBABFDBD FDA DF DFB D F ADA BBAA E D DF AD BBAA EDBABFADFBABA FB FAA BF A D FB DF BBFFA EEDDDD FDDADDAFDDCFDF AAFAADABDBFABADABFFAB FADBDAAFADFDA DDFACBFA

68 FADDDAFDABDFDFDA E A EFAAAFAABFDADFFADFA DDAD CCDCDDBCBDCCECBDEEADDABC EADCDCDDCCDCECBD FDFDCFFFFFCDCFFBDBF FFFFFFDCFEFFFFFFFDCFFFCC DCFFFDCFDCFEFDCFCFFDDF F FC F FF CFF FCF F DCFEF F F CF F EFCCFCFCFFFFDCFEFFFCFF FDCFDCFCFFFFCDFFDFFFDFFFCF DCFCFCFFCF BB ADABFBA EADA DADDBABABFADA FDA DFAB FA BADA D E D FD α BFADFDDADFDFBDAADF FDBFBABABABBFAABDDDFD FAAFDDDAADFD DDAD DAADDABCADABDDF ADFADA ADBADFDAABDA DDDADAAFDFβAD DF DADAD DD BDAFFABDDDAD CD EDFABBADAA AFBD ADA BADFDAEA

69 DAFAFABDFDADAAFD DDDAFADDDAADAABFAA DAADADBFFAB FDAAD DA DA DA FAD D BDA BAB BAB FFFABDAA FAB DFAFDAADAFBBDA BAADDABFADFDFDDAD ADDBABABDDADFADF DFFABDADDADA DADBFBAD FABDAFDAABBAA EDADBFADA EDFA FABFDAA ADAFD EA EDFAADFADFDAFAB DADADDAADEDFA ADFADABDFBAB DDADBABABFFDBABB DBAADADFDADDA DDABABFADBABF FDAAABADADADFFBDDD DDAD ADF A D FA F BA DA FADDBADDDFBDADAB DFFDA FADAAFDDBDABABBAFABF FABDDAFFAADADAF AAD

70 B D DAFDA F B D ABB D BA DAFADDDBAFAFAFDAD FDAFAFA FAA FADDADFAFADBABFB DDFFDD E DDADADBDDBDABABBAFABDFDAD DDADFFDDAD CBAAABDFAFAD BDDFADADDFDADAD ADAFBADAFDADFADAFF AADDF EADFAEDDABBF AFABDADADD EAADDA ABDBABABFA EDFADA FA D FA D FA FA F A A FADFDDAFAFA FAAFDAADAAAD EADFADADD DDABD FDBABABFADBADDD DBABDAADDAADD DDADADDAADAFADB BBDDAADFAADAADDAAF F E DADA A A AB BAB D DF FDDFAADBFFFABD DDBABDAADFAAFADFBABD DDAFDADFAADDDBABDDBFD ADFAFADBFFAABAFADA DFBABDAAADFADDDAFDA BFDDBABDBFFAFFBFAF ADFAAFAFABADFBABDFFADF DDFFABDDAAA

71 BABAADAAAAFADD CADAAABADABADDFADADFA DAFDDAFADFAFABA DDDDFBABDDADAAD DAFADAADAA E CEACCCDBDACDDCCDCEBDCDB CCDFCFFFFFFFFFFFFFFCCCF FFFCBFCFCFCFFFFFFCFC CDFDCCFDCCFFFFFFDF FFFFCFFFFFFCDFCDCDDDCCFFFCF CFCFFCFFCFFF FDFF B FADAFFAADDBDABAB BFDADABDDABABBAFABDDAFAF DAA DA BDA A D D BAB AB FA DAFADADBADADDFDADAFAADAA BDAAFADBFDADDFFFDADD FDAD FAFABDDDBABBDABABBABD DFADDDABBADABBDAFA FABDFBBDDADDFADBAD DAFAABFABDDDDBDA

72 FBDDAAFABDFADDDFDA BADDAFAADAD B A AAADADADDBAD BADBADFDADABFC BADDDADAAAADFDAA BFADDBFACADD DFABFAFAAD B D BADFDDFAD DFAADFDBDFADADFA DFDFADFAFDFADADFA AFA ABCDAABADF FABDDDAEABABDADFA ADDAFAFBAADA DABADFAAADDBAFD D A FF AFDA F DFA AFA A ADACACAAFDFDFD ABFBDDAFABEBAA BABDBADFDCDDADAAAB AABADDFDDDFAAB DAFADBADABCA BADAFBDFDFDFABDDAFDAFDD FAABADADACA DFAABFABDDCADBDFAAAFA AFADDBDABABBDDDDA C BADA BA D D FD D D F D A DFAAB

73 FA BDD DDD A D CADA FAD BA A AB BFADAAAADBAADA DDDFBADAFDDFABACBDA AFABBDADDAD DFDABABBBDDAFDADA A DDAD ADA B BA D A BFDDAADDADBAAD A F BADA FAB C A A D A ADA D DF FAD B D D D F BAFABAFADDDDAD CDDDABADA FA F D DA B AA A A BAB FDABF BFF ABAαAβABDADADA FDFCAABFBABDFDDBAFAFA ADDDAFDDFCDABDBFAA ADDDADDAFFDF FFDDBFDAAD FFFABDFADAD FFADAFABAFAD BADADADADDDADD BFFADDFAEF FAFDAADAαAAFA DAADBAFADDFDBFAA AAADCFBADDAD AαDBFDADDDABABBFBABAB AAAABDDAD DDDDBAFADFA FADBADADADADDAFDA

74 DAAFADDFADBAB BFADDFFDDD DADAADDABDFFDFAD DBDBDAAFADFDEDDFABA DFDDADDA EDABFAEFF AAAD AFADAFABBABDA BABBABDFAFADBADDFD BAB B FD D B D BADA D A D FDAD D FAD F DADBDADAADEDADADADADDF FDDDDDFAFDADAF FABBDABDAFDDBADFA DDDADDAD B DFADBADBAADAFD FAAFBFBABFAAFFDDBADDDADA ADFADADBBBAFADBFD D F D B DDADA D D D FDDF DABFF DBDAFAADAFAAFABA DFAABAABADFAB AADABFDBFDAADAFDDDA ABFADABDAAADADDAE DAFBFAFABDDDAAAF FABDAFBFADABDABAFAB DDFDFABFDAFDDAFADFA FADDDBABBABDBDADFD DAFADADADFABAD DFAADDAFDAADDFBFAFDAF

75 FA F FDA D DAF D D F DA DAF A BDA DFA D DFA A F D AFA DBDDAADBDDADA DFDFADBFDA E FAA B FAAADDAFFABAA BA FFDA F DAA DAAA BDA DDADDFADCDADE BFA ABADABABBAFABDDDADE F BFA ABDDAABDABABABFFAB FDAFABDDCADDADA DDABF FDADADABDDDD DCADAF AFDFA EFABD DDFFFAADDFF DADD EDABDAAFABD DBDABABABFFDAABD DA DADABADDAFFDAFDAD CBFA BFADABABAB BFFFABDAFFDAAA BDAADDBFF BADAFBBFDD DFFFDFDFABF FDAAD DDADFDDDADDA DA ADFDDAFDAADAAD FDFDFD DDDAA BFDEDAFDDFDDFF FAB BA DA D F BAD F D AFDAAB A F BFA BF AA F ADADFADADDDFDFFAB AAADFADBDADFABDADFADBF EDFDBDADDABFDBDDF F AADADFFABD FADFADAADFFDDBABBFAD

76 DADDBFAADA BABDADDAADADAFDFD DFDDFDDADBFDAAA ABADDDAAAAABDD FADFFABBFDDFAADFFDD BFAAADAADDABFAA BFADDDDFFFABDFDFA αdba DDF DDDABFDAA DADFFABFDFDDD BA F BDA F FAB A A ABDADFγABAFAB ADAADAFDAD AFBDAD DFDDDDA CCCDBEADCDDADACBCCCBCDCCB FDFDDFFDFCCDEDCFCDCFCFF FFCDCFFCFγFCFDCFFF FFCDDFFCDDFDFCDFFFFCFFF DDFFCFFCDFCFFCFDCCFFFFFF DCCDCF FFCFFFFFFCDCFFECFDFECF FCCFF

77 AFAADAA DDAFBFDDBADDF AFAAFDBAADAB E FAA B AD BAB BFBAABABBFFABD ADFADADFAαEDBAB BFDDFEFABAADADAADA ADBDAFAα,DFBBDA F E D C DD A D D BFD FAA DAAFBBDADAADADAB FFCDDADDDDDFDAADADD BABABDDBDDAFFAFFAF ADCADADDABDA BABABDDFADADFAAAADDFBADAD BABADBFDDDAAFADADF ABDDAAABADADF D ADFABDF DA DA DD AAFAADADAADADDA F A B DA D D D ABD F AAFDD DDAFAABDF FAB D A D CF A D F A BD D A D FεABBDDDDAAD AD FFFABBDA AFDDFFDFA

78 BDADD DDADDBF AF DDA ABFAAAD DAD DDA ADFAD FDFADACD C ACFDC CDDFCCDFF FFECFDDCFF FCBCFF FFED EDFF FCFDFFFFCC CFFF DBFAD AABADAD DDDA AADDAB DDADD DAAD DAADBD BDADABDF AFADDAA FDDAFF BDCCABCDCCDCD FFFFFEDFFF DFCDCFFCF CCFDCFCFFFFCC CFFCCFFFCFFCDD FFCFF DFCDCFFCDCDC CFDCFFCBFFCCFCF AD ABD A BADBDA DFBDA BDAD AA DFADA BADA DAD FDCDC FCDF FFF DCF CDF FFFED

79 ABDADABDFAFDAD FADDADDADABDA DFA FBDABBFADABDAD AFFDDADF A F A F A B F FABDDDADADAD ADABBFDDDAADDB DDADAAADCBADFDDFFFABD D ABAFDDDDFF ADADADBAFDDFDFD A FD ADFA DF D βf D FD A D BAADBDFADABDBDABD DFDDFFADDFADAFD DDFFABDABBABDADDFDA BF DFADAF F A E A BF AADA DBFFDFFABADAD FFABBFDADDD ADF CCDCCABECCC FCEFCFDFFFDCFFFFFCDF FFF βcdedffdcffdcccdcdffdff ECFCFCDDFFBCDDFF B AABDDDDDAAFAB DADFADDAAADADDF

80 FABFADEFAFDA ABBBAFDDFDDAADDDADD FFAFFABAFFABAAFDFBDA ADFFADFAFDDADEF FABAADAFDFAEADD A D A F DA A FA BFD ADFF DFAADFFDBABAD DDAAAB EAEDAFBA DDAFFBAADADDFDADDAD FFABFFABDDADAAAD FFDDAFAAAABFBAFA DDA FA DFA FDD F D ABADADDDFADFAFF CDAAFFADFAFDDDFAAAAADA FAFDBAABDFAFFAA DDADDFADFAFFDAAD ABBDDBFFDDDFFADFAF FAADDDAFADDDDDA AFAFDDDFDDCDDDF FADFAFDAADADDFFABDA FABABABDBDEFAA BF BFD FA FAA D A FFADFAFDDDADDAD FDADADADDDAAFDA DDDADADCBFADBABABD ABBADAFDDDAAABD DFFDBFFADDAFBDD ADDCADFFADF BFDBFDFDFABDD

81 CBCAACBDCCD AFCDFDCDFCFDDCFFCFFFD FCFFDCDFDEFCFF FDDCEFCDEF FFCDEFDDCDFFFFFFFDDFCFFF FFFCFDFCFFFDFCFDFFD CCFCCDCFEFCDEFFFFαFFCFEF CDEFDEFFCFDCDCFDCDFDFCFCFCB CECF FFCDDEFFCFFFFFFFFFFFFDFCF FDFFEEFFFDFCFFFCFFFF FF CFDCD F D FFFF CF DF FCFFFCFFFDEFFFFF DCDFFFFCDDEFCFFFDDCEFEDF C D EFF DC F D FFFF ECF DFFF F CDFFCDDEFFCDFFFCDDEFCDEFF FDCDCFCDDEFFCFBFFCFFDFFF FFCFFFFFFCFECDFFFDFCFFFFCFFCF FFDFCFFFFCDDEFFEFF D DDADDAFAAD AEBAABABBDDA DAFDADBFAFDADDFDF FDDAABADFBDFFABDAAD DADADABBABDD ADADBFDFAFABDDD FDDDABFAADADAA DABF

82 CCEACCCDBEABCAEDABCBC AACDCBCAACCDBAE A FCD F DDECF FCDF F CD F F F F FF FFFFFFFFFCFFFFFFFF FFFFCEFDCCDFFFDCFDFFFFDCEFDFF FFFCFFFFFFFDFFDDCC DCDF FCDFDCCFCFF FFDD CFDFEFCDCFFDFFDDFCF ECFDFFCDEFCFFFDCFFCFCFFCDCFDCF CDDCFDCDFFCFFDFCFFFCF FFFFCFFCECFDFFFDDCCFFF FCDEFCDCCFF DFFCDCBCDCDFFCDDEFAC FFFDCFCFCDCFDCDF BFA CDD A A BAB FAA DAAADFFABDFAADADFFD AFFABAAFBDDAFFFDDADDF DFFABCDDADDFAFDA FAADAFADFDADAFDADCAAD DDADADDFDFFABF ABADDFAADABAAAFBAAD

83 ABDDADFADDAA ADAFDABDAFADFAFFAB DFDAFFADDDADAADBBDFFA FA FAA F A CD DD DF DDA F BDDFABFAFAADBDA ADADDADADABDDDD DDADBFAADDADD DAAADABDDAFDFAADADFFADA D DAF D D AA DF DDA D D FAABDAFDC EAFDFBDADADDDAF ADFDADABDAFAD AFFDAFDAAD EDAADABDABABBFA FFABADDAFADAADDAF FADFBBFDFABADBDA DADAAADADADDAD EDADADABDAFADFAFDDAD ADFAFDADADADAB DBABBADFFAAFFABAF FABDCADFDABDA DADFAFDDBD AFDFB AAD DADFFDADDADD BDABABBFDFDFADDAADA DADADABFFDFDA AADFFABDAFDAFD B FDDBBABBDDABBBAA D FDB D DA B C FAA D

84 DDABBBAAAABA DDAADAFFDDDADFAD DFDABAAAA DFDAFDDAADFFD DFDAFDDBFFADDAADDADF BDCBDAAAFDADAA DFDADAADADADADFAD DBABBFAAADAFFAFDA ADADAA DDDADFF AFDADADAFDDFBA FDADBDAFAFDDADFAD DDFAABFBDADFAA BABBABBDADFADAD DBFDDABAAADAA BABFDAAADABAAABDA FFDFDDAADFDABABDAFDAFD DFADABFFDAFDADFDADAB BBAABDDAAADADAFDAA FFDFAAADAFBAAFFD BADABADAFDABFADF ADAFFABAF FABADDDAD DFAADAAFAD AADFADAAD FFDDDDDAFAFD CADADAAFDAFDBADA DAAFADFDBADADFD AFDAFDBDABBABFD DEBDFDFADADADFAD BFDFFABFDDADABB

85 ADDDAAAABB A AD B D D F FA D FDDFDADBABDDFFFABD BADDFBFDAF FABDAADADAADDF ADABDADBDDFDABD BADA DA D FB D D B AD D B F AADDDBADABDAADDFADAFD DFDDFBAADB C AB D A D FDDFAB D FAA DFBADAFDDFAAFFDADF D D D AB DD A B D D BFDBBABFDAFBD F FDA DADFA D AA BDDDBABABADFADFDAD BADADFBFDADA DDADABFD FBAAADADFADFCADDA DFCADFDDAFDADD CDDDABDDDAD EDABDADDABABBFBAABDDAA AADADFADABADAFBADFA FBAADDADFADDFAFAAADFABADABA DDAABDDFDAD A D BFDA A BDA FA BFA AB D AB DD C ADA FAA DF D ABDAADFADDFFDFADACDAD B D E D AD D AB DA ADA A FAA D F FBD BDA BFD FFADAD

86 DABABDABDAD ACEADAFDDDD BDDADABDDADDDADADADDF DFAADFAFABDDADADAA CAFFDADDAFDADDFADA BBABFADDDADDADFA ABDABDADABAD ADFADADFADFDADDFAADFAE AA DFDA D B BAB BAB D FD DFADA D ABBDDFDAADADAD DAADAAAABABABDA AADFDBABBABDAD D A A FDD B D ADA ABDADFDFAADDFADADDADBDAFAA ADFADAFADDAA DABDADDADFAAADADBB DA AFFBFDBD DFFABAFADDFDFBA ADAADDADAFDAFD FABDAADADAAAA A BA D D CD FDA FA B BFD A ADFAAADADADDF FABEDFBDABDAFFABD FAAADDAADFBFDAD DFADBDFADDAAADADAADBA BDADFBDDDBDAAFDCBE DAFDADFFDDDD BFDDFAFBBABA FDDFAAAFABADAF ADFFAABFB

87 B A AADAFFDFBDABB ABBDBADFD AAADDDDADEDD DDDABADAABA FADAD DAB DD D B D A D D FDABADBABDABDDBAFAABBD FFBADAADAD DCAEABCAECBCD FDCFFECFFEFDFDDEFFDCFFF DFCDDFDCFCDFFDFFDDFFFC EFFDCFFFCFFFDEFFDBFCDF D ABDADDBFDAA FDADDFAAD

88 FAB BA A AA D FADDA D DDAADDFAADBADDD DADDD ADAFABABFDBDDD DDA BA A BAB D DAA D DDDADAADAA ADFBBDABBDFDFBABFADB DDADDAFADDBDDDAFA FBDDFDDADDA ADADFFDBDAAADADDADA DAAA ADFA DAAAD A B FDFB A D F FB DD A ADFAADDDBBDAADA DFBDDDAFDDFABDDA D D F F ADB A F DBDA ADA C F FAA D D BDA D DD A DAAAABCDBDFB AAABAAFDFBD DDDFADD AFBDFAABDABBDFDFBA BFADBABDDAF DDABADDBBDFFAA BFADADDAFBDBFADBA BADAADAAB DDDBFABABBAF DADFADBFDDFABBFDA FADBDDFDAAFDDFABADAAAFAAD AADAADAAABB AFDFAAAAADADDFDD FADFFADFAD DFDFFBAAFDDFABAAF FAADDFADAADAF

89 BAAADFBDFDAFB FBAADAAFADDDAF FAFADADAFDBAFA DAFDAFDAADADAFBAA A D BADA ABDA FD D F FB CCCCBCDCDCCD FDCFFFFCDCFFFFDCCFFFDCDDEF CCFFFCFDCDDFCDFDFFFFDFF DFFFFDDFCFCFCFFCDFFC F BB BFDDADDAFABA ADFAABFBDFFA AADBFB BABFBABABDFBAD D FAB D DA D DA BA FD BDA D DBFDFDDDDDFD ADFADDDAAADDAA BAADFAFFDDDDA DEDAD DDDDFDDAD DADBDADDFDAAFAD FDADBAFBBADAF BABFBDDADBABFBD ABDADFDDFABABDFFFD FFFDDADDABDDAEAB DFDFDADADDD D

90 DADDADFFAD FDAADADAABDDBA DAAFDADABDABAFABD FDDFADDDADADAB DBADAFDDAFAADAAA BBABFDBDABDA ADAAFDABBBABDABABAB DFDBFADFADA ABBAABDFDDDAD ADADAAACDADFA EDFDADFBADAADAA FDA AA ADFA DA F A BADA DA AABDABADFDDDFADD ADFABABDADDDADAADA AABBABDFDFDAFAAD BADDADDDADEADDAC DDABDABADBDAFDADAAB DDDADDAABAAD EDAADDDADF FADFADADABDDABABA DFADADAAFDAAD DDFDF BFADAB ADFADED BBA D F BDA AA ADADBDAFABABADAB DAADEDABABDAFDDDFA FADFDAFDADABFDADAD ABBDADADBDAFDDAD BAAFDDAD FAAADDDAAFAFDBD D F FF AFDA D C DA A DABDADBDAFDAADDA

91 FDAFDAFDADFDAFDAF DFABADABDABBADFDFA ADAADABAADBDABDBADAA ADBFAFDADDABDBADAA DAADDADDAFDD ABDFAAAADBDADDAB ADADDDDA ADADFAADDFAADAD BFDDABDADFAABDABDAD BFDDBBDAADADA DDD CEACCCCCACECBDBCD C FD F DF C F C B FFFFF C FF F F DFFFFFCFCFFFFFCFDCDF FFFFFFCCDCDDFDCFDFCFFFF DFCFCDFCDDCFFFFCFC CDCDFFCFFFFFDDCFFCDCFFD CCFDDFDCFFFFCDCFFF AFBADFDABFDF FAB A D A DAF A D D FA FA D A D DA D DD D BABADABFDDADADDAF

92 ABDDAADBFDFA FDDFADFADDADFAFAABDD ADAFADFADADBDAFDADA DAFDDFBAADBDAD ABB FADFFBADC ABABFDDABBFCABA DFEDAADAADDAAD D A D D FA ADA D F D F FABDDADFDFFDDBAB ABDDFDADDADADDAA DAABADAAAFAD FADADADDDABBAD DA B F DAA DACBFBADBABABFDE DDAFAAFDADBDBDAD BDAFDADDADDAD FDAFADDAFDAADAFD DADDAADADADDAFDDDD BADAFDAADAD EDA BFD A FB D DBBFABAAADADA DBADBFEDEDADADAFA E FABA EDA DAFDAAFA DADBBD EABDAAB DDABAD AAD BAFBFDDFA D BA AA AB D A

93 FADFDDBAD DDDDDFABABA FBAAFAADA DABAAADAAFAFAAADAD ADFADAAA FA BADA A A A BA DDAD DAF DFFAAFAABADDAD BAFADAADDAD ABDABAFADAD AADBFBAFBA DAABFDBABFDAA ADAAFDFFEBFABABFABFDFA DAAAADFFDADDDDAD DA AA DD DF D A ADBAFAB D A ADA D A D AA D AFAFADAADFADFDD DDAFDDDADD FDF A DAF F AD ADAADADDBFD BADDDADDFAADF FDDFABAFDFADAD DBDDABFADADAAAA AABAADABDADAAFDFABD AB FDA ADA FB A FDF FA DF A D DADA D BD DD A D DFFBDABADBABAABDFFFBDAA FDFADFDDABAFADFFADDAA DDADDABDFABBFAA ABFFABDDADDADADABB FAAFBADABBBA DD AA ADAA A F FDF D A D FD

94 AA DAA DF D DD A D AA FBBFAAFDA ADAAFAAFAAAα DFACDDABBBDFD αadaadadfdad DAADADFADFAD BDADAAABFADADED FD D DA FDA ADAA A D FDF E FDFABADAAαAFABADADDAAA FABD D FABD DA A BFA F ADAABAαADDA DFDFDADBFDDFAFBFAD FFDADADADABDAα A F DAADADFADFDA FDFABDADBDABABBBEDDD AAADFDDADEDDFD DADACDFFAD DFAAADDFAAFF FFAα ADAFADAD DAAFDDBFAA ADAFAABFAFDDFD FDFABDFDαDDFADAD D F DA BDA A ADDAFFDADFFDAFDA DAFDFAαADDDADFBDD AD A BF A AAB FD DF α A D DFDFDDFAαDBBFDFAB DADAADFBBFADDADEα FAFDDDAFADDAADAD BDDADABDDDADAADAD

95 ADF D BF D AB D D F FADA D DFA D D DF F FB FαDBBADAAAAAABD BBFAD EDABFDABDADADFA ABDAAFDDADBDAFAD DAAFFDAADDADDA DDAADEADκAFFκ AFDAADDAFFD DAE A DA BA BDA FDF F D DDADCAD B DFDAFDDDDBDAAFDDADF FADDBABDADDAD AA DFDA D BAB DA D DFDA DA BDA FDFFADDDDADAADD DBBDADFBADCBFADDAAA BBBADDDBDDBCDDD ADAAADADDDCADD DDAFDFBBBDAABBBDADDD ADFDFADB D A F DC A DD DA DDDDABBDADDFDABABDBF DADADDADDDAFAFAD ADDADDDADDB FDFDDADADFFADA DBCDFADDADCADAAF

96 FDFFFABAAA DFBADDDDAADCAAADFB FADDADADDDADDD DABFBBDDAADCAF DFDADD D DFDAAABAF DAAAADFBFDCDABDADA DDA D DDAB DF BAD A FA DA AADA A D C F DAA CD FA FDDADAFDADDDBDAAA A D A A D D DD EDA AAFDADFBDADD D D FD AA D D B BBBADAEDAA ABADBAADADAAAA BBDDAFAABADFD BFA DA FAD BB D FBDDF DF DDAFADD FBDDF DADA AB D FBDDF DAABAFADAFDADDAFBDDFA DAFDAAEDAADAD A F A DFB D D FD ADA DDA F FBD D D D B ADF AAAAFDABDAD FABAA EAEDBAD DDA E DAB D FAD ABA D DD DDADBDDAAFAAADADFDF DBDFBBDAABBBDADDDADA A D B D D ADF F D A BB

97 B DCADDDDAAAFD BBDAAADEDFFADD BABFDABADDABAAFADD BADDDAFDFAD B DDA B D A FAD DAAAADAD FAAFAFDADAD FDAAFABDFBFADA DFDAABEDAFF BFADADDAFDAABD ACADDFDBFBA FA DDA A α A γ D FA FABBFDADAABDABDA FAFADDDDADDDAD ABDAαDBDBBABABDAD EDAFDDDDDBDAFBDD FFABABFDDDDBABFBDDBAFA ABDDFBDDFDADDEDA FAFABDFBDDFADDBAA AABDABADDFFABADD D BDAFBD A A D A D FFDDFAADAABFAFABDD BFBAαADAFADADABDAFADD BDAFBDAADAFABDADADDBDAB DDFDADFAFABDFBBDDA BDA AB FA B A D FAAFDAFABDD BDADDADFAADFABDAD AD

98 CEACCCCCDBCDCCBCDABCDCDCEC BCCCBD FFDCFCBFCDFDFFFFFCF FC F CCCF DFF DF FF FFC F D DCFDFCF FF FCF FCAFDFDDFDFF CFCCFFFFFFFFCFFFFDFFCD CDFDFCDDCFFFCFFFFFCFFFFDF DFFFFFFFCFDFFCFF FDCFFFCFF AFFDBABBFAFAEEA A F BBAA FAB D F DAA DACDDADDAFFAAD DBDAAFDDFA ABBDDFAABFDAA DACDADDAADFADFF Aγ DDAFADDADABFBAB DFADDADFFABDF FDAABAAFAADAABF DFAADB DDADDFA γdffabdafdddadadad AFADEADAF FB

99 DFDBBABDDD DACF D DADAB FDAAC FDFD ADAA FABDFAA CCCCBDDAB FFFDC FCFFFCECF AF AABDAD ADBABA DA DAADAD DAACF FAADAF DBBADFA CDDAD DAADAC FABD DDADFADF FABDF ADFDA ADDADDAF DDADDDDDAD DAABBF CABBA AFADDA BCEDCCCCCEEBD D FFFCFDCCFD DCFFDFFCFFF AFAAF DAAFAAA ABDBDAD AAFBBFD DA DAFABDDA BBDFDDAAD ADAB ABAA DDAFDD ADADAAD F ADFAAB A F DFAD FAB DF CBDC DFCDF FCF A DDFDDA DDF ADAF DE FD AAD ABAB BB ADAD

100 BFAADABABABDADB ADFAADFABFDDDAA BACADABDADB DDDAAABDAADADD FABDADFDDADADBDAFFABA DAFABBADADADDADA BDFABCDDADDADFA ADABACABADAA BA BA B D A BAB D A AD BADAFBBDFDDAF AAAFADDFADDABA DDDADAD EDDBADBA FDBADAFADAB DDA AFADDFDDFADAFAABA CEACCCCCACECBDBCDE CFDFDFCFCBFFFFFCCDFFFD CDEFFFDFFFFFCFCFFFFF CFCDCDFFFFFCECDFFFCFFCFFF FFDCFFDDCFFF E DD DA D C A F AB F AADABADAAFDAABDAF

101 DABBFDDDCDAADAD DDDDFDADDADADA BDBAFABBADBABAB FBADAABDADFDFAD BADAADBDADABD DDDDAD ADAA A D DAA A BDA A AB ADAAAADDABDBEBAABABBDB AA BF DA D B AD ADA FAFABDABADAAFABBBFABAB B FAA D A ADAA A AA F DAADBADDADDFDBDAAAA DDBDAFADDDD BADBDAAABDABADADD DDBDAFADFDDDDA DADABABABDFADAD AADFADABADDDAAABDFBADD DBABAABDFFAFADAADFDDDDABD AADAADDABAAACDAFD B B BBD DF DBDA F A DFB FAA ADFDDADDFB DDBDDDBDAA D FD D A DDA D A FD A BDBFAAADADD ADAADFDADDAAADADFADAA DABADAAFABDFDFDDAAD AAADFDDDDADABDD FFADDDADFADADADA DADAADDDA BADFDFDDFFA FDDBDFADADDDDADDD

102 BB AADCADFDADFDBABB DADDABDABABDFBFADFDF DADFDFDAABABB DDADDCAAAD BAADADDADFDAADFDFFA DEBABBABAA DDAABDBFAFAFABD AFADADDFBAA BBDABABDDFFDAA DCDFADDADDABFDDDDABFA DFADABBADFBAA BFFABDFBDAADFD CDDAD DDAAFAADADFAAADAD AAABAABDADAD DFDADFCDADDADAA DABAABFDDAAADFDADF FDADCAAADFAD BAB DADBDABABBFDAADAFB AFFFA F D BAB DFB DF DD BDA DCADABABADDADDF DDFABBA EAEFFDAD CDFADBABABDDFDBDAAD CEADADADA FADFDAAA AFDDBFBFDAAD DABFABDABDADAFBBFDFA FDDADDAFAABA

103 D AB D DD A D D F DFA A ABFBDDAFDADBDADBA DAADADFBADABDA FDDDADDADAADDA FDDDDADDDADDDA DDDDADBABDAFDD BA A A A ADA FB FA AFADADDADAD BA BABFBDABDADADA DFFDFFFDDABDDAD EAFADABDADFBDFDDFABAD DF FAD DAD A FAD FDADAD B B A B D AB D A ADA DFA DDA BDDADBDAF FA D DDA D AD CA A DFAB A D DFA FDF A DA BDAAFDADFABDDAD BFA AD D DF F DA BDA A DADA BA A D D C FB AB BDAF A AB FDADA A ADFAADFBFADABDFF FFDADDDFDEDA

104 FDFAAADFADFADABFD DAADA CC FA DAA ADACCCCFAADCEDADDA CDAAABDCDDDCE ADFAAADFAAAA ADADADFFFDE ABDAAADFAADFABDABDA DAADAFFFDABDADFAAB CDFFDADDAABBDCAFA DFADAFDFDBDADA ADDAABAADDADDF ABFDBDAAAAADFADAA ADA ED F FD DA DAD BA CC C DAAFACFA DDDDAA DA BAA BADABBDA FAA DDADFDFDFD DFADAFAADBABBFDFDFAB DAADDBFDFAFABD ADADDADAABFDC DFDFFADAFFFDDAADF FAADDBDAFFADEFAAD BAB AB F ADA D ADDA D D DA DDADAFDABDA FDFADADADDFADAD CADBABBDDFADDDA ADFADDADAB DCADDDFDADABFDADAADFADA FAACDDDBDADDD DFADABFAFADDFAAABADAD DDBDADFADADBDA BDABDACACADDAD

105 CDCDACD ACDFDFFDCECFFFDFF FCFCDCFFDCFFFFCFFCCDFFCCD FFCE FDDDDCFCFFFCFFCFCFFF DDCDFFFFFCFFFF DDCFCFDCFFFFCDCFFCFFCDCDFFF FFCCFCCFFFFDFFDFFF CEFCEFDFFF A C DD FD D A D AB FA DB DDA FDDFABA DADFABDCADBAB DDCDCADFAFDA ADDCBAAAADDFABD FA D FAD DFA ADFADDDAFFDAFF FD D BDA DA D BADA DDA A A DFAB A D A ADFDADFAFDFFADFAA A DFAA BA BFA DDADA AD

106 FBDABADAADADDCF DDADAAAABADADDF ADAADABDAFDF FDAFDFDFDABABFDAABAABABD DFDFDFAAAFDAADDFDFD FDADDFDFDADFDFDAD F D BBDA F FDFD D BAB DFB D BA FDFEADAFDADFAA DFADAFAAADFDFDDBABBFDFD FADADBDDDFDDA ADBDDADADFAABAD BBDDADDFADDFADADDDBAB ABDBAAFDFDA ABADBD ADADDAABDFADA DFDFDDDADBADFAAFDFβ DAFDDDAFFDFDAD DDADEADFADADADFABDβA DDABDADDADFDFDDADADF DDADFADFAABDFAAABAD DACABDADFDDF DABAFAAAADFADFFABDF BADFADAFDFDADFAD DBFDDFADAADFDABFBD BABABDADDAFAADFDED DFA FAAA DD FD FDFA A DFADAAADADFFFDFAADAD FDBDAABADFADDFABDD AAABADFBDAADADDFAD FDFDAABFDADABABBBED FDAADADFFDADCADDADFC DDFDDFADDACDDAFDFADA DAAD

107 CDCDCEBC FFFFFCDFFFFDCFCFFFFFCF FFFDFFFFFDFFDFDFFFFFA FFFFCDFFFDFFFF DEFFFCFDFFFFFFCFFD FDDDCFCFCDFDFFCFCCDCF FCDFFFDFFDCFFCDDFFFC EFFFFDDFFF FDDCFCFDCFCFFFFFEFC Eκ DDDAκAABD F D B AD A DDA A D DDF FDDAADAADADDADDABFA BFBAAABFAFBADAADDFAD A D D DFADA D κ BA D DA D ADFAFDFDDFAADFAκ AABBABκDFAADFAAD FκAκA ABFAADAFDE ADABFAEADDD FDFDDAFBDAFBADDDAA

108 BABBADDFADAFA DDFADADADFAFADFDAAF BABB DF DA DFA DFA D ADFA BABB BBAA DF D A F BABB BBAADFDFAAADAABAB BFAFAADDADAAFAAA DFDFAABBABDADA FBFFAAADBBABDDA ADFDFAκκκAD DFADAAAAFDBF ADBBABFFADκAD DDFAκDDADAADADFAD ADFAADDDDDDD DFADADκDAADBDAκ AκAADAADFDADDADFADADADFA AADFADAABADAAAADADFAD DFDκFDAFDDA DDDADDDDDDD CDDCADCCCDCBκCDCBDCκ FFC FCCDD DCCCFDFCFFDF DDDEFFFCCFFCFDFEFDDCFFC FCFFDDDCDCFCFFFCFCFFDEFFDFFC FCFFCCCDFFCκDFFDCCF FCFCFFFCEC FFDFFFCFFFCFFCF DFFCDFFCCFCFFCFFFFDFDF CCFFFCFFFCκFD

109 DκFDADFABDDAFAADA DA D BFADD A FD A BFAαβBFABF DDADAF ADA AB FD F A FABDDFBFAAAAAAFAADD DFBABBDAFAFFB ABFDADAαAβAABBDAF γ κ DA AF A BDA FAB A D ADFAβ DAκBBF BAκαAADAADFDDF F A D CAAD FD βc βfd F DDFDDAκADBDDADABD κaaadbbaadd DAAF DDAADFABDDFABAAA DD F A β D E ADC C DF DAFDFκBDAAFBD F AA AA D ADADAFAABADABA A B D BA DA D κd D DFDFADADABABABDFADDF FC AAAF DDF D FD FAA AB ADAADADBDDADABDBFAA DFABFAFABDDBFAAFADAB ADFADAADBDDADABDDAB A ADB A DFF D AB DFAB DA D DADAADADFAα. ADβ A γ AADFADADFDADBFDD DA α A F D FD D A ABDβCABDBDAADABDB DDAFDFB

110 CDCDDDABCB FDDFκDFFFCFFDCFFFFFCD ECFCDEFDCFFFFCDECFFCDFFDFF DDCDF ECFCCFDCDFFCFFFCFDF FCF DFDFDFCFF DBBDADκDBABBDFDFDD ABDAFDDFBDAADD FADBDDDFFFDAD ADDABDADADFAD κddaddadfaa

111 ADDFFFBDκFDD BABBDFDADκαBADAFAAAABA DABDBDFAADADADDAAB FDAκα AADADFDAD DFBDAκα ABADFBAFABD AABDDAADFBDADADFAABDE DFA κ AA DA A BDDA κα D DA BAB DFBDFADAFAAAα A β DFDAD FABDADDADADC BFBAFAADFADADBABBDFDDFABDADDFF ADDDFBAFBADADF DABFADFADADADFAκADDDAB DBABABDDDADADBBFAAABBADA F A BADA A DFADA DFAAB κ ADDDDDDAABADAA ABAADADADAFAFDFA FADDDDADADA AD FAA DF D AB ADA FAA ADFAADFADAADFAB ABFFDADDAD DFADADDDFAABA FDDBFADDADFADDFF AFAADAFABFBDDFBDD DFADDADADBAD BADFDDAFDDDDA DADADDDFDFADFDDFABDDFA DADDABFDDFADAFAAAF DDADADDDAABFDADAA DAADADFFAABFBDDDFDDFAB BDBABBBDDADDDAADFADA FB AB FDADA D DDD DA BA

112 BFABDDFDABADFADDFFDA DDFADADBFADADBFDADFAFADADA D DA AB A F FAA D D DA D DAABFDADACDFDDAA BAB AB E BA A AA D AB D AB D BADA BFDDFADADκDDDADAD DABADBDABDDFADADκDD ADADDAADDFAADFAABDD DA BDA DA DFADA κ D D A D DAADADADFADDFADA κddaadafddffbfbadad DDFADAκDDDBABBBDBA FBADAAFABADAADFAADF AFAFAAABDDFDAA BADBDAABDBFBADAADFADA DFAABκDDDDDAFAADDDD AADADBDABABABDADE ADFADDFABBDAFBFD DFADAκDDDADADDABA ADFADABADAFDABDA DDFDDFABDDFAABκBDADD FAADFADADADADBADAFAB BADDAFAAADD FDDFABDFADBADA DAADADDADAF FADA DAFDAFAAκADAADDF BADDκAADAκαFAD DADCADFAAADAAADFA ABDADFAκDDADFADADADFA DAABBAB κcaade

113 ADDABDADFABDADAFAABA DFADFAκDFABDDDADBDDA FAAADDAADABDDCADFAA AAD ABDA DF D D κ κ D A BAFABDADκα ADFABD DFAκAABκα BABABAAAD DABDFκBEADDAFDD DAABDABDADκDAF ADADDFA CCBABDADDFAAB FDFABDDFBFDFAAFDDFABCCDFA FABAD DFADADκFDDDADBABDDFA BDADDAADAFDDADDFA FDFADDADAAFAD DFAAαAγDαADD FAD D B AA D A D FAAαDAADDABABA DBDDADADFβCAD EDDFDAFDDFDFADAκD ABABABDFADADDAAB F A F AB BFA DFADA D FD D D FDA FAAADDADFADAFDαAD DFADA BA DDA D D D FBFFFDADABA D F DDA BFA F AA DFAADFAADABDDBDAADFD DAFDFADADFADFADADDAD BDAADDAFAADFDFAADFA

114 A DBBDAAFDBABBD FFABDCDADD ABDDFAFDDBB BABADDADB DFACFDDADDDADFAD DDDAADFA A DAABABBADDFADADFDFAADFA ADFADDBFAD DDFDDCADADFADADDAFD DFBBABFDDABABDFDAD DADBABABDDA FDBAADAFADFADFDFA DDEADEDAAABDA DFABDDADAFDDFABA ADAAAADFADAABB FDABABFFAAADB DFBFDDADDABABBAFAD FAB B DD D A D BFD DFADAAFDAFFBFAD CD DFADA A D FF E BFA D D D BBABDDBFBAFAA EFDFDFDDFA ADAD ADFDDFABDADFAADFDFAADFA A D FAA D F FDFA A D A BDA D DA DDA D ADFADFFDFACDADDADABABAB

115 DFABADAFDCDD FAAAADFABFDADBFDA DBFABABABDDADCADBDA ADCABBDDDAD FAADFADDABDADFAAB BFADAAFFDADFFDFFE EBDαDDAABDBDAD A DFAB DA D DFA ADFA F D BDDEDAFFFDBDDADA DADDADDFDDFABEDFADA DDAADADFAADDFADAF ADDDAAFBAAFAAFDFA ADFAC CDFFDADFAADFABABB BDFDAABFDADAFA EFDFAADFAAFAAAADFABABED F A D A D AA DFADA FAAA A ADABDADDDFACEDF ADDADAADFADACDDDADFBF DFADADDDACAADDADAFDAAD FDCDD ADFDDFABDFADFACDABDA FDFAADFAABAAD FABDADFABBFFABDB FFADFAADFADFABD ADFAFDFFADAAABA D D ADFA BDA FF FD DA DFADA ADDDADFADADFAD

116 DADDABABABDDAADDF ADADADDDAABBABDB BA D A FAD FD DA D ADFAADADDAAEDABDA BFDAFDDAA DFADDAADFADAADFADA A FADA BFA FAA D D DA DFA ADAFFAFDAAAA AFDFADACDEAAAA BDABADDDDBBABA BFADDDDDFAAD DAAFAD κ FDDBBABBFADDDFDDFABDFADDDAκ DADADBDADFAADFAκDDDDA BDAADFAADFFDFAADFADDA DADADFDDFAκAD BBABκACADADAD EDBABABDDADAAADDE κadaddaddadfe ADCAADEADFCDDFADA ABBABκDBDABABBBAD FADDCDABDFADADAAD DDADFADADFADAD DADFAADFAκAD DADBBADBDD C A C BFA F A DFB D FDDFAB DFADAκDADEDFDCDBABB DFAABDFBADEABDDADDFAκ ADADBDFBADAAAFDBDADFAA D

117 BFDDFADADFAADFABD AAFDADADDADFDFAADFADFA DEDDBFBDAFDDBDAFAA DFAADFABBDFFDDBABABDA FDFA ADA A DFBAD C DADA DADA D ADDFADAFADAFDAABFFAB FAA A F FDFADA A F FA DFA ADFADFABABADABADADDFADA κ FFDDA FAA DF C A D FADA DFA ADFA FAD A BF D A BDABFAD D D A FDA F FA DFADA ADFABABFADABDDABDADDA DBAADADDAADFADA AADFADABDAFFADABE DBDADABADAF ABDABDADADFAABABFAAD FBDFFADDBC FD D D A AD DF FDA ADA FAAEACFAADDDABABBFBA ABDADAADADDADFDDA DDFEADDBADACA FDAFDFCDAAAEE ADFADDFCADFBDADADB DCCABDFDDFBD DEDDDBDCCABBAFFB DADFADDADCDAFDFFDADC AFDEFAADADDADFAD DFDDAABDBDDAFDF FDADADDDADADFA

118 CBDABBED CFDFFDDFDFDFDDDCCFCF CFCFDFFCFCCFDFFFDFDCCFECD CDFFBDFDCFFCDFDF FDDDFFFFCDFFDFFFCDFFC DCFCFCDFFFCFFCEFFCFF FDFDCCFFCFFDFFFFCECFD DDCDFDCFEFFDFDFDFF DFF ADFABDAFDDDAADFA ADFA BAB BFBA A BAB BDBA D F FDAB DADDFAAFAAFFABD BDFADADCDDADDAAF DFADAFADDDADEC AABDABABBDDFADAκE DFADADCAAAADFADADFAADFAC C D D DFADA D ADA F D BADADBCADDFADA FAAADDCAADADDAD ADBDABABABDFADAABADADFBDFADA DκADDEAFDFDFDC DAADADADFADADC FAFDFABDDADADA

119 ABDFAADFACFDDFAADFAAD BAADDAADFDFADDA κddaaddaaadd ADDAFADDADDAFDADD A D F FA DAB FFDADADADDAFFFDDBABBB DDABADAD CDDCBCCCACBDCABBCDCC FFDFCCFDCFFDFFEDFDFFFCCF FFFFDFFDDFFCFCDCFCFDFFCFECFF DFDFDDCFFFCFFDFFCFDFDCF DECFFCDEFDCFFDFDCFECFFDCFDECFF FCFEEDCD D EBAAABDBADAFDDDFA FA D F FAB D BDA BFA F

120 FADBFDFDDFABDDFADD FDαBFAαADAAABBDAB ADADBDAFFDFADAFDDF FAADDDDADAADDFADA α DBABDFBDFADAκDDD BFAAADFADADFAADFAAFF DAADDDDADADADA DDAABABDADFFAADFAD BDA DAFFDADDADDFADAD DAABFAFDFBDA DFA ADFA D BAB BAB D F A FADA B AFFDAFDDFADADBDAF DFAD D C CDDBDAFDABDAFDDDFAFF FDFFFDABFBDDFDFA BDDA D BFDA D BFDA E D FDFABDDADAADAFAD FFDFFAFABDDFAAB D BDA FF E AD CD E A DFBFFFABDFAABDA ADAFFADFFBAFD FFEADFFDABADAFFA FABBDFBADFFDBDA EDAFAADADADADABDA FADFAABFFFEDAABA ADAAAEADADD FABFAEAEFFABDAADAB FDBAFADDDDADDDDDAFA FADFBAABADADABFFA

121 FAAAAFAFABADADFDAA ADFFFDDFADADFFEDA DDAFAABDADAFFFDD DBFDAEAFADDDAB DFDAADABBFDDADAA FA D AA A B A F A FFAA DB D FA DAA DF A BAFAB DFADAFADCFDAA DBFFDBDDAFDAADAFDF D F ADA F D BDDA D BF D BF BDB D BDD A DFA A D BD FB DAA FDADFBDDFA CCCDABCCCD DFDCCFCDFFCFFFCCFEFCFDCF CFCCDFCFCCFDEFFDFFFCF FFFFFFDDFFDFDCFFFFFFEC DDFCFCFFCFFCFDFCFFFFCFFCDEF FDFDFCFFFFCCFCDCFFFCDEFFDFF EFFDCFFFCFFFCFDFFFFCCFCDCFCD CFFFFCFFDFFDD DABDAFDDDFAABDFFFFABA DFFBBFFFDADFFFEADD AFA

122 AB AABDFFFDADFDDFABDFFBBD ADAFFFDFFABFFADFD FDBFDABDADBD DDADABBADAADBDADFA ADFAAAAADAAFAF FBDDFFBDDDDADAFDDB DDDDAAEDAADADFDF FDDAAABFDFAADFADABFFDADA DBABABABAFDDADDBDA ADDDFAADAFFEAEDAD DADADDADADAAB BDADFDAADDDFDADFFEDF DAEDEDAAADADFEDADAD DABADABAFFDAFDD DAABBDDADAADAFD FDDFABDFADκADDFAEADFF ADDFADDBA A DDDADDB F DBDABABB DADADD BDADFAABADFAFDDA BDAADFAADFDFAFFFDADADD DADFAABFFFEEDDADDDA AADADDAFAADFEDDFADFDA DFDFFEADADFAABDDADEDADA DFADA D A ADFAAD ADADDABAADFA F A BFABFBADDAAAA EBADBDAABDDAADFAADF BADBDDADABDADD ADAABAABFADABDDA

123 BFDADFABBADFADAADAF BFDDADFFAADFBAD FDFBADAADDDAD BFDA DFADA BFFA D BFDA DA BFDA DAADDDFFBFDDDAAD BFDAFADFFBBDDAD A CBFADBABBFDDABDADFFBBD FFDDBFDADDFFAAFBBFDF FAB A BA D AB D DA DFADA BDABFCDDAFBDDAFFA ADBFADDFADAFCDD ADFADDFABFAFADDD BDABABABDDAADDFABDCE AAADADFAEDCAF ADADDADFEADADDAD AAFAAABCADAADFADADAFB FCADADBFFABABFD ADBFDAAADFABADABADDDA FBDAAFBDADDADBFDDA AFDADBBDFA F FAB D BBD A D DA DFADA BDABCDDFBFFDDAA C BD BDA AB F A D DFADAFFADDADADDA A ADFFDAFDADADAADA DADDAADDBFFADBD D D D DB DFADA BDAB C FADFAFDDBFDDDAFAFFFD FBAADAADADFDA A

124 A D D A D F BFD DFADA BDAB FBDADADADDAFDAFBADA ADAABBDAFFFAFFDDABA ADB A DD BBA F A ADA A BBA FAFADDAFAADFDA FADDDFADBFAD FADAAAADDFABABABFD DADAADADFFABDF DFADADDADDCADDD DDAFADADDDABABBABDD FAADDAFFDDBFDDA FDFDADDAADAB DDDADDADADAFDAA DDAADADDBDADBFDDAD D D DDA ADA D B D BFD FD D A A D F DD DDA DDBBADBDAFDBDDAFDDDDAD FDAFADADFAFDAFDADFFDA DAFDADDADDAF EAAFDADDABABBFADF DBABBFADDADABADADA DFDBDAADFABADADFDA FFADAADFDADAA ADADBB DDFDDDADFAF

125 BDFAAFDDADDDEA DFFDAADFADBFFAD DAAFDADDADDDDADD BBADBABABFABFAABFDAADADDA DFFBFDDDFDD DAADBFDADFADABFDABFFAAA BBDA D BFDA A DFFDB DDA B BBA ADAFDDBDDFFDAA γ BDFADDABADDABFBA DDABBAADDFDADA FDDDADADABBBADDF DABADADABFADADFAA FB D BFDA BFD A DA AA F ADEAABABDD DAFDDDBBADFBD D E A FDD BAFA D BD A F DDCBFDBDDAAAFDFBFFADA BEDFADADDFBDDAADA FBDAADAFFFDADBDDAFDFADA AFAFFBAAADADF A A DA FA A FD DB BA DFFDA ADA DA DA D ADDA F DADAFDDDDABFDBDDAE DDAAADFFDAADA ADDBABABDBADAFDDDBDDAED F FBA AD DD DF D D DAA BFDABBDAEBDDBFDA ADAAADD DABABDFBDFDDFABADDFACFADFDAA AFDABFEBDAD

126 DAFDAABABDFBDBA ADAA BDFADFFADADFFDDA DAFFADADABFDDD FFADADFADFBADFDAF AADDAFBFDDADAFFAA BFADDAFADAFDFFADA ADABADAFD CDCDBDABCACCCDABCAEECB FCFFDFFCCDDFFFFDEFFFCCF FFFDFFFFFFCCFFDFFCDFF CFFFCD FDCF FFCFF CDFFCCDF F DFCD F CDF FDCF F CDEF D F F CDF F CDEFFFF BFDBDDADFDDDDF ADBAFDADDABDAFB DADAEBDβDAD ED F D BBDA BFD BDDA BDDADDFDFDABABBF ADAD D BFA D A FA AB BDBFDADAAADDA BADDDBABBDFAAA

127 DDBBAAABDBAFD CFDBFDAADFDAD DAABABADD DAFDDBADFADAFDAFD AFAAAAADDFFDBFDBA ADBADFBDDFAEC FDDFFAEDFCD DFAAFDFABDDBEBDA DEDAABDBDDAABDABABAB FBADADFDDDDADDBBAA ECDFADDFF BAD FD A BDDA FDADDABADFBFF DADABDBDAFFBDAA DBDDAEEFADDAECDADFAD DDFAAADDFBDFDADFDDFAB BDDEEAD F D BDDA E D D BDA F FFDAADDFBDDAAFFFDFDADA FFBFDDBADDADAA FAEDADAFDDADDFADFAAB DCDADEDADADDADDFA BDAADADAADBADDFBD ADADDADDDADA DFAB D BAFA FD A D BDA A DFADAFFFEAABDDFADAFA D DA E DFAAB D A B D ADFADFDCDADDADDFABDADD D ADD A BA E D FBD BADEAADADDADBFDA DB D BF B BBA DDA DFFDA ADA DDAD

128 CDCDCABDCABDACEC FCEFFDFFCFFFFFFCDC DFCFCFFFFFCFFFCFDFCFDCFEED F BFDFFDADBAFD DADDAFAFAADDED FD A DA ABB A ADB D F ABAABABADFFAFABB DFFBFDDDADAF DDDBFDABDAFAD FDFFFAABEDFD ADABBDBDDAABABAB FDAADDDADDADAA AADACDFDFDBFDAD ABFDADADABBDAD CADBABDFDAD FADFBBDABBDAFDAD AFAABADADAABBDAAD DF D AA A D BBDA DD CFDADDAADAFAABFA FDFDFDBABABDAFDADD FACDADFDDABABBDFAA ADFADDFDCDDFADDADDADA C

129 FAAFDDAFABDCAD ADFADDFCDDFDABDAA BDADFDAFADBDABABDDFB FFDADBADCAD DFADAEDDDBDABABDFBDFDAFAAAD ADDDDADAAADABAFAB DAFADAAADDAFFFDD DABDAFDDFAFAFADBABABD DADFDDADFAADAAFAE DDDFFDDAEDFADAD DD A D BF DD D D A D DAABBDADDBAF D F B DD D A D DDADDBBAAFADFF AFDFABAADBDFA FDDFABBFDFDABFD BFAFABABABDAFDBAAD FABAABAAFBFDADDFA A D F DA DDF A D DADDABDFFDAADAFDAADBAA DFD AB DAABFDBDFFFD FA A FD A ADA E BAA ADABFAADAADFFAFDA EDFDAADABAABDAAA DADAADADAFDAAAAFDAD AFFABDDAEDDAA ADA BBDA A F FD ADA FF FDADBDDADEADADFADA

130 BFDADADFFABD FDABDAADADABFAA DBBADDAAADFDAAF C EBAABABDABDAF DADAAABDDDAA FAADFADAFDDFAFFDBFDAD FDDFABDDFAAADAABFDADAA FADCABAFDADDDAD DADDDDADFCABAFF FDDADADFDAAD DDDFAAFADDBFDAA DADDDAADABFBDAAABBDF DFADADFAADFAκCADAADFDFA DDAFAFDADDDBDABABBF DADDAD DA F A A A D D A AFDAADFABAAFDADA DFABDDDDADFDBFAAD ADFAFCADAADBFA AEADAADAABDFABDDA AADA BADFBDA AAFADADAFAABB DAADDFDFDFAFDFDDFAFA DαDAD DADAAFABFFBFDAFD AADADA AA BAFABFDBEDADFABADA D FDA DA FF FD D BDDAEADAAFFBBDAADA

131 A F DA FF FD A D BDDA E AA DDADFADFDDAD CDCDBDABCADAC DDFFCFFCFDFFCFCCFCFFCFDCFCF FDFCFFDCFFFDFCFFFFCF DFC DF CF F CDF CDDDF F D DCFCDCDFDCFFFDFDDCFFDFCCFA ABADBCFCDFFCFDDCFF FCFCEEFDCDFFDFFCFFCFDFDFF FFCF F CEFD F C CF FFFC CDF F FC FCFDFDCFEFDDFDFDDCFCDFCFF DFCDEFCDFFCFDFCFDFDFDF CFFAEFDEFFEDFF EBFDFDDFADADDABABBFAEDA FDDADADFAADFADFADDFDDAADA B E BF D A D A D BFDADBFBAAADFADFFDFAC FDFAADDABA

132 DAABABDFDBABABDADFAA CDDFADBFDADFADFA κdfbafddfaad DAFAAADFADFADAβDAAAA ADFADFADBFDAFADDAA DFADA FFBABABDAFAFDBFD B FA DFFDA DD BBA A D D A D BDAFDAFBABDADAADA DA BC DBBFAFBBFFBDA ADDFDBDBABB DFADA D κ A D A D E D BAABFABABDADAADDABAAA DAABFADFDADDADAD FADDDDDADCBAAADABFA DADAADDFAADDDA DADEDDDADDDAD D FAA FA A D FA FADFA D D DD A D AA F D DFA AB DADAA D A BDA DFA AB DAAAFDDCDADAADA DFABDDDADDBDABABABDDA DBFAAADADDD ADAAFFDAFADAD BDA F F DAF D BFA A DADFADAFDABADABFA DADDBADABDAADFADDFBFA AFDAD

133 A A DAA D FADFA DF FA D BDAFDBDAADDDAA DA D B FAA FD A D AB DFA FDFDDDFFDFFDBABABD DFDADADDADBFADADFADA DADDDDDADA DFFFDDFADDDABDDAABD BDFEADDADAFD D FAD D D D F DDA D BDA FDADAFADAFDDDDBADDF FDD A D A BAB D D DFADA D D κ A FBF ADA BFD BDDAEABDADAFDFFDAA ADAABADADAFADADFADA A ADA FADDF D DFADA BDAADDBAADBDDAED FDDAD AAFADAFDDDFADFADFDFAAB DFADAFFFFDDAFDDAAABFAB BBAFDFBDA D A BDA FAA FA D A FDDDDDBDAFADFFBDADA ADADABAADABFDDAFDF ADFABADFFADAAABFDDAD ADBDADFFDAFDF FFDABDAFDDDDDAD EAFAAAABA AAADFBFDEBDDADDA FFFDADADABDAFAADAB FAABDFFADAFDD

134 CCEBCDBDCBCCDCDCAC CCABDADEEADDABCCC FFFFCFFCFDCFCFCFFFFFCDEFFFFC CAAFADFDAAB AFBDFADBADADBDAA FADFAABABABABFABDAADFAD DFBADADADABDFDAAFD FAD A D DA D A D BA A D F FDAADDAFAAB DA D D F A BA FADABFDFADAADFAADAABD FDDA AA FBD D D DA DA BA A D D A BAB DA FA D A ADA DFADAκBFADADFDDADFADFAAD EDAFDABDADBADDF FDAA FBD A FAD D DA AFA ADAFAFAD

135 ADABFADDBDAADAFDD DFDAFAAABADAFFAD FFFFDDABBBDDDDAFBA AF D A D D D FFADADDDADBABDBCAFF CCABCCD ADCFFFFDDDFFFDCFFFFFC DDCFFFDCFCFFFE DCCFFCDFDFFFECFFCCDFFCCF FFFCFCFFCDCDFDFCDCFF ECF F F CF DC F DF CF D FF DCFDFCDFCDDFFCDFCDFFCFCF FFFDCDFDCFFCFFFFDCFCF FCEFCFFFFECFFFEFFCF FDCEFFFDDFCFDCFFCCFCCFFF CFCFFFFF CDFFDFCFFCCFFDCCFFFFCFD CCFDCDFCDFCDDFFCDFFDCEFFF FDCDFCFFFFCEFFFFF CFDCDFCFFFFCFFDCCF F CF C CDF F F CCF DC CF A D A DFCDF E D A AA A D DDFAFDAADBBDFFBDBA FDAAADFDFFBDBAABAB ABFFDFDFFDDFABAFDAA

136 FAADADDFD DA F D FBD FADA D D FAD DFABFDDFFBDFFBDAFAFA DABFBFDDFADADF CCDCCABCCCC FCFD D FCF F FCF F CDDDF DF F FCCDCF CDDDFFFDCFDFFCFFCFFFCCDCFD FFFCCDFFCDCEFCFDFFDCFDCCF FFFFCFDCCFFCFFCDFFDCCF FCFDCCFFCFCCDFFFCFCFFDFF DFFFECFFCCDFFFFDCCFFDF ADABFDABABFDBDFAADA DFABDFDFABDDDABABBFBABFAF FDDFABA DA A D FBD FA D AFDAFFDFAAFAFCAFAD D A F D BAB DB D DA D FDDFABDA FF BFA D B F F FBDDAAFADFDADDFB DD D DAF A A AA BF ADAFAFFBDDADA DAFBDAEF DAADDFAFFFADDAFFADAAB ABDADAFFBABFBDDF

137 F A AD A D F D AFDA D A AB A F FBD D A D AFDA A D A FF A F DADFFDDABDDBAAAF FBDDDADFFBFADAABFD BFABDDFBDABBDAD FFBDDDFFADADDF BBEDBFDFFBDDA BDAAABBDDBFADFAFAAD ADFBFADADD E BA AA B D F DBA ADFABADDAFDAFFBDDFB D BF DFA BD A BBA D DF ADFAABABBFDFFBDDBDA D B D AD BDA D ADFADDBDDDAEA DFAAFDFAADFACCAAADA DADADDDEB ABAB A BDA BAB BF D F F FBD F FDA C FB F D A D D D A F DA AAA F FBDDAAFAADFADFACADAEADBA DFAFADFFFFDDDABAFAADDA FADFADFDAABAFABABBFFBDAE ADAFAFDADAFFBD DADDBFDFFBDDDFAA DA A DA DA D F AFA A DFADA D D D ADFA κ A FAA B D ADDFADA A BBA B κ D D D F FBDDBABFBDDBAFADADκγ AAABFFAAADDA DDAADFFBDDADADD

138 A D FAD A D DDA BFBA AB D DAFFBDDBADABBFADAD DDAFBFDDFABDFADDDBFADA D BADA FDD DFA D D FDD DFA D BDAAAAFFBDDADFADADADFA DDDDABADFFFBFD FDDAAADADFADADDFADAκAD F FBD AFA A BF BA FDFADA C FAAADFFBDDAAA BBADFAADAADDDADADDFADA ADDADABFAFABAFADAA FFAFDDDFADADFADA FAABDADD DFADFAABDDAFDAABAB AB D F FBD D A ADA AB D DFBDDADEECEAC DADEADADADDF DFDBDDADFFBD BADADDFBDDADFFBDDBA FAADFADDDBDDAAAB EDAD BFABBADDFBFDABFD ABDABABBFDFFBDADFDB ABBFDABFDADF FBDDAFDDDBFDAE FDADDFDAFD FAAADDDADCDDFABABBFABFD FFBDDDFDADAAD FFBDDADDDFDA DAABBDBDFFBDADADAAD FBFDAFFBDDADAF FBDAAADDBFDFFBDD

139 DFABDAFAADAADAFDA AAADBDFFBDDDFAADFA BD DA F D F A D E DA F FBDABDABABABABBDAFFBDDD BFFADADADFAAFBDADAD FDADBBFFBDD FBDADDFADADADFABADBB FFBDDAFDBABABA A D FAD D A D F FBD C FADBCDFDABDABAABFFBD DADCDABDDAFFFDFAF DFADAFDADFADDDFAAFAD BDDAFCADAAFAFDFADAF CAFBBFCCAFDAFC DBFDCDDAFFBDCDDFFD FADDFFBDDFADDADA D DA FA C FDFADA A FA ADDFADAF DA F C DA BA D BDA BFA D FDDAFDFADADDFFBDDDFAA AB A DA BA D AA F FBD E FD DAAD ED D D FFA F D D FBD DBFFBDDFFBDADA FADADAFDFFADADADFD DBDDAFFAAFAABDA ADDDBFDDFDAFFBDDAABAD DFDDDADFFBDDABDA BAFAB ADADFDDADDFFBDDFDDAD DFADDAABDAADABAFABD

140 D BDA FFAB D D FAD AA BBDDFAFAFADF ADDBBFDDDDFD ADDAAFAFADABABBFAE DADBFDDDABADAAFADD DAFAFFABBBDDBABBADFADFD FDBAFADADDFADDAAD DFFBDDADADFADABDA BAB BFA D F AFA ADA D κ γacdadedadadbdabfbd DFBDDADFAABABBDDFADAD κaadafaaddfadaabd DDA κ DA D DA DDA FDF DFADADAAABFFDDADDDF DDDADFDAβ,DDFA DDAFABBDDFDAAFAB DADFAAFDD DBDABABBDDFAFADDAD ADDDDDFAADBF DFDDADDDDDFADAF DAAADBFDDFADBDADAD AFAFADFFADAAABABBABD DFADADκDDDAFDFDFFBDA D DF BDDA E D A BA AB D F AFAAFDAABDAFFDDA AB A A BDA F FD A DAADABDAFDFABD CEDADAFDFAE DD C BF FAA D FDDA D DA BF D A BDABAFABDADFDAADADFBD DFDAADAAACADABDAABFBAB

141 FFDDBABBAB AB FBFD CD AFCFFEC DFCFDCD FFFFF FCEFF DDFDFF FFFCDD DCFCβ FFFF CFFFF DCCDEFF DDDFCFF CFCFF DFFCFFF CFFCDDFCCF DFDDAF BADAAB BDDFDAADADFA BDBABADD DDFADBFBADD DBCCBDCDDAE FDFDFCFF FFFFDCFFFF FFFEFFFFDC CFCDEFFFF FCDDFFFFDEFFF DCBDDCDF FCDEFFFCCFF CFCFDEFFFD FCFDFCFF CFFDEFCF FCDDFFFFFCFFF DCFCFF FFACDCF DDABFAF AFFDDF DDF BFBAA AD C FECFD FDF FFFDC CFFFFF FCFFF FFAF DCFFF FDFF FFCD γfcdef AFDAD

142 DA FF F B A D D BAFDDABAADADAFAA BABDADDBAAFAFD BADAABDDAFFA DAFADAADDABABDAF DADAFDADDDADDDF BDADBDABADADDDFADDAA DFDDFAFADBAB AA DA D A F D FDDFAB D D FADDDDBDABAADD FADADFFDADAFFBDAD DDDFADDDAABFADDD FBDADBABABFDDBADABAADABDA ADDAADAAFBD FADABFDFBDFDDF AFBDAADADDABBABBABD AFBDDBDCDFAAFAAABF DAAD CDFAAFDBDAADAFADAD ABAAADDAFBDDDADDDAA AADFFDADAD EABFDFABDADFDDADDFADFA E A BAADBD ADA DF D A D D FDDADDFDDAFADDDAADD BAD C DD FDBDC D BDA A FBDDAAADAADBDA BABFABFBADDDDD DBFDDDFADADDDFAADFA DFDFAFDBDFFDA DBDAFDBDADABDAFDDBAD AADFAABAB

143 DAABDFDBBFDDDA ED DADAD BFA DAB D D ADFFABDAAFABFDDDD BFADAFADADABDA AD DBFDDAFAFDBAAADAB AADA ADFA D DF DAD BA D BF D FADBFDFBAFDDAD FDDA FBD D DF DB A D A FBDFFADFDBAAADAB DFFAFADADAADAD DADAADBDDABBDA ADFA FDA D DA A D BFBADBDAABFAD DFFBDCAFFBADDDADBDABAB ABADFDBADAD DDADABDAADADFAAD FDDA D A AB FDD B FDA ADFADDADDBDADD BABFDBDDDAFADDABFBDEEDD EEAEEDADDADAD AFAAFABADFDBAD BDABABBDFDDFABBDADDD DDDDDAAAAD DA DF ADFA AA DF DAD FD D DA A BDA A D BDDA FA ADDFADAFDDADDDAD FDDFABAAFADADAD FDDFAB AD DF DAD A DB AADADAFAFADDEDABDDDBABBFBFA

144 ADADBAABBBAD DAFBBDBFBBAFDDA B D AB A D AB AA BBAABABFDAADAA ADAADDFDAD CCECDDCCDCEADABADDDABBCCCD FCDFFFCCFDFDEFFFCEDCFFFFD FFFFCFFFDCFFCDF DDFFDEFFDFFFFFFCECF FCCFCFFCFDDFFFFCFDFCCFFF EFDDFFAEFDDCFEFDD FDCCFFEFDCCFCDFFEFF FCFDDFDFFCDDCEDFCFFF FDDFFFFCFFFFFD EFF CFCFF F F DD DCDFF FC D DFA DDFDFCCFFCDF D DDCD CF D CFCF FDC F CDEF F DD D CDFFFFDCFFFCCFCDFCFCDEFC FFCDFκ DFAFAADAFDDD BFDAADAAFBBBDAA ADDADFADD

145 AB D D A D C D FA ADDFADAADADADDABBB ADADBADDAADADAFAA FAADAADDFADAD BADBAFABAFADAAD ADFADFACFAAADAABA DDAADAAADAEAADAB ADDFFFDFADADBABFDAABDAD ADFA DF C BDA FAB D D D AADDADADCADFAD DDFADFAEFDABADDA DEDDDFBDFDDFABADDFADAFDD BABBFADDADDEDADA DFADA D κ DD FAD D A B FADA ADADBFFAADAADFADFγDAD DDDADDFDBDABD ABABFFBADAACDDDFADFA DFDCEABAEADADAD AAD ADAFADADBFFAADFAAB DDBFDFADAFBDDABDABDAD FFDAAADFAFDADAD AFAAADFADABADFADDF BADAD D AB D FAA DF DB A ADA D FDAAADFABADAFBABABBFA FADFDAABAADDAAA FDAFDFDAAABAAD

146 DAAABDFFDAA ABAFFDAAADFAADAA BDADADAFDDADA FDFABADABFADFBFFDA ADDDABDDADDADDDDDABADF FDA DFDADABADAE DFAADDFFADBBBDBFDB DDFAFBDAFADDADDABAD BFA D DA D ADA A FAA DAAADBAAFFDA DBBDAFDABFBBD BFADDBFABFDADBADA DBFADFBADDBFAD DDFADADκDBAFDADA FADADDDABA A BAB BFA F A A DA D D DA D D F B A BFD D FDDADDFFBDADFADAAκ ADEDAADAABABABDDD DFAAAADFAABDDDADAB ADFADADDADκDD DADABBFADFADADκ ADDAADDA AκEADBADAADADBBBFA BADA D D B D F D D DA B A BADA AD AB AB D DA DFA D F A BADA DA BDFAAFDADBDFBDAA

147 ADABADBABDDADDDDFD ABFABABADD DAD B DBDAFADABBE ADFAADACDAFAADFFDDBABBFAA FAADBDAABDB A F A D C A D BDA D D C DA D BAB FDA BAB C DADDDAADAADBDDAD ABDADECDDFADADκDD DFADAADFADFγCAD DADDAABDAAFABABA DFAADFDFFDA AADFAD BBκ DABDFADDBFDAB ADFFAAAFDA A DABDADFBABDDA DFAAFDAADAA DFBAADBDDFAADDFABAAFAD D DA A DFBADA D D FAAκDAFFA ABBDBAFDABDDFDADDAD ADDAFFBDADDFBADA DFADEBADABFAAAAFFDDAD

148 DFBAB A D F FBD BDA F A A DFBADADFAD A FDA F BFA F D A BDA A FBAAABABDDAF AAABAFDDBBAADAFDA FDABABD D AAAAABDFDBAEDABD DBAAFBDE DAAAABDFBABDBABDDDADC ABABBFADADFBADDABBF DF A DADAAA AFA A F DF AβFAEAAFAD FDDFABA A FB D FDA DA AB F BFDFFAD CDDCCDBCCDCBCDBC AFDFFDDCDFβECFFCFFFCDF DFDFFCFDFFCFFDCDFFFFC CFFFFFCFD FCFFDFC FDFCF

149 DAFAAFD AFADAAFDBAAA DFABDDDDDDEDAFDDDAAA FD AB ADA BF A A DADA D ABD BF BAD E AA DADA A A A F BFD D FD AD ADFDDABADABAABADFF FDADBDBAFADD BADADBDAABABADACB CDAFDADBDDFADAADAA DFABADFADADAAFB A A ADBB BAD D FAB FD A A FB D AB ADA DF D ADAAADAAD A D D AA FD A DDADAAFDAADAADDADF ADBAADDFADAAAFFAA ADADFAADAAADD AFAFDADADFAB A DFA DDA D ADB D AB ADA A FFDADAAFDAADAAABB DAFDBADEAFBADAAFFB AADAFBDADA ABABABBAA AAFFDADBFFABFDDFADAD ABABDAABDDAABBDF ADAAABADADDADBFFABA AABABDFDDDABADA ABDADDEFADDBABFB ADAADADAAADDAD A A FD D F AD A A AD εadadaaa

150 ABBADAADADAABABBFAD FDADDBAADADA ADADAFABADFD FDDDDCBFAADA ADABFABBABDABFDADBAB BFADAD CCCABABDBC CFDEFCCFCFDCFFFFFFC FFDFDEFFFFFFFFFF CCFCFFFFFFDEDFFCFFFF EFFCFCFCFCDFFFFF FFCFCFFFFCFCF AD ADA A D AB AAB ADAAFBAA DADFDFADABAFDAFAA AFDA A AFAAA AAADFDDAADFD

151 ADAFDADBDDD DDAFAAABDDD EDFADFDFFAAD BFDFABDADBDAFAD FDAFDAAABD FABDAFBDFDD ABDADDFDEDABDAF A A ABAB AD A A BDA A FB DA A A BDA AA D DF D AFA A A A AA D AA FA DA ADAAFABAFDFAAD EAFAFABDABABBAFD A D A D A AB FFA FDDFBAAFB A DA A DA A DDF F FD DFB A D FD D D BAB BB DADFADABDAABDDDDA FDFADFBADAAB ABDABABBFAFBFADA AB ADA A D FDDF BF BA FD ADDAABFDABDD ADDD FDAABABAFFD A DA FDA B D D A DADAADFAAAFDFDA FADFDADAAFDAA DDABADDDA DDDAAADABABBAFABD FDDFAADDAADFFD DDAAADAAFA FDFFDBADDAA ADBABBFBABDBDDAD

152 ABDDABABFAAAFFDDA DFAABAFADDA FDAABDABDBDDAD ABDADDDD DB AA FA F FD AA D BDA ADFAADFAABABADADDDDAκ BκA A FD ADA AB A D FBDAAFDAAADDFADA DκDFDDFDADD FDFDAκαABFDDBDDAD ABDDDAFDABDAADA DADDADDBFADFABABADA FB FDA DF FAD AB A ADDA D FDADFDADADADDA FDAAFADDAFAB CAFABBFFDFADADD BFAD FDABABFDAAABA BFAFDDFADADκEDF DDA DFB D BFA AB A BAB BFA FBFDCFFDFDFCAFC AADFAADADADFF DADACAFAADFDADFFDFADAD DA A F A FAA D D FAAFCEDFFDFCDFFABDA A C C A A FAA F F D DDADABBDAFFAAA DAFADFADADADDA DAFAAFAFDD ABFDAADDAD

153 EADADFFDDABFDDFAAB D D ADA DF FD DA FDAFDAFDDDDAEFD AABDADFAFADAD DABAABFAABDFFDADAD AFDADDAFDAB DADDFADADκAADABFADEDA FDAFBDDFADADκ CDBCBACBκ FFFFFFDFDFDFκFFFFF ECDκαDCFFFFFDFCFFFDCDD FDFDDDFFFEDFCFFCFDFF FCFCDDCDFDFDFFADCFF CFCFFDFFDFDDCCFECDFFFFCDFF FCDDCDFDFCFFCFCFCFFF FDFFFFFFCFCFFFFDFFDF CEFCEFDFκDFFFFFCFF CFCFFFDDFFFDFFFEFFCFDD DFFFFAAFECDFFF

154 FDABDFABBA ABBBADFADAFAAADFADAD κdabdfdfcac FDBDFDDDDAADD DAFDABDFFAFABDD BFA D DFAB D ABD D AB C A DFAAB ADFCBDACABDAFDD FDABADDFDDA γaadafdabdababdaa ADA FA DFADA F BFD DFA A D F F DA γ A FDD DFDFDABDADFDABDDA FDAADABFADADA γ DAF AA FDA FDA F DDDDAAFADFADAD ADDA FDABABDAFBCD FFCAAFFDAD BADFABDAFDDAF DDADFBDBFADADFADAF AAADAFFDADADDFADADκ FDBFDBDABDADABAD ADAEADFDADDDEA EABADAADFADADκA E ADA D FAAA DF γ A B FD BAADAADBDAACDAD DADADADAAD DFADABFADFDFABAE D ADA DA D D FA BAD A D BFDADFADADκABFA ADADABFDBAFABDAABDA

155 AAADFADADDADAABAABBA DFADAFAAADDAFDDDDD AFAABDBADCAADAFA AADκADDACD αaaddafaadadfdaff D ADA D κ AA A DA A D DADFADAFADDD DEDABDADFAABAD DFAABBADDAAFFDC ADFDADDFDCFDAD D BDDA A A D E D ABDA BA BBAAFDAFADBFDAF FDDBFFABDADEDADAF AADFAAAAADAAAF ADBDDAFDDAD B Bκ DBADAFDDADDFABDDAADAB DDBADAABDDAADA D A ADA D D BAB BAB D DADA D BDDADABDDADCADBA ADADDBADFADDDABAB DFB D D D BA AD A DAFAAFDFADA DADDADDADABD A AA FAAB FD A BAFAB D FAD DAFADDDBDABFBDDFBDDAD FAADDADDADDAD FAAFAAADADDFDAA DFADADκBFDDADFDAFBD

156 καbdbaadaadfaddfγ DDA DDADDADDADAFD DADFAFDDFA BABFDADAαAβDFADFAAD DBDADFAADAABABBFAFBADA DFFADFFAADAD DAFAADFABFADFADFFD ADAAFDAD DFADADκCADADFBADAFDABFA DABABEACAFDDDFDFD ABADADFADADκDDDDDD DFADADDFADADBAB DAADDFADADκD DDABFDBADFADADADDDA ABAFAADDDFDFDABD FFDABABFAAADA DDDDDDFFBDDFAA DFFFBDDDABAADADBD F F A D ADA D D DFADAADFDBDFAA ADADBABFDAABFDADAD ADA FAA DF F A D BBA F D BA FBDAADADADFDDFABDFADκCDFA AAB A D B A FDCFDDA A BAB BB BA D AB AB A DAA FDAAADADBFADFBAAA ADDABADABADDAAD DFDADADADFBAADADDDDFAD DD D FDDA FAD D A DFADA D κ DADDADFAFDABBBDFADAADA DAFDFDDFABDFADκDABAC

157 AFDADDACFFDADDBDA BFBDADFAABADDBFF ADADADDACCFDF D AB C BDA DAD D DA D ADADADFADADκ ADADAFDFDDFABDFADκABDA ABBDBADFDABBABFA BADAFDDADDFDAFDAADDAAB DFBADFADFAADDF DDDADADFADADDDFDDFABDFAD κdbdababfbdfada DκDDAAAAABD BFADBDEBADABDA F BFD BBBA BADA E A DFBADA ACADADDFFBDA FDAAAAFAAABAADFDκDD BDAADADDAFDDDADDABAD BDABABEDAADDFDAADAA F DFADA F A D DA F E A FAAAADFABDFADBDDDDFAA FDDA ADADFDADADDFDD FD D BDA BAB BFA ADA BF A ABDADDADDDAABD FADDAADDDADDADB D F F D BAB FDA AB DA CE B BDDBDDADFAκDCEAD FDDFDADFDDADDDAFFBDDA BDBDABDDADDCEFDFADAD DκDADDAAFDADDA ADDDAFDFADBD

158 CE A BB AA D BADA E BDADBFDDADBABAFD ADADEBADCABA BFADFDDFFDAADDFDA DDAAFBDAFBDAABDDAAD CEAADFACAADFADADκDD FDDADAABFADFADAD FDAFDDDDDD A BA A FDDA FAD D DAD D DAADADAADDAABFD AFBDADDADADADADAF FBFDDADADBFADBABAB DBBAADADBADCD AAFAAFBDDBADDAFD BDAFDFBFDDADDD DDD ADADAFADFADADκ DDDBDADADADADFADκ DABFDBDABDAEAFEDF ADBDADEABAFABDADABA FDFABADDADDBADAD BDABDAEDκBBDADDA DFCDFDDAFAFDFAAB AFDADEADFADDFFAFAA AB D BDDA A D F D A D BDAFFDDBDADAD BDAFDADκ D AB AB AA DDDADC DDF AB BFA DDAADDDDC

159 DAFABDAADFDAβF DADDA ADA BF DF A ADD AB A AA D A D FAA FDAADDAABFAD FFDDDADBDADADFAADBDDAE D A D ADA FBFAD A DDF CBCECBDCCCBCADCCCDBCCDCEAC AEEC FCDFCDEFFDFCFFFFB AEFFFFFFFCDFCFCFFCDFDF DFFDEFFCFFFDEDCFCCF CFDFFDDCFFFCDCCFCCFDF DEDFEFFDFCFFDFCDEFFDDCFDFFF CFFFFFDDFFDFFFDDCFCDEFFF FFDFFFCFFFDFFC FDFF ABAABEDAAA FAADDFDBAFFBBFBDA A BB F CD FA BA DABDFABFDFADBFA FDADDDDA FADADDAFD A BBA F D BAB BFA ADA FDA A F DA Ψ DF ADA A A FDADDAAF AFAFAADBF DA AA F FA FD A FD DADBFAFDADDD DADDAFDDFD

160 A A B D DF D AB A D FA ADAFDABABFDDABFD AABDABDDF ABADFBDFAAA ABFBABADAFDBAADD FBDFBDDFADAFD A DADA D DA A B D AA D ADDABDDDABBF DFDAADFDADAD FADFFDADFAFDFDADF DADBABBFA CDFDBAADABFDAAF FADAEDDADAD FDBFAFAAFAADD DCFDDDFAAFDD DFADAFDADADAB A A D D DF ADA BABAFAADABABABDD DFDAEDADFDDFABFFAAADA DDADDFFDAFDADAA ABDBFABDFDA DADFAABDDFADADDAADAABAB BFAABAFDFAADA A D DFDA F A ADA D A FB D DA F ADA A FDA ADA BB D D BF C A BF ADAAFFAB AAFABFAAFA ADA A F C DA ADA A A FDDFBFAADADFDDA AAAAFDDDCDFA A D A A D AB DAA

161 BAADDFDBFDD ADABDCABBFAADA FDDAFDFAABFFABABDA ADFAFDABFAABA AADFAADADDADFDFDA DADDA BF D F A BFD FDFABAADFA AFADFDABDBDFDDAFDBAD BFFABFDDADDAFA BFDDBDA B κa DDAAFBDABDDFADAD κddadddaf AFAADAABDABAA ABDDDAκAAAA DABDADADADADAAκ DFDDB FAAABDAADFDA AADκADFDκαDABAB BFAAADAFDFDAB FDAAκαDBDDADDAκα A F D AB D BDDA A D AA D BFA BAB DFB FD B ADA A A D DA D D FD κα DDFDAκADFADADADFA DADDκABDADFDAD FDDDABBBAAAAD DAADFADADFD

162 CEAD DFDFDF CFFFFCF DFD DCDFDFFD ABDA FD DDFB ADAD BABABCEE DAF FD AFBD αaβdbda AF ABCDDDABCACBκCBCAB CBADAC κfcdfcfeddffd FFFECDF CFEFFFC DDFFF BDAA DAFDBE CADDDFF DEDAFDFAFAAD FDDDC BAFDDD AFB ADDAFDF AADFAFE ABDDDFADA BCDC DFC DF FDFF DDDD BA DFF F DAABDA ACCA DFABD ABFD ABFDADA BABFA DF

163 DDAAADAFADFADADFD καfdaaadfaafbaadfd FADADFADADκABD D DA D DFADA D κ B D A BA D BAB BFA FB D D BF FA DABDCBDFADAFAACA ADDAAFDFADADDBDA DDAAAADAADAAFBAFA BDA ADA D κ A D A BA F A D BDAADADFDBAFADκ AD CDBDABABBDDFADADBDA BAADACAADBDF FADABDDDC B Bκ DDADDBABBFAAFBFAF FDAADAED FB A A BAB B DA F ADFABDADDDABDAAFBFD FFDDBABABFADFADAFDFDA DADDADDADAA DAAFAAFDDBAABADAF BBDADADFFDD DADADDADCDFADAF BDDDADADF DDADADFBDFDDADFFBDE BFDFAABAADFDDAAFBD BDDADDADCBFBA BF FF A D FFDDA D DF ADFABADFADFABDFFBD

164 ADDADDADDFDDADDFF FBDDBABFDADFBDAADA DBADADDAADFFBDCD FADFADAAADDDAAD DA F FBD BDA D DA D D D DA F FBD D A D D A D DA BFADADBDAADDDAF FBDDFADADAADED DADAFBADAAFFBDDA BDDADDDAFFBDDDAD DFFDDDDABAB BDFFBDDFFABDAAADFA DAAD FAADDADABFDDFADAADD ADFADAABBAB κaaff A BA FAD ADA D DA D ADFDAFBDDFADAADFDD D ADFA DA DA A BBA B κ D F ADA A A D ADDA D DA F FBD D D ADDA DFADA D ADFA BDAκDADDADFDA DAADAADDADAFD FDAABAFBAADFADAAD DκAAFBDADADABABBFDFA D FDDA FD ADA A D DA D BA A AA BFD D FAA D DBDA BFBDADBFAAAABBB DADAAADADDAD AADFDAABBFDDD BDDBBAADADADB AABDDDFEDABDAAA

165 ABADADBDAFAAFDA DFDAADADAD DDADDFADADADFADAA A D FA FD BA A DF A D DA FAA ADFA D A D DA A FAD ADADFADFDDAFFBDDFAAB ADDDAD DABDAFDFBDAAADFA AAA B A D FDDA FD A FA ADADFDDFABDFADκ A BB ADADDBABDFBDFBA FB F FAB F CADA A FDD ADFDDFDFDFADAD FADEADBBAA EDDF DABBAA EBFDABFAB AAABABDDABDBFAD ADADADADADDADDA FFDDDBBADFD ADFDDAD A CDADADABDFDDFABBADF DDBFDFDBDFAA DFDBDADADFA BAADABBFABBFADAA BF D BAB BF A B D D FDDFAB ADDADDAFDDADDFABD

166 CEFADDDCECBAABABAD DDFAAADDBFFAC ADAAADAADFADDFAEDBAB FBBDFDDFABADDADDADADAAB DACDBABBAFDDAAFDAD F D D FDF BDA FDF BDA DAD A D ADF A C D ADDAFDBABFBDDFAFAABFB ACDDBABDABDDFAABADDADAD BDAFDDFADADDAFFFD FAADFAABADFADAD DFACABABADDDAF DDDDABFAB A B ADADBAABFADBFDAA DFADDADAADADFA DDBFDDDDBDADBDABAB BADFAADAABDDFBAAA DAFFAADDADBADDD AFADFDBFBDFAABAAD BFDDFADAAFDDAD FAD D AB F A F A D ED FADDFFDDFDFDBAFDBAFD DAD DBFADADDFADDDADDBAB DFBDBFADFDBADFAB FAADEDFDDAFBDAA FBDABABABFADDDFDDA FDDAADFAD

167 DADBABBABDDA FBDDDDADDDFBABBAB CCBCCDCDD DFFDCFDFFDDDFCFFCFF FFDFCFDCFFDCDCFFCFDCFFECFF FCF F D FF F DF F F F F F DFFDDDFCFFFFFF FFDDDCDFFDFDCFCFFFF DDFAABADA DDADAFBDDADAF ADAADDADDFBADADDBAB ABDDBABBABBADFADBA DADAABADAADDADDDD FADDBFADAAA ABDDDADCDFADFBADADABFA FFFDAAADFADDDFAF FDADFAABDADADFDDFABDFADκ Bκ B EBFDFAABDADABDABABBF ADDDDDAFDFADDFAADAD DBFDDBABABDFACD

168 FDDDCADFAFDAFFDDA DFDADDFADADDDDADAD ADADDADDDAFFDF FAADFFDDFABDA DADADBDDFDDF BDDAEDAFFFDDAFDBE EDADFAFADDA FADDFAAAFAA FDD D A FDD DFA D ADFA DA A BBA BκDADAADFADDAD DAAFDDADDFACDADA DAADDADFADFDDADDFA DBDDAFADDAFDFDDDFA DFDFADADAFABFB FAABFADADDBABDFBADDDD A D D A D D A FDD DFA D FD F D A BF D BFD DFADAADDADFDFADF DDDDDDADABAD FFDDADEDFADFADAαβ DFDDFBFAAFADFAADFα AβFADAD DABDBAFBFDFDABDA DABFDAAAFDDA BFADFAABDADFBFAFD DFBADADADADFAABADDA

169 BBκ B Bκ B DFADAAADFAAAFAADFDFADA DκDAADFAABDAABDBBDAFFFD A D BDDA E A DA C BA A FAABABFDDFAADFDDFABDDFADκ ADADFAFDAADADDA BFADFDDFABDADDFAABBAκA BABFAAADFADAFAAAκBADAA AADADDADADDDADAA DF D BAB AB A ADDA FA DDBDABDADFDDFABDDFADκD DDDACFAABAADAAADA ABADAAFDDFABBBFBA FDFADADDκFAAAFA ABDFFDADFAD FABBDADFADADDADA DFDDFAAFAADBDABABBABD BFDADFAADFAκ DFDFFDAA ADBDADADDADCBFABAA BABABFκDCEA DA B FA FAB D F BADAFADκDDFFAD ADDDADDADDAD ADκDFADDADBDA ADFFABDDDBBABFD DFADFADADDDFDA

170 + P B 9! 9 B 9! 9 9B 9 : O 9 9 H 9A 9 9! 9 9! # $% C E A C C81*D%C 81*D%C 8 C8 4 1*D 1D AB8 C8 18 A C8 B#,κ κ 9 8*1BAB / 1BAB /%C8.1 8 D 1' 8 F9 " F"89 F62755*39 5*39 &6#"9 7F9 8F68F+9 F"9 2CD835#F"9 5#95458C54F"9 &F9 4F88F9,D5F9 "D#89 "*C9 $D#&9 #D5C+9 F"9 L5#6"F"9 5*59 2F*,F#899 29D"29DC77FC9 F ,FC9 7F9 4D-27F6F9 OO9 "D#89 F#9 #9 EC5"+9 F"9 $648F*C"9 4F77*765CF"9 5*59 $6,DC5"F#897PF62DC89#*47365CF9"D#89"*C9$D#& *47365CF9"D#89"*C9$D#&9,5D7F8+9 F"96*8CF"9$648F*C"95*592F*,F#895#$7*F#4FC 592F*,F#895#$7*F#4FC97P6485,685D#9&F9 769,D5F9 :κ 9 26C D# *#9 *#F *#F9 4D*7F*C9 &5$$3CF#8F+9 49A9 ECD*2F-F#89 2F-F# F9 X9 9A9 ECD*2F-F#89 29D"2968F9X91*9A91 9X9OE(9F89ONF X9OE(9F89ONF9A9496R#F"9&P*455*585#F9753F"9F#9OE(9D*9F#9ONF+9 1#V2 2

171 EDDFADFADADκFDDDBAD DAFDBADADDAADDFADAD FADDFBADAD ADFBDDFBD DADDAFBBFA DFADAADDκDADDADED DADBADDFADAD κadbadfdddaab ADADDBDADDADDAFD DA A DFBADA D A D A D ED D D FADDDFBDFDAADADF A FA F D DDBDABFBD DFB DF FAADDDDADDADAD DADDDADADDAABFDADA αaβ FADADADDFAD FAAA F A κα A AA D ADFDA FBD κ ADA D A D D DDDADDADEDFAD DABDAFDDFDDAFBADA CDDDBDDAFFDA ADADADEDDDFBDDADAFAA DFκADDAABBABκ CADDADADAADFAFBDD DBABDAABDBDAFDBDFFBDD FAFDFADACABD B A A D F FBD A FBBFAFAADFAADFAADA ADAADAFDBFFAD FDBFFFBDADAA DFBADADAADADFADAADDκF ADDDFAADDFBDADFD FDAADCEDFADADκA

172 DBDDADDADDBFDAFDAABD FFABDDADBCEDAD AAADAADBDFFAFFBDAA FFBDADBDABFBDDAD FBDDADABADADE DAD FD FDD FDA A ADFADFDDADABABBFAFDBAFA DFADADκEDFAFDAABAADBD EADFDAABBDFADκ DDA A FBD ADA D D A D DDAADDBADCDBDAAFBD DADADFADAκDFBFDDBABBFBADFB ADFDDDFDADBDDADD DDDEDFADDDFADADFADADD DAFDCDAADADAFDFADAD κ A D FAD BAD ADADADFADADF ABDFFABDDDDAD DDADFABFBABFA BDAAFFFAAA FABADFFDAAADFADDFADAD κadaaddadadaadf ADFADAFAAFDAAAFD BDAFBDAABDFED ABADDABDBFDDFADADκD DAFFDAAADFAFAAA F D A D BB D FF BFA

173 ADADBFDF ADDFBFADFADBABAB FADDDBFABABDABDAA FDDFDADFFDADFFCFDD ADEAAFFABB BADAABFBADDDAADDABAA ADADBDDDAADA DDADBADAB DADDADADADDAF DA AA FA DAF A ADA FD A BA A A B D A FBD D A DEDADEDADACEDAAD ADFDDFDDFBDDDFAD ABDADFADADκADDADBDDADD ABDDADD CABDABDDCCADCBCD FFCDFDFFCFFCCDDDF FCCFFCFFCDFDFEFFDFFFD DEFFCCFFCFFCDCFFFEFF EF ADBDDFDFAAAD FDDFADAFFFDDA ABBDABAAFDDADD ABFABABBDAA D

174 FDDFABA ADB D FDA BFBADAFBAD AFADADFDDBAB BFAABAADFDDFABBAAADDA BDAABAADFADFDAD FD AB A B D DDA ADADDAAAF ADADFAADABADDDAAD ABABFAAFAA AFADDABABF AADABDDκAFADF FEBADBBFADABDADA ADADABAD ABAFADFDDAADD ABDAAADFAFABADAD B BκA ADFADAADDADDDFADAD κdaababbffdadad FADAADDAAADA AFAFBFDAFADAA DDADDFADADκFFADAE FADADABDDAADADA DADADAAABADAA ABDDBDADDADADF ADADDADADFADABABDF FADAADADAFBDA BDADADAF DDADFFFBF ADAADDADDDFADADκADA FDFDDFABDADADA

175 BBκ DFAFFBDDADFCDFA FAAABABBFAFAADFADFAD DFABBAB κfaa ADFAFFBDADD DEFFBDABDABABBFAFA DABADADDFBDDAE DFADFAFFBDAAFBA DADAFFBFFDADDFADADκ ADDABBABAABBDADBAADA AFADADADDAD BBκ BADADFDADFDD AAAAAABFBABBF DDABFABEBFDFADAκDD A D A B BAB BF D DFA D D DA FADADFADDFADAκBADAFADDD DAAADAFBFDFADA κddadfdaaadfabadaad DFADADκDDABFDBAFFDA ABDAADADFADAκDDD DFADAADDAAFBDD BF D D BA D AB BFA D DA A ABABBFAABDF FADFDDADFBCDD D F FFB FDDFAB FDA AADFA DAFADAADAADDFDDAFD D BDA BAAA FDA AADFA BDA ABB D FDDA D A FDDFAB DFADADκFD

176

177 FAFABDDA ACA FDABABAB FDBABFDDF DDADFFDFF ABAFABEADDADF BABDFBDADABFA AAFFAADF FBDAAABFABD DAADACADAFABC AAFCFDADFBABDFBD ADABFAAAFF ADFAFF EDABDAFDFAF DDDAA A D ADA DD D BDDA F FBD D FADA DA F D EABDBFAAF DBAFAEF EBAFABC F BAB DF B D DFAB D BFAAAFFADF F F AA C F A ABDACD AFAFADABDFAABAFAABD DFBAAAABABABADAFB DFADFDAABDADA DDDDADDD ADABABBFADDAABDA DADADDADADADCD BABBBBDADFDADABDFBDFAC

178 ECBDBADBDBDFDADFAD ADFFDDC A DA DA DF AD DA A DF FD DFDADBA BDBBDACDDFDFDCA DFACDAFBDFACA DCDCAABBDAFA FACADAAABBDFADDF BAAAAAFAADAABBDADF AAAFADBABBBDDFAD ADA C A BDA AA D D FDA D BFDDADAFCAFAFAABAB BBDBD DDADABABBDCD DF DFDADABADDABAA DABABBDECAAAD DDAEEDDFAFA DκFAFFDADFBDFA AFADABBABκBDAκ BDAFAAD FDADFBDDFAADADA BABBFABFBAADDADD ABABBDCD DFDAABDADABABBD DDADEDCAAACDFADF DAADDDDBABFBDDDA DAFEDDBFFDDBABBB FAFAFFA FADDAD

179 CFDABDBDBDAAFABD DBABABADDAFFDDAD D BAB AB FF A BFADA C F DDABDADADADABDAF DAADAFD CBAFAFDAAADFADAB DAF DA DAA CE DAFD ABEDDADFD DA DAF D DA A BDA BAB AB DAD DDAFDAFDADDAFDAD DACαAβDDAEFF ADADDEDDFBDAFDA DAABBFADADD DAFFDABAADAFDAD DAADADFBDBDDCFFDFD CD FF DAF FD DA DAD FB D DA A BAB AB AFDDA FB DFDFDADA EBAAFADFAABABDBFAAFD A BF A AD ADFA A DAAB DAB DA DAFBFABDDAFDFAABADFA FAFDBFFFA ADDFADAAFFAAAFDABD ADFADDBDD A DABAAAAAABFABEDAFDF BFABAABBFFAA DFBD

180 CDDFDAAADFABFADA ADFAAFDAADFABDFDFAD AAFA FDAAADFABDFEA AFADDADFAFADFBD FAFDFA FAEABDADFBDFAA FDFDDADCDDADFA FAFBFABDFAFDDCDADA D DA AFA F A ADFABFDA F FD AFBD AFDADDADFADDADFA BFFABDADD D C DBADAF DFAAAAAABDADAFBADDAD BAAABBFDADADFADB FDAAADFADADFABADA ABDDAFDAAFBDFBFFA DDDDAABDADDADADA ABADABAAACDBADDADBDFAD ADADBDDADAAD DABAADA BBDADDDADDBDA FDAFBD FDAF DADDADFADDADFAFAB ADCDCBFDA

181 EABDAABDADADF DADAABBABDADD DADAAFBDFFBDAFDAD DAFDADDADAADADAF AABFABFBDFBAB DAFDDADADAFADACA FBDFADDD D BFDA C A BD A ABDABADABBDFADDDDA AADADFABFABAADDBDA FDAFBD FDAF DADDADFACBDDFADFA AFBBFADDAABDADBABDFDDADAD DDADFAFABADC D C BFDA E A BD AABDADADFDADAA DBDDFADAADADA DADDAFAADDFADFA FDADADCFADDFE DAABDDFADDFA ADDFAABDADDDDDBD A FDAFBD FDAF DA D D ADFA C BD DFA FA ABD A FBD AF B BFA D D AABDA D BAB ADDDADFAFABD AD C C E A BD

182 AABDDADADAFADA DADDAFAADDFAFAD FAADBDADDDCDA BFDAEABDAABD FABDADDAADB DDFAABDFAABDADC DCAABDAABD DBDDAABDA FADADADDAFAADDFAFBD DFAABADDDADDBA DAABADFABBDBDDAFDB AB A BB BFA EC FDFDDDAAADBBDAF AADFDAAADADADABFD FADDAFDADFDAFDAFDA BDBDDADBBDAABAFABD FFFDAD DAFD DADD DDAFDADABDBDABFDB D F D D DD D D A A A BDABAAAADADDAA CBADBAFADBABDBADADFBB DDDA CBADDAABDBDFDDAAB AADABBADFAABDADADD DDFBEDADDDA BFD A D ADFA A D B DDABFDEDAADABDDAABAAD DAADADADBDF

183 CBADFADADADADD BDDAADADFAA DBDDAABDFBBDDD ADADDAABDFDDD CBADFADBDDDFABFAB DDαAβBABADBD DAABDBFAB B AAABDBDDFAAD F D F DA A FA E DDAFAFADFABDFFAFAκF F FDA D FBD F DFA FBD FA A BDA κ FAA A FAFA FDA D FBDBDAAFBDFAADAD DFABDFAAADFDDADFA FABADFAABFBDABFDAEDFDD ACDAADFAADAAADA ADAADABDBDFAFDADBDDDFAAFA BAAADDDFDDD ABDFAABFBDDAAADADFAD DFFBBFBDAAFAA FDDFAABDFADDFBADDA BFFADFABABDDBDDAB DA DFAAB FBD DFADFAAB FBD DAA A F A ABAB F BF FA BA FADA ACFDBFADFAABDBDA AADFABDFFAABAADADAA BFAFAADFAABDDABBABκ DFAFADBAFA

184 DDADAAABABBDBDAAAAAABADA A BAB FBB F FDA D D CD BADA B FDAFBDD FDADADDADFAADDA BDBDDADFAFFF FABDADBCABB DFADADC D FDDDFBFDBAA DADFABFAADADFFDBDA DFDAFDBFFD DADAFDBAFADB DFCBDFDDDBDADDAA D DB DF C F A A BDB DF BADDAADDBDFCDDADAA FABFDAFDFACFADAD BDADDAFA AFBDFDAFDDAFFDBD A C FADA A DA A FAACDDFBADABBABAFD DAFFADBDFCDA FAAFBDFECDBDCDADDA ADBDFCDAAABDADA ADDDADF FABABBFFFFDFFFD FDAAFDFFADFADDBAB FAB DF F AD A DD D DF F D DDD

185

186 A AADDADAD DAABDFDDFABBAABADAD CADADDFDADABDBD DDAADBAAAADAADFABD F AB D A A A B DA DA FDFBFADABFDFAAAA DABBFDAAAAA DFBDDBDDAABBFABDECDD DF DAF DAA A AA BF AB D ABD AADBDDFADADκDA BFADDFFBDDDAD ADADDFFDAB F DD DF DAF DAA D BAFA DABFDADABDF AFDBAEBBDADFBD BDAAFABDAFDFDADD FDABBADABADBDADFDADFAB DFDABAFABDFDAFDAADFBDB DAAADFDABFAFD BAFABFABDADABFA DFBAFDDAABDFBA AABDDAAADBDDADDAAB DBDBFBDFBDDD A B D F FAA ADA A DAB BDADADADA FADABFADA

187 ADADAADBFA DABFDDADADDFDA FAADFDFFAD CD BCDCADCDBDABCD AFFFDCFFFFFCFDCFDFFCDCDF FDCDFEFFDCFDDDFF DDFCFF FFFDDCFFFFDCDFFF DCFDCEDCFDCDF AFFCFDCCCFFFFFCDFCFDFF FCDDFDCFDEFFCFFF CBDFDFFFCFFFF DCF C F D DE FF C F F DFFCFFF ABAAFDFABDA DADDFADADκDFD DDAAADADDFBDB FDABFFBFABFBAEDDAAD DFDADADA DFDADDFADDDFA DADFADFDDFAAA DABADADABDF DAFDFAABADAAD

188 ABDDAAADADDA FAAAAAADDDD ABDFADAD CDBCDCBCDCDBDABCD AFFFDCFFFFFCFDCFDFFCDCDF FDCDFEEFFDCFDDDFF DDFCFF FFFDDCFFFFDCDFFF DCFDCEDCFDCDF AFFCFDCCCFFFFFCDFCFDFF FCDDFDCFDEFFCFFF CBDFDFFFCFFFF DCF C F D DE FF C F F DFFCFFFFDCFFFFD DECFEF CDFFADAADAD ABBADAB DABDDAFDDFAABA DDAFDABDADFDA EBADABADA FADBADADDFADADκD ADDFDAADADAFA ADAD

189 FBDA F DF A D DDB ADADBFB DBAFAAADADDD BBFADDAD ABFDAADADF A ADA D D A D DA BADA FFAAFBDAAA ADAD CDBDCCDCBCDCDBDABCD AFFFDCFFFFFCFDCFDFFCDCDF FDCDFEEFFDCFDDDFF DDFCFF FFFDDCFFFFDCDFFF DCFDCEDCFDCDF AFFCFDCCCFFFFFCDFCFDFF FCDDFDCFDEFFCFFF CBDFDFFFCFFFF DCF C F D DE FF C F F DFFCFFF DAADBDF AADDB ADADDFF BBFBADADADD FAAAADFADAABA A B A A D ADAD

190 CDCDDAACCBDABCDBDABCD FFFDCFFFFFCFDCFDFFCDCDF FFDCDFEFEDEFFDCF DF DFFDDF CFFF FCFDCCCFFFFFCDFCFDFFFC DDFDCFDEFFCFFFCB DFDFFFCFFFFDCFC FDDEFFCFFDF FCFFF FBADABAAABAFAAB ADA D D AB D ADA D D FADABAFAAAA B BB κ DADAABADA DDDABFDFDDFABDDFADκCFD DBDBAAADDFADAABBABκCFD FDAABABFADFABDFFAFAκFA AABFABDBDFAABFBDDD DFFAABABF ADABDDFAABFBDDADAAADDAD FFAADFABDFFAFAFBADFF DDABDADFADAFDκ DFDAADADADFDDFABAADDFAD κdadaddfaddfaadκ ADAABABFDDFABBAAFABBFDAAADDFADA FABAD

191 CDACDDABCACBκD AFFFCDDCFFFFDCDκFFDCD FFFDEFFCFFFFFDCFDFD CDFDFFCCFDFFFDFF CFFFCFFDCFDCFFCFFFDDCFDF CFFFFFDCFFDCFDFC AFFFDEFFCFFFEFCFFDFFFFF DFF F FCCFC F F DFF ABAAABBB F FCFF FFDCFCFF FDCFDCEDCFDEFFCFFDFCDCDF FFFFFDFFFFFCFFFFD CFCFF A B D F D FDDFAB D DFA D ADFAABBABκADABDD ABADFADADκDFDED ABDADADFDDFABADDFADAFDDFA AAFDADAADADEDD DABFDFDDFABDDFAD κadfadadaabfdadf DAABFAADA ABDADFDADABDDFDDFABD DFADκFAADFADFADADDFADA ADDADADFAABFBDA FAADAAAFABBF AFDDFADADκDDDBADA ABFBFAAABADA

192 CCCDCDDDABCACB FFFCDDCFFFFDCDκFFDCDF FFDEFFCFFFFFDCFDFDCDF FDEDFFCCFDFFFDFF CFFFCFFDCFDCFFCFFFDDCF DFCFFFFFDCFFDCFD FC F DFF F FCCFC F F DFF ABAAABBB F FCFFFFDCFCFF DABDFADDκDAFA DADDFADAABBABκDDABD ABADDAABADA DAADFADADκABBADA ABFDDFADAAFAB D D ADDFADA A A FA A FB BADA ADAD BADADABA ADDDAABDADADAF A A ADA AA D DFA D κ A F BFDFDBADADFDABD BFD A A ADA D DA AABDDDADADDFADAD ADD κ B EDAFBFDAAADAB DDFDADABDDB

193 ABDAADFAADFDDADA ADFADBABAFDADDBFDAAAADFA DFAABAADFDBADC FAFBFAADFADFCAD DDAAFADAAAADFA D DF BA AB D F BAB ADFA AB DF AB D DD D BDA AB D F A AAADFA CCEDBDEADDCD FCFDFFFFFCDFFEFDDCF FFDDFDCCFDCFCFFFFDEFF CFFFDFCFFFFFFCFFCFFF DD CADAACABABBBBDDDADAD BAB DFB D DD A DC D A D ADADFDBCAABABDFBDDDD BDABABFBBEDAAABAADAAD DBFADABDDABDDD DBDBBFFBFADA BFD ABDDDABDABEFDABABADFAB DF D FDA D A D AB D D A BFAB D F DAF B FA BAAA D DD DFA BFAB A A D D A BADFDFADABDAFAAFBFABDF AAAFBFADAAB DADAADFABDFAAD

194 AB D AB DF DB C A A BDA F BFABDFAAFDFAAA DCABAFABDDDFABFABDDD DABDDDABDBDADDA AADF CAEEBACDDABCDCDDEDCC FFFFDDCFFFFFDCDFEFDCDF EFDFFDDFCFFFDFFF CF F F F F DC E D F F ECDF DC DCFCEFDFCDDCFED CDDFFDCEFFEFFCFFFCBA FDF E BADA D A BAB A DF A AB D ABDACADAFDFABAAF DFAAADFA FBADAAAFABAA BDAADADDAACABFA AAADFADFABADADFAD DF A A BFD FF DA BFD ADFA ABDFDABD DBAAABDABDACABBBD FDDFABA A ABDA BA FDA A ADFAD D

195 B B κ B D ADA A C DA D ADFA D DF ABDDDBADABAADA ADFAFDFBABDDDA ABBAAABFFBAAA ADABBBADADDA F DAF DAA DAFDA D A A DDADDAABDFBBADADAD DDA B A DBB ADA DCBADAAD ADA A BA B FDB D D D A ABDBDADFADDADC ABAABDEDBBDAADA AFABDABDAD CDBDABCDEADABCEDBDCDBCEADD AFFFDCFFFFFCFDCFDFFCD CDFEFDFFDDFFFCFD CCCFFFFFCDFCFDFFFCDDF DCFADFEFFCFFFC BDFDDFDFFFCFF FDFDCFCFDDEFFCFF DDFEFFFFDCF FFFDDECFEF

196 FDAFFDABFA DFABABDADDDFDAB DBAABDDDABAFBAB ADFABDFAABBDADFDAFDA DA BFD A FAA BAB DB ADABDABADFDFDAA FDFDDABDFD DABDADABADBDDAAB DFBBADDADDDABAB DABBAADDAADDDAB D ADA D A DFAB BA F DADDADDDAADADCAD ADFAABADDAADAD CAFBADAAFADAF BDADADCAD ADAACDADFBDAADA AABDFDDCBAAFBDADA BDDFAAADADCBAA AABDAFDFADADADADBFABA A DA D B D A DFAB D ADA ADA DA F AA D D DA D D DFADADκEDDABADFBFB FDFDFDDFABDAADADC B B κ BB D F DA BFBA ADA D CDDAFDABDAFDDFABBFBA

197 FDAAADFAFAFADACFDD AB DA B F DBA F D F A ADFABDFDDFDADABDDD ABDCABABBFF BAAA A C DAF A AB D BA FDADEDAFDBDBDAA FAB D A B AB D DD A AB A B A B DAAB BDA D DAFDA BA FDADAADBDDAABDFBB CFFDADADBD FADDDFBDDDAA ADDDABFDFDAAF BDDFBBAA A D A DC FAA AA ADBABADADADDABFD BADDFBDD B D A BAB DAB DDAAB AAD DD F BFBDDADDBAD EDFDADDAB CACBDCCEADABCDCAEDCBCCC FFFFDCFFFFFCFDCFDFFCDCDF DFFCFDCCCFFFFFCDF CFDFFFCDDFEFFCFFFC BFDCFEFFDDFCDFFDFFFEF DCFFDFDDFFCDCFEEDFFD

198 CBFDDAFDADAD DADDBDFDFDAABD DDAABADADAFDAADDDA ADA D D BDA ADA A A D FAD AB D DA A A FD AFADAFBDFDD AADADFDDDFDABBB AFADADAFADFADADκ D F BB ADA ADA DC B FDAFDDCAFAAFB FDADDABDADD ADADACDDFAFDADADAB DAFDFDAFFDFADFADAFD CDCDABCDBDABCDCDD AFFFFDCFFFFFCFDCFDFFCD CDFDFFCFDCCCFFFFF CDFCFDFFFCDDFDCFAD FFFFFEFFCFFFCB DFDFFFCFFFFDCFC FDDEFFCFFDF EFFF DBDADBDDADAADADF D A D D FD D AB A A ADA DAF DA DD D F

199 DDADCAABADDAD CDFDDFFDDDABAB BFBABFAABFDFADFAFDFDFDA DABDDBDAFAFAFDADABB BAAADADDADEDFFA DFBAABADADAA ABADFDFD AAAABDFBAB AABABABFDDAFAD AABADFDDCADADCD FBDABFDDDABAFDB DABDDD CDCDABCEADABCDCDD AFFFFDCFFFFFCFDCFDFFCDCDF D FFFFDDCFFFFFCFDCFDFFCD CDF DFFDCDDCDFDF AFFCFDCCCFFFFFCDFCFDFF FCDDFDCADFEFFC FFFCBDFDF FFCF FDFDCFCFDDEFFCFF DFEFFF F BADA FA F DA BDB D FDABDABFADADCA

200 ADDFABDADAFDDFDDFD DBAAAADFDD BDA A DFDDAFDDABDADFBFDAA ADFAADFACFAAFDDADBDB BFFFDFD CADABCCDCDCCADCBCD FFFFDCFFFFDCDFC CFDFFFDFDCFFDCDDD FCFDDEFFCFFFFDFFDFCFF CDDFDDFFFFCFFFFDDFCFFD CFFAFFFDCCFFFFECECCF DFFFFEFFDCCFDCFFFFF EFFECECCFCDDCDFFFFCCDFD CFFDFFFDFDDECFF FFDFDCFCDF DDADFADFDFDADABDFA B DB DF DAF FD DAD DA FFFFDADDDDAAF F A D D D FAD D D AB D FFA BDADAADDFFBDAFD ADABBDDBDABFBDCFDAF D F AB A BA D F D F BADAFDBADABABDDBFDA

201 DFFBDADDBDABFBDDD FFBDADDBDABFBDDAFBADA BAFDDAFDDBABABDABDDD AFFBDDFFFBDDFB DBDABFBDDFADBDABFBDAD F ADADCBABDADAEADA CAABADAFDDADFFBD DFDBDADDFFFBD D FDDA FD ADA DC DAF D F FBD BADA DFAB C FD D FDB F BF FF D A F DA D DC BADAFFBDDDBDBFBFF DBADFADFABDFFAFAFA FDAABDDCADBDFDAFFD DADABDFFFFDEDFDAB DDBFAFFAADFABDFD FDA A DD B D F ADFAB D DDABFFAAABFDBD ABFABFBAFDADDDBAAA DDDDADADADA FFBDDDDABFFAD DABDCAABFADDDAFFBD FDAFADAFAAAADD DDABDDDDAFFDDDADF AAFBDDCADADCAA FDDDBDABFBDFAD DADADBDAAFDAD CABABFADFBAA DBDABFBDFAFDADDD FABADADFFDADDD

202 AFFBDFAAFDADABD AB EDFDADABDABDACDFF BDABDAADAFFBDFDA BFBABFAAFF FABBAAFACDF DFBDADF D B E D D D F DBA F ADFABDFDAAABAAABDD BFADDDBFADFABDFD FDADABDDCFDBDA FAFADAAAFDBDFDBAF F DA DBDA BFBD CD FA F FBD A DDAA D D F DA D AB D A BFBADAEDFDD CBABDAAADADAFFBD FDAFAAABBAAAAAD D D AB D AB D A C BDA DAAFBFADDDAFFBDDD FDBADFAFBABDABAB BFA F A DFADA D κ D F D BFDBAFDDFABDCDFAFAA FFDD AFFFFADFCFFFFCCFDCFFF FFDDCDFDCCFDFFF DFDCFFDCDDDFCFDD EFFCF FFFDCFFFFFDDCDFD C CFD F FF D DF C F FF F FCCF CFDFCFFDFFFFFDFFFDCF FDCDDDFCFDDEFFCF AFFFDDFCFFCDDFDDFFFFFCFFDC CFDDCFCDCFDCFFFFFDFDCFCEF D DF F DCFEF F FF FFF DCF F DC CF F DCFEFFCDFFEFDFFDFF DD

203 CADABCCCDCDD

204 BB DFADDFADκDDFAD A D D ED FAD D DFA F DA D D ADFDAFBDEDDDDADFAκ DFEDDADDADFADAABBABκ AA Eκ D F FFB D AB D FDDFAB ADA D CDFAFFAADFADAADFAAD ABDAFDABDDABBDAFF γcaafaaadfadcdfbf FBFADAABABBDBFDFABABADFAB DFDFDADABDDCD ADADAFFDFADADDκADADABABBFA F BADA D FDD AD DF DD D BFADA D DF DAF FD DAD DFA BFAB D BDA DA FD AAD A DDB D ABDBDAAFABDABB BAABDDFDADDD ABABFABBFAADBDAD DAFDADCDDDDDAAA FBFABDFDDDDDDFDDDADBF CDDDACADAAB DBDADAADAFDDADD AAADFBFABDFDCDFDCD DDAADCADAFFFAADFDAB FEDABDADDCD F AD D FDA DA DDDA BFDDDABABBAADDDDAD DADBDFBFDDA DD AA FDA F A DA D

205 DA BDDA BFA F FAAA D F DADDAADFAADADADAAD DADABFDADAFβAFDFADA F D A DC A FDD DFA F FADADCFFDDFFBBAFADBF BAFDFABABFDADAF DαβBDDDAFD AFAABADBDADFDAD DCDADAFDADDDA ADADBFADDFADADκDADD C ADADCAAADFDDDADDF ADFAF CDCDDBDCCBDCCAECC FFFFDCFFFFFDFDFCDF EFDFFFFFFFFDFC CFDFFCFFFDFFFDCD FFFFCDFCFDFCFFCDFFFFFCFCCFCF DFFCDFCDDCFDFDDFC DDFDCDFEFFCFFFCBF DDEFFDCFDCCEFFDCFFDCF DDCFFαFβ ADFADDFFADDADFDDAD DBDABFBDADBDAκD

206 FBBADFA FAAAADA BFBDCFD DAFD DDFFDA BFBDDB DDBDAB ABDADC DAB DDDFA CABD DAA DDFDDFAB DBDABFBD C AFFFFD D AFFFDF FCDFF BDDC FFFDF CDEFFDDEF CDDFDDFFFF DCFCDC DFFDCFEFFFF DCFEFDCD DDFFFF BADCAF FAAFAAF DDBDBBDDA FFDDDABABBFABFB ABABA DBABBFBABFADA BFBDDADDDDF ABADDFA ADADABADDDF DFDABDCDFA FDADD AFDBADABD DDDFDDA DCDDCACBDBCEA CFFFFFD DFCFFCFCFCD FCDDFFEFFCF DCFFFDC FCFFFFD FCFFECECCFF FDCFDCFFFFDFDC FFFDDCFFECE DFFEFDFFD FFECECCFDDDF BADA DDBDA DFAA ADFDDADA DAFA DAA FA A FAAA DD DDFA ABF D A FDCDF DFFDF FFFC FCF DDFCFF FFFD CFCEFD CCFF FF F

207 CFFAAFDDABDFAA FFAADDBDABFBDDA FBBFFFAADFDDAFD BFDCFDDDBABADFABDF DFDAABDDCABABAB ADBDFDAFDADADAFDA DF D DD A D F AA D FAD D A B D F A FABDDBDABFBDDAAF DBDAFFDADFDBDABFBDDD ADDBDADADFDF BAABDADBDABFBDDDABDCB D F D D FDFAB FAA D DBDA BFBDFFDADFDBDABFBDBDDC DABADCAFA FDD AD DF D BDA FA D DBDA BFBD DDFADADDFADADADFDA DDADDAκαDFDF DDB D ADFDA FBD D D F DA D CFBFFFFDADFAB DFDDFDADABDDCA DBDFDAFDADADAEDFFAD ABDADBADADABADD FADCDFAAAFADABD AABFADADDDFAD EDFFBDAFABD FFFBDEDDDCDF ADADFDADDAAFDD ADFD DABDABDACAFDFDDDDD AD DF A DFA F FA D DBDA

208 BFBDDADADFDAFBDFBADA BAADCDFAFDFADDFADD κbadaafbadfdabfbaada BDAADADCFAFAAFDAAA DFAADDFADA CDCDDDCBDCDAECCACBκ FFFFDCFFFFFDFDCDFD FFFDFDCFFFDCFCF FCDEFFDDEFFCFFFFDDFCFF CDDFDDFFFFFCFFFDDDCFCDCF DCFDCFFFFDFDCFCEFDDFFDCFEFFFF FFFFFCDDCFFDCFEFFCDFFEF DFFDFFDD AA Eκ EDDFAκDDDD ADFA DF E A A D DFADA AD D ADFA ABBAB κadadcafdd DADFDAκDDDFDFADAB DDDADAFBAADCDDFBD CFDDFAAADDFADADA ABFADDFADAADADCDDAB BFDFA ABD D DFADA D D FADDAABDA

209 CDCDDDBDCBDCAEADCCCECBDCCABC κbcccccbdc AFFFFADDDCFFFFDCDκ ADFFDCDFFFDEFF CFFFFFDCFDFDCDFDF FCCFDFFFDFF CFFCFDCFFDCFDCFFCFFFDD CFDFCFFFFFDCFFDCF DFCFDFFFDFCFFFFDCFCFFA FFDE D FAB F AA D BA A FD D F DBADBBFBDADAADA F FBD DC B FA D BDABFBDADAFFBDDCA FA D DF D D

210 EDFDFDFAADFABDFFA DFDAABDDDABFAFADFABDF FAFA FDA DA FBD BA κf BDA κ F BDA A FAAAA B ADA D ADA DAB FDBF FD DFADAABBABκFAAA FADBFAD EDFDDABDDFADADFADAA BBABκDFADDADFA DAAADADADDFADFADFADD AFDFDDDFBFBABFAAD ADA DC A BDA D ADFA DA A BBA B κ D FDFA D D B BF BABFBDBAAFDADAA ADAAADCABDAFDDDFADADFABDA DDFDAFADABADDDAFA CDBFDB ADADDDDADDFADAABBAB BADAAFAABDAED DFDDBBFFADADFABDA κadadcaadaaafda FADAAAAADFBFDF FDADFADAFAAABBAB κfaa BFDBFADDA DBADAEDFFFADADFABDA DDABDAAAAAADADCDFAFAAADFAD FDFADEADAAAAABDA DBADADFAFD

211 CDCDDDBDCBDCAEADCCCECBDCCABC κbcccd AFFFADDFCCFDDCF FFDCDκADFFDCDFFF DEFFCFFFFFDCFDFDCDF DFFCCFDFFF DFFCFFCFDCFFDCFDCFFCFF FDDCFDFCFFFFFDCFF DCFDFCFDFFFDFCFFFFD CFCFFAFFDE BADAABDFBFBDADFAE DDFDDFDAAFABD EDFFABADCDFADFDFAD ADFADAABBAB κdd FAAABABDCD

212 FAABFADADAAAFDADADDFADA ABDAABDAAABDDDAAB FDA D AB DC A D B D F F D DAD EDAFAFDBADABDABDAC AFFDDADDFAABDAκDFDFA DDDAADADFAD F BADA A F DB BDA A B DAFFBDADADABABDCA AFDDDFADDFADDκDAADFA DADFADAABBABκDFDFA DBADAAFAADDAFFBDAD DADDADBFDDFADAADDκ CFFBADAAFADFADBDB BFFBAD BBκ CFADBFABFFBDDDFADAD κdbadfaaffafab DFAEDFDDAB DBABBBABDDABDDAAD EDFBBFADADA BAAABDADFABCAD F A F BA DFADA FAAA D κ DADAD DFFABFFFFD BBDFADDAA DDFDAFDADADAAAFFAA

213 DDFDAFDADDBDBDFFDF DAADDAAFDD AAADFDBDFAABF DDBFDAFADF DADFFFFDDBBBFBAA FFBDEDFFADAAABA DDDFADDDCDFAD ABADDFADFDBDA DFDDAAADABBDFDADADF FA FAB A FDB D DBDA FAD A FDDFABA D FDDA B B D F D ADFABDFDFDADBDAAADFADA DκDFF CCABCCABDECBDCBDCCCABCECBD BCDCCD EFFFFFDDFDCDFCDACF FFFFCCFCFDFCFFDFFFFFDFFF DCFFDCDDDFCFDCCDEFF DDEFFCFFFFDDFCFFCDDF DDFFFFFCFFDCCFDDCFCDCF DCFDCFFFFDFDCFCEFDDFFDCFEFFFF FFFDCFFDCCFFDCFEFFCDFFEFD FFDFFDDFFFFFFECECCF FFDFCFF

214 DADAAFDADADABD DFFBDDDADDABFFABD DκAADADFABBADAFABF FBDADBFDFAADDFFAB AADADFADADADFABDAκ BBκ FFBDDFBADAA DFADADCBDADDADADBFD DFADA D κ D D D F DB FB AD ADAADAADADDFFDDFAB ADDFAABBAB κcfddab ABDBFBABBBDDDADFADA BABABDAD CCCCBDDABCEDCCDCDCCEDBD FDFFFFCFFFDFFCDDFFF FDDDCDFFDFFCFDEFFFF CFDFCFFDCFFFCCF FCDEF

215 CDBDABCDEADABCEDBDCD FFFDCFFFFFCFDCFDFFCDCDF DCFDFFFCFDCCCFFFF FCDFCFDFFFCDDFDCF F EF F C F F F C B D F D D F D F FF C F F F D F DCFCFDDEFFCFF F DFEFFF DFFBDBAADAADA ADADAAADABABAB ADFADAADDAA BAB AB A D D BAB AB BFA BFBA D B F BA AB D D A D CBFDAFADFABCD DDBDADFDAFDAAADA BD B DAA FAB D BDA B F BAADABADABABDAFFAAAFD DDAADDAABDFBBD BBDADDBDABDABDDBAAA ABADADBFDADBFFABDFDA

216 F ADA A D DA D DD BADA B F BFAFFBDCBADAAB DDDFDBADAABADAADABD AA A AB D A D AA AB BEDDADADAAF ADAADDAAABAABB ADADADAAADFABDADA ADBEDABDAADADBABAA F DC DF ADA A A BA BFDADFADAABADD FDC DABABDFDDFABFBAADADFADκ FDADDDFADCFDDBDBBF FBFADA BAFA DFDA D DF F ADFAFDFFAFAFDADA BAADAFABABFABFDFADADA FDCDDDDBBF AAAADADADDDDAB BDAAFDAADABD ADFABDADDAFBFABDFDAD CFBFBAABDDDFDDFD FDBFCDDDADADF BFABDAFDFADADDAAB ABDBFADADACDFAAD AAFBFABDFADADADADA ADAAABADFADDFADFADA ABFDADAFαAβDBDDAAA DAαAβAADDAFA ABDFDDADDFDDCADAD DADDADDC α A β B A BDA FDA BAFAB D DFA BFABABDAFDDADDF

217 CDDDCADADDADFFABDA ABFDADAαAβAADDAFAA F A D DA AB FDADA A BBDA DFADAFADDκDFDABDBFα A βbddfabfabfdfabd DD ADA A D DB FAA DAAB D DAAB D BFABDFDFDFADBDBFADAαAβ BDDDDFAADAFDADFBDCA DBADABDFADADDFADDA FAADADDFA DFDDFABDFAFADADDAD AFDD CACDABCBDCDBDABCDCDDDABAECC AFFFDCFFFFFDFDFCDF EFDCFFFFFFFFFDFC CFDFFCFFFDFFFDCD FFFFCDFCFDFCFFCDFFFFFCFCCFCF DFFCDFCDDCFDFDDFC DDFDCFEFFCFFFCBF DCCEFFDCFFDCFDDCFFαF βfdcfαf β DDCFCDDCFDFFDCFCCDC FDCFCDDD FCDFF DDFCECFFDDFDDCFEFDDEFDCDF DCCECFCCECFFDCDFFFDDCFEFD DFFDDFFFCECFDCFFCDFCFDFFF FCDFCFDFDDFFFDFD DFF

218 CBADAADAADADDFDFDDFAB DDFADDFADDκDBABFAD ADADADABAADA FADFDDFABDFADDFADDκBF BFA F D D FBFADA α A β B CD BBDDAFFABADAADFB ADAFBDABDAADADADFDDFABDFAD D FAD D κ D F A D FD D DADAABADADADABDABA DDDBFABADADADFADAF FFDDDABBABBDADDAADADAD DADDAD DABABDFDDFABFADADDFA DκDADADDFADAABBABκ CFDDDFFAEFF FDAAFABDFDBAEF AFBABFADFABDFFAFAκFFA DDFDFDADADABFAF ADADCADADBAADABDA DDAABFADDADFADADFADA ABDAκDFDFADADAD AADAABDFAADAAA BBAB κdadadaab DFAADAAFADADBFBDB DFABDABDABDAFDD ADDFAFAAFADDADAAA DDADAADADAFADABDDA FAFFDDBABBBBFBADADDA ADADADFAFDDADDFAABBA BDDDFDADADAFADA F DABDA FDA AADFA D DFA BFA

219 DFADADκDBFBFBA ADADADAAADBADAA DFAA FAA A A BBA B A κ FAA F BADA ADA DF ADA D AFBFBADADDABDABD DADDFADDFDDFABDFADADFAA BDAκ CDDABCAEADCCCBBDCBκCDCCCBD EDBDCDBCCE AFFFDDCFFFFDCDκADF FDCDFFFDEFFCFFFFFDCFD FDCDFDFCFFDFC CFDFFFDFFCFFCFDCFFDCF DCFFCFFFDDCFDFCFFFFF DCFFDCFDFCFDFFFDFCFF FFDCFCFF C BA D DFADA A BBABκBAAADADADD DADDABADFBDAAADAAADDFADA DAFDDFBABDFDDFABADDFADA BAADADDFFBDAFBFAF ADADBFDFAADADADDFA FDFAABBAB κda AFDAFBADFADAADF DDAADADAFDDDFADADFADA ABBABκDABDFF

220 AADA ABD D DABB CACDABCB AFFFD FDCDFF FDCDF CFDFFFD DCFFCFFFD DCFFDC FFDCFCFF FCDF DDFCECFF DCCECFC CDCDDFC DFCFDFFFFC CD DA DD DDFDF AADAADFA ADADADDAA BABκA BDCDBDABCDCDDDAB DCFFFFDCDκA FDEFFCFFF DFCFFDF FFCFFCF DCFDFCF FDFCFDFFF DDFDDCFEFD CECFFDCDFFFD FFκFFFCECF DFCFDFC BABFADADA FADFAA FADA BADA CACBκ DF FFDCFD C DCFFDCF FFFF DFCFF F DEFDCDF FDF DCFFC DFDF DA ABBA

221 B κad BADFBDA ADDFAA DFDFD DCDC FCFFCDCFF DBFCBDC FCFDFCFDC FFFCCD DFFD DDFF FEFFFFD F F CDDA BFDDFADA DBADA DADAF BFBAABA BDADAA AA κdd DADDA ABDA DFBFB FAABA BBDD AAAADAD BDAκDF DDAD CDDCACDCCDCDCC FFFCFFDCF FFFDF CFEFDFDD CCFFFCDDCDFFFF FCFCDDCFFFCFF DFDFκFCFCFF FFCDCFFC BADAFADAD FFBDADDA FDFDκADADFA AFFADFA FBDDDFADAD ADABFAD ADAADAADA AABBADABDAD FADAAADA FFBDADFAABA κdaddad AADADC AADA FF DADFDDFAB AAFBDAA CEDBD FFFFF CFD FC FDCCF FFDF FFCD DFDCF FADAD DAD BF ADFD κdbabbad DAD DD DFADAD ADDAD ADDFADA D BAA

222 B DDDABFBAADDAAD DA F FBD D FAD ADA D F D ABB D FDDA FD ADA DC B DFBDBFFFDADFAB DFDFDADABDDCB DAFABABDBDFDAFDA DADADBBFFADFDDA FD AB D D F FBD D DBDA BFBDCADCDDDDDA FFBDAAFDADBAA F FBD D D A DA D DA F FBDDFDDDDBA BADDADBDABFBDDFFDBD BADDCDA BDADAFDADDAFFBDDDA DCFFFBDDDDADFAA FBDDACDFADAAFAFA D A D ADFDA FBD AAA D AA FAADFFBDADDABDF BADAFFBDFDBADABDABAD FFBDDDADDABFDAD AFFBDAADDAFFBD BDDCABDADDD FDDCAA AD D DA AA F FBD D A DA D FAAAFDDFADADκADFAB DFF

223 CABCEADACAEDABCABCCE BCDCECBDCC FFFFFCFFFFCCFDCFFFFFDD CDFDDFDDCCFDFFF DFDCFFDCDDDFCFFCDEF FDDEFFCFFFFDDFCFFCDDF DDFFFFFDDCFFDDFDDFCFFAF DCCFFECECCFFFFFDCFEF DCDFFEFCDDCDFFFDFDCCFFF DFEFFFFDCFEFFFFCFFDCCF FFFFFEFFCFFDCCFFFD FFDFFDD EDDADBDDD CDADDDDFADCBA BADFAADDFABFDADFABDFBA FAFA A BAD BD DFA FA DFA ABDADABFBDADBFAAB D D DD A DFA FBD A D BFADABADFAAABABDDBD ADFBADAFDAFDAADADAA DADADFAAAAABFDF

224 DFA D AB A FAA BA A D D DFA ABDDDAAAABADDDFA FBDBDBDAAFABDBD BFDDCBDAADFA DFDABDFDFD ABADABDBADFAADDAABAAD DDFFDDDBADABFADFDD CDDAFDAADDAABAADAB DFDADDFDDFAABDA BABDDADFDFDFADDAABAAD ABDADDDDFAABDADADAB DDCABDABDAD DCDDDFAFBDADFAD BDADDAFDADD DDCADADADDAABABD FAFAFBADFDAFFFFD DFADDABDAAA DFFDADFA DFDDAFADDBADADFBDFDFD ADBADADADC FDBBDABABABABBD FDBFAAAAABDD FD A A F A FB D FDABFADDDAFBFAF ABDDDDAABDBDADD ABDCADFABDC DDFADADFDD ABDABBFA

225 C AFFFFDC DFCF FFFDCCFC CFFCDD FCBFFDC DCFCDFFE CDFDFFFD FEFFF FCDFFC FAAAD DFADADκ FDCA DCD ABDF FADAB DA FAADA ABCEADCDBCDA FFFFFDDFCD FDCCFD CDDDFCDFC FCDDFFEF CFF EFFFFCDF FEFEFF CDCDFFCDFDCD D DFADAABBAB DADCD ADFD BFADAB DBFDDF BDFBDA AFDDFABADDFADA BADFADADκ AA FD FFFD CFFCD FCFF FDFF FFFF FCCDDCDF κdfddfab DBABBDBD ABD B DFAA BD DABD DDC

226 CABCEAECBDCDBDABCDCD DCDBDCCAEADCCCECBDCCABCκ AFFFFDDCFFFFFCFDCFDFFCD CDFDDFDDFFDCDD FDDFFFDFFFFCFDC CCFFFFFCDFCFDFFFCDDFDC F EF F C F F F C B D F DFFFCFFFDCFCFDDE FFCFFDFEFFF FFFFDDCFFFFDCDκFFDCD F FF D EFF CFF F F D CDF D DFDDCCFDFFFDFF CFFCFDCFFDCFDCFFCFFFDDC FDFCFFCFCDFDDFFDCF DFCFDFFFDFCFFFFDCFCFF FBADAAAFD ABBFADDDAFFBDDAAADD DA F F F A AA A FADA D A DAFAFADDDAB ABDFDDAFADFABDFBADDA DABAFDFFDAADADFDD BADA ADA AB AB A DC A DAB B D D D F D AA DADAADAADFBADFBDADA DFADADκ FADDBADADFBFABDAF FBD A DA D DFA D κ D DA A FDADFFABDDFDFA

227 B B Κ DDABAADAADDA DAFDFDDAFDDDFADAD κdffbbfadabd FDDADFBCDD B ADADDBABBFADFDADFA FFDFAFADDFFFBDBD DBFFDFABABFADFABDFD FDAADFBAAAADFDAAB DDABAABABBBFADDB D A DF DAF DA A DA DAA A D AABBBDFDADFDADDDFDA BAFABDFFADDADBFFABDB AFDBDABDABABDFDFA DDFAADAFAADFBDAB DACDDADBDD D A D FBF ADA D AB D BDAADFABDFFAFAFDAFDFABDF AAABDAABAAAADA DABABDBFD ABDADADDDF DAABAFAB DFBFABAADADAF AFBAFAAABDF

228 CCCCBDDABCEDCCDDCDCEDBD FDFFFFCFFFDFFCDDFFF FDDDCDFFDFFCFDEFFF FFDFCFFFFDFFDCDCFFFD DFCFDFECFFFDFCFFDCFF FCCFFCDEF ADADABDABAFABBFD ADAFFBAADADD ADFDABDD A D A BAB B A B E D DA D ADADAFDABAFABDFDAA DFB D ADA B D A D DDAAFDBFAFBDDADF DDABDDAABAFABDD ADABDFADAAADD A A D F D AB D A DA D FB A D D DF A DA A BAFABEDDDDFDDFDA FDABAFABDF DABAFABDFBDD DDDABDAFAFBD AFFDDBABBABDAADD FAAFDDFFFADAAAD ADAABBDDABDD DAD

229 CDBDABCDEADABCD AFFFDDCFFFFDFFFFCF DCFDFFCDCDFDDFCFFDFF FFFFFCFDCCCFFFF FCDFCFDFFFCDDFDCF DCCFCFFCDF FFFFDCFFFFFCFDCFDFFCDCDF DDDFFDFFFFFFCF DCCCFFFFFCDFCFDFFFCDD FFDCFFCFCFFCDF D BFA ADA D DC BDA DABADAFBBBDADAFFBDDF DAFDBDFDDAFDDADE F A F BAB ADFAB DF F FAFA FDA F AB BBAAAABADBDFDAFDA ADBDFADFABDFAFADA BFFDBAABDFFA AFDBBFADDDABFBADD D AB D FFA D F FBD A D DBDA BFBDBDAFDBD DAFDADBAAFFBDBADA A D DD DF DAF DAA A F D DDDFDAFFDDADDDADDAF AB DD ADA F FBD DD F DADBDBFAADFADFFDDDABAB

230 BFBABFAAADADEDBDAADA AABBBDCDFA FFBDABFADAADABDF DADDABDADBADDAA DDFBDBDBAABABDFDF AADAFFFBDDD A D A FD BA F FBD D DAAFABDFDD DBDADDFAAABDFFBDBA ABABBFADDFADFABDFFAFADCD FA DB BDAADA FDB D D DBDA BFBDADFBDFD CADABCCCD FFFFFCFFFFCCFDCFFFFFDD CDF D C CFD F FF D F DCFFDCFCFDDEFFC FFFFDDFCFFCDDFDDFFFFFCFFFFF FDDDCFCDCFDCFDCFFFFDFDCF CEFDDFFDCFEFFFFFFFDCFFFDFF DCFFDCFEFFCDFFEFDFFDF FDD

231 BBκ D A D FADAB DBDA BFBD B D D ADADAFAAFAABFAA FAAFBBADADFDDABD ADFADFDABBDAFFDFD D B ADA D D BAB DDB E BF F BFADAABABBDBDFDCBA ADAAFAABFDADFADFD FDAABDADDBDAABDA DABADBBDADAAB A BAB ADFAB D F AB A A BAB BFABFDAFDAAAFBFABDF DDDDFDABFFABDA DABDABFABDDAFDAAA DFBFABDFFAAABFDAADA D AD DF CD FA D D D F BFAA D A FDD AD DF BDAFDFDADAADFA DF AB D D A D A BDA FDD F BFA AB FDADA F DFAB α A β B C F D BF A D A D D B ADFAFABDFαAβABFAAADFAD AFDBFAAADFADFBDADADAD AFDDADDFFDAFDDADDF αaβdafdbdbada FA D A FDD AD DF F DB BDA ADAAAFABFDADFABAD

232 CDBDCDCDCACBCEABCCBEECBDCDBC AFFFFDCFFFFFDFDFCDF DDFCFFFFFDFCCFD FFCFFFDFFFDCDFFF FCDFCFDFCFFCDFFFFFCFCCFCFDFF C D F CD DCF D F D D F C DD F DC DC F F DC CE FFDCFFDCFDDCFFαFβFDCFαFβDDCF CDDCFDFDCFCFDC FCDDDFFFDCCDF F FFFFFCFFFFCCFDCFFFFFDD CDFDDFCFFCCFDFFF DFDCFFDCFCFDCCDEF FDDEFFCFFFFDDFCFFCDDF DDFFFFFFFECECCFDFCFD CDFAAADFADDFFBADAFDDD FDDA F F D FD D D B FFABDADDBDADAD ABEDFADBADD FADADAFDDADDFDDA AADFADFCDFADDA B D F A AA FDB D DBDA BFBDDDDFFBDDABA ABDAFDBDDBDABFBDBDD

233 DFDDAFDDADABBDDAD DDDFDAFADAAAA FADFDFDDAAADBFDDA FDDFDDABBD DAAFDDADDFFDBDA DFDDADDBDABFBDDBDA FDA DFDDAFDDDFADADκ FDCBDFABAAADDFADAA ED F D D A D A D BDA D D ADFAABBAB κcadad FDFDFADADFAABBAB DBDABBDAFDA BADAFAFDAFDDDFADκDF FDAADADADAAAAD BADAFDAADFAAFAADκ D CDDCDBDABBAEADCCCECBDCCABCκ BCCBEECBDCDBC AFFFFDDCFFFFDCDκADF FDCDFFFDEFFCFFFFFDCFD FDCDFFC CFDFFFDFFCFFCFDCFF DCFDCFFCFFFDDCFDFCFF FFFDCFFDCFDFCFDFFFDF FCFFCFCFFDCFCFFFFCCFFCCFCCFCFFF

234 FBADABAADABDBADAAB BDAABDFDBDAFDD FFBDAFBFADDFADBAAD FDFDκFDADADAFDDADDFF A FD D FAA FA DDA BAB BFBA DFB ADADBDABFDBADFADADκ FDDDADD FADDDDAAFDADFAAB FAEDFA

235 B

236 D AB D A FBB F DFA FB D DA A ADA BAB ADDA CD BBDAADDDFDFADAFAAADκA DAFAFBABFDDBDAAADDAF AFBFDBABFBABFDBFDDFADA FAA D D D D D A D D A ABDA E FD DA AA AA BF BFDBBDBBDADκDAABD DAFDFDAADDDEBAA BDBAFBBFDDFADAκ DFDDADDABADEDF DDADDFADABFBADDDBDA BFBDFDFDFDAADDD DFFBDBDDAAFAA FDDFABFDFFFDAAADFAD BDAADFDFDDAFDDABDFDDF DAAABAAFDDDFADκFDD BFDBDAAFDF FFADDABADAAADB DFADFADADκDDDAAB DDADADDAFFBDADBFD DFADA FAA FAD ADA D A AAA FBBDFDDFABDFAAFDDDADFA ABBAB κbadaabdaab BADDBADADBBDDDADADD F AD A A FDD DFA F A D ADFAABBABκ BADAAFAADAADF F FBD A D DA D D D DA D BDA BF A D A D A BFD DFADABADκFD

237 B B κ A B F BA D AB D ADA D D CABBBAAABDAFDDBABD BDBADADDAADDADADA AADADCDDADADAF FDDFDABDBABDAAB DADDDBAAFD BA FD ADA D AB BFA FDAAADFADDDκADADBAB DABABADA A ADAABABADABAFDD FADABDAADABAF ADAADDADADDADDA DFFDAAADFAFADA ABABBDADADD AFDAABABBDDDADADA DFADADBDA FDDDADADADAAD D D DA D DFA D DAA ADADADDADABDAFDADA DDFDABADCBAD BBDAADAD D D FDDFAB DFA D κ BADA AADABBBADAADFFADDD DFAABADDFADAFABDAκDADAA F B FDA AADFA D D

238 DFADADκDDFFADA FDDACBFAAAFADAABABB AA A BBκ DFADFADADκDDAFDF FDA AADFA D FAA DFADA BA AA BADFDABADAAB D D AB A BAB FAA D A D D BDA FAA ADA A DAFADADADABDFDDFABD ADADDADFDAFBDDDADAAAD ADDFADA A BBA B κ BDA ADADBADABFDDDDADFAFAAD κfadadaddbadadbda BDAADDFADAABDAκDADFAABD DAAADBADADDA BDADAADFDDFABDADFFBD DADDADADADDBABDFB DFADAFDFADDADADFDAFBD DDDADDBABDFBDFADDFFBD FAA D D A FDA AADA D DFADAADDκ B BADAADFAADADCAFFADFA DF B BFBA D ADA A ADDFA

239 FDFAABBABκDDA FFBDEDFBFBADADFBFDAADA BADA FBDA A D ADA A FDDFAB DFA F F DAA D BDA FDDFAB ADDFAABDAκFADDDA ADBDFAABκ D ABDA D AB D D C DA DADA ADA A ADA D FD AA DADA ADA DC ADFBDADADFDDAFADDABA B DADA DFADA D ADFA DA A BBABκBADADAAAFBFAABFAD DADADFDAABB AFDDADBDDFED DFDDAFADDCADADFAABκ DADDDADADDDA BDABADADAADADABD DAADDADDADADFDDFABDFAD ADFA A BBA B κ AA DADA ADADDADAAAD BADADADAD DA F BDA DA FDA DA BDA ADADDDDAADAD ABAAFAAAF BFF BADA DF BADA A DF ADABADADFDDFDFADADκ DADADFADABDA DAABFADADFDAFBDDADA DBAFADAAABBAD ADDDABDADAAF F D DFADA F D

240 ADA D D BAB F BFD ADFA DF ADADDDADADFADAD DFAAADFADAFDDABABBF FADAABDADADFBD BDAADADBDADABFAADAD ABF B FA FD A F BFDDDADADDADDAD CDFADAADADFAA ABDADADFAFADFF ADADAADAFBDFDAA ABDABADADAFDB DDADADDDFADAF DADAAABDFDFDA BA D A AB DB D ADA AA F ADA AB D FABA D D AB DAF DDBADAAABAFABDADFD AADADADADEDFB D A D BAB AB A DA A BA A D ADA AB ADA D BAB AB A D AAADAFFD DAABDFFDDADAD DFDAABAABF FDDFDFDAAD ADFDBDADADDADAD FADAFAFAAFABADA DAADADDAAABD AAAAFFADFFDFDA DFFCFDDAD

241 ABADAAAFDADDAAD ADA D ADA DC A A AB D BDADBADABFADDA DDAAABDAAADADDF DAFAAADBDABDDD B BA D DADA ADA D BFFADADABDABCADADA DFDADADAD BDAABFDADABBDDDAD EBFFABADAFBFBADA A D D AB AB BDA A BAAA AADDFDDDAAAB ABDFBAAAADAADAAB CDDBADDAADDADFABD FFAFAFDAAFDADA FBAFABAFDAFBDD AAADFABABADABADAADA BFAABDDADAF DAADADBA BDFAAFDFDDA FDFDADDADD DDADADFDADAD FDDBDDAABADADABCF DFDFDADAADFD FDDFAAABDBABBFDDBDDA EDDADFADDADADAD DABDAAFABDABDAD FA DAF ADA FD A BA A DFAAFBDDB FDDDAFDDADDADD ADADADBABBFABF ADADADEDFDDFFAADA

242 A FB A ADA AB D AB A BFA DA D D A DC ED FD D AB D DDBDFADFDDFD ADAADFADFFDAD DFADFABAABFDAD ADFABADFFDDA ADAFAFAA DDDF A B D D AA AF DABDFA A DADFAAADDFDABDDDAF A DA D DBDA FD ADA FD AAADAADADDAFD FABAABABADDDA ABDDFADBDDDAFDAEDAF DDAFDADDABADFBA ADFADFFDFBBDFDAB DA BBD A F AB A FAAABABABFFAFDA CBAADDAAFBDADAD DAFAAAADADA BADBFAABBADAFAB DDADAFAFBAFAB DDADADAAABFDADDA BFDADFDFDAAAD B B κ DABADADCDAADDFAA BBABκBDADDAADDAF

243 FBDADADAFDADFAFAAD κbadaababfbbadaaffbdafa ADADAADFDDFABDFADADFAA BDAκAFFABADA DDDABFADκABDADA DADADBADADFBFDDAFADA DFADADκFDDFAD B Bκ EDDFADDAADκDFAD DFADAFADADFDAFBDκA DAAFDFBFAADADFDDA F D DBDA BFBD D BDA FBFAADFADADABADAD DDABBADFAADFADAFABDA ADADDDBBDBDDAB BDADFDDFABBAADAADDFAABBA B κafddfabdfafbad BAADDFADAFA FFFDDADDFADAA DA BA BFDA D DA A F FBD DFADA D κ D D DDA D BAB FDB A D FADAFAAAABADABBABD FDDA FBD D A D A F FDB A D FAD BADA FDD D ADDFADAA BBA B κ DFB DA DA FDA D DBF FBADBD FA A D D BF D A D FADAADADFADADκFA EBAABFAABDFDAADADA DFDDAFADDADADADFDDFABADDFA

244 ABDAκFBADFAE CDADDDDDDDDAAD BADAFBAAFFBADFAFFBADFFD DFADA D κ A D FAD A A F AA BDA ADA D AA DFADA D κ D FADADAADADFADAA BBABκ AFFDDADADDDFADD B DAADADFDADDADDFADAD ADFADAABBABκΒ FABA ADADDADDADAFD DDADAADFADADDDA DDADADDDFAABDA ADA F DA FFD ADA D D DFADADκADBABABADADBADA BFDDADFDAADDADDAD DDADFFDBF DAABBAADADADDFADAABDA κ DA ADA D A FDD DFFDA A D DADDADAFDBBA DDADFADAADFADA CDBABABDAABABBAB κaaadfaadfκadadfadf EADDDAAFADDCAAD ADDADFFDFAADFAABDADDFBD DAFDBDFFBDDADA ADFA D DF κ A FA A D D D F DADABADADDFADADFADA A BBA B κ D BDA D A D

245 ADDFADA F A D D AB D DD A BADADCAD B Bκ ADADDFDADFBDFDDFABDFAD κafdaadadafbdda FAADABADAFDAABDBF BFADDABABDD D A D D A D D FDDAFDAAFAAFD FDABABDDBABDBD DD ADADCAFDDDFADκFDFA ADAFDFDDFDFAAFDADA DDADDDCADADADAAAD ADAAABABFDAF DA FD A A A FB D A DFDBADDBDDAAA BAFABDFDADAABDDAFABDA DDDFDDCDBDADDDDAA FD A FD B D D A DAFA ABDAABBABBDDκAFD ABABBAFABDABCADBABABADDADF FFDDDAAFADFFAD FDAADABCFAFA FADADDFADADADAA BADABDAADAABFDFAF DDBDABFBDEDDADDDFDD FD A BD DA BDA AA F FD A DDDFDDFADADκAF FDFFDFADDAFDADFA

246 DFDDFDDABABFADABDA AAAAAABAAF FDABDDFADAFDDF D FD D FD A BD A FF A D DADFADAFDDDADAD ADA D D BA BAB DDB AADBBDDAAABDADBFBA ADDABAFDAAFBDD DABADBFABFBA FDADABABBA AB AB FB A A ADBDFDA AADDFFDDAD A BADAFAADFADADκDD ADAFBADFFDAADAADABABDA DBFADDADAADAC BFADBAAFADFADκAD κadafabffdfd DFADAFAAAABDD BFDADDAκFBFAA ABBDDκAAFDAAD DFAFDBFAADAD DFADA D κ DA F DB ADAB ABDA AA ADAB A D BA ADAA FDF A ABFDDFADAAAB BABBBDAAADFA D D F FAA DDA DA BF AABDFBDDAABDABD BADAADFAAFDADDF

247 B Bκ BADAADFADADCADBAA ADDADDBDDABDB BDAABDADCAAFDDDFAD κadadafdfaed AAFABDADABDDAD BD FA DA F BDA DA A DA D FAA D DA F FBD A FDADCBAAAAAFFBDD ADFAB EFBBDDBABDFADAD κbdaaaadaddfbda ADADDFADAABDAκADDAD ADDFDDADD DFADA D κ D FF DA D D D D A DAFADDFAEDFF ADDFADADADFABDAκDDC ADBADFDFDDDD A BA BFBA DDA BAB BDB DF DA FBDBADADFABDFDADD A D DA FDA A ABDA B A ADA A BDAFDDDFADFDFADDDAABBD BFDCFDABFDFADA DAABBFAADDDCDAADADADFA FDABκFFDADFDα BFAEDDADDDADDA AAFAFDADFDAAA DFBAADBDDFDAAAAFAADDF ADFA A BBA B κ DA A

248 DDFAABFAABBA B κdaadfad ADDFAADAABDADADDA DADDBBBBFDDFADAABDA DADDADEDDABDA DADFAAADFBBB AD DAFAADADADADFADAD κaaffddafad Bκ DADDAFADDA DAADFBABFBDEAAADDA FADDADCDAABDD BADADFADADκBADAADFF ADDAAADDADCDADFDDFAB ADFDDACDFADA ADADCDABADFDDFABF ADFEDFAADDDADAABFD BDAADADAABD E D BBD ADA DC A A A ABDA ABFAFADDADDABD ADBAFDAAFADAAAAA FAADADDA CDFDDFABDAADADCAFADDA DD DA FDA AADFA D D DA A DFBADA D DA D ADA B BADA ADFADADκDDCAB FFAA F B A D D DA B

249 BABABABDFFABADDAD EADDAFABDAD FADDFBADADDDABABFDBDFFBDA DDDCADDFBABFADAD FFBDFADFADDFBADAD DDADDFADAABDAκDBABBAB AABBDBFDAFBDAD DFBADAAADADFADDFDDFABADDFAA BBA B κ BF A BAB BDB DA DAD A ADDADDFADADκBADAA BDAFDDFAFFBD ADADCBADDAFDD FFBDDDADDABFD FDBABFADEDAABDA DFDBABCAAFDBADDDFDDA DFFBDDBABBADFDBADA DAABFBDCAAFDDD DAFFBDDADBBAFAABFDAB DDDBABAABBAABDBBABDFDB FDAFCADBABBFAADBA DFDBAADADFDDADCDF FBD D D D FDDA AB D FA DF FDAAADFADDDAADADAD ADFADFDDADAADADCFAA ADADADFAAFAABADDDD

250 FFBDFABADDFDB C A A ABAB A A D FDDA D D F FBD DDADDABABDFBDDAF FBDDAADDDBDAABD BBABDABADDABADAD BDBDFFADDADDDAFFBD DADDAAADAAFAAAFDAA BADAADDADDADACA ADFBBDADA A BADA FA B BFA A DA D A F FBDADADCBAABDABADBD DAADDAFFBDAADDADA DFDBBDADFFAABDB BAAADADAFFBDADADA AB D A FFDA AA D F FBDADDADDADDAA FBADFDAAAFF BBAAADDADABFDDDA FFBDAAFAD DDADDDDAFFBDDBABB FAEDDADAFDDADA DDADDDAFFBDED ADABAFDDFFBDD DADADDADADDAAA FFBDDFAAFDFDFFFF DBDFDABDCAD DADDADDDABDDD

251 DDDDAFFBDD FADADDADDADDAD BABABBFADADADDA DAFDFDADDDAFFBD AD A D F D DA F FBD DA BFD D DA D A D DF DA DAFFDFAABA BADFFFBDADEADF A ADA DC D DABDA D DA F FBD D A DFADA D DA D AA AFADAAFAADADAA BBDDBFFBDDA FAAAAAAADDAD DADFAAADBDAABFAF FBDADDFDAAFFBDDA AADAFFDDBABBBDAD BBκ AADDDBFDADADCDAB DDAFFBDDAAAABF ADADBFDFDDFABFDBDAFBD AAADFDADBDADADBF DFA BD A BA D F FBD D A A FFBDFAFAFBD DA A BA DA BADA BDA B F FBD BADADBFDDADDFADAABBABκ A D BF F FBD FF

252 FF D BAB B ADA D DFADA BFA D ADFA BDA κ A D F FBD D ADADFADADADFABDAADD DABADFBFAADADDAB FDFDDADDFFBDDDFADFAABκ DFAABADFFAAFDFADAA BBABκBADABDAFFBDAAD F FBD A D D DFADA D κ DAAADADAFADFDA ABDFFFBDDFADAAA FADEDFBDADFAAADAAB DFFBDAAFBDAFA DAD CA F FBD A DFA BA FAD FFDFFADADDFABAFDABFD DBDDAFDADADBFFABAFDFABBDFAED FD F FBD D F DA D A A DFA DA F AB A D ADABAAABADFAFAAD EA F FBD BADA FDAA D FAADADBDAF BFABDBBFFBDFFBDDAA BAB BFA F AFA ADFA DFA FAA D DF ADFA BD DFA ADFA A BABABDADADADFAD DDDABFFBDDA DBFDDADFADAABDAκD

253 ADDFADAADAFABBA BDBDABABABBFDAEBADAA ABADBBFFBDADE FBFDBDFBFDAABAD F FBD F FBD D DA F D FA D D BDADBFDADAFBADADADBFDADA BFDA AFFBDAAAFDEDFD FFBDDDABABABADADDF BDDADFFBDFFAADDFD EDAD DDAFFBDFFBDDAD FDBDDDDDDABBFDAFC AADADDFBBFD BADFDDADBDADADFFBDDA AA DB FA ADA A A ABFFBDFAADADABD CFDADDFDADDA DFDFFFDDBBABABBADDAFDDD ADABDADBFBDABDFADFDB FDDABDBABDFADFD FAABFDFBADDAFFBD DADABDDDADFAABDADFAF BFDADDAAFAFFBDD ADAADADBDABDDADA ADFAAFDAFFBDD DADDABADDFAFFBD DADBAFFBDAABAD FFABD

254 A B DBFFBDDBADAADABAD BFFAFABDEDFFDF FBDABABDAFABABDFADFABA DAFADFDBADDFABDA FFDADDBFDADFADAD κddbbdfadabdda ADAFFBDDF ADDADFABBDFFF FFBDAAAAADF DAADFABDDFDADABDABADA AB CADADBAABFAFFBDDF FA FAB D ED BA A DD FF D AB D D F A F ADB D D D A FAA BAB A DDDDADAFFBDDFA BFFADFADFABE DAFDAFFFBDFDADBAB DDBDDDFFAABDABDBDA FADBDAADADED FDDDDAFAADDDAAAAFBDD FADFFADDDABF DABEDFFDFDDFABDAFFBDDBAB BDFDDADFABDBDAED BABDDBADDADFFDDADAFBADFA DFFBDBADBACDFADFFDDAA DACADAAAFBDADAAAA D

255 DDDDDFADBDAFAA BABADDDFD F ADFAB DA D AB D AA DA A D D DABADDAABFFFADB DADADDADDDAADDA A D CADA DA A F FBD F F C A AAABAFABDFAFADDAA BFDBFFFBDDFADABDD FFFBDAFADBAAD FBABDADEDDFF FBDABDABABABDDABADADFF FDAFFFBDADBADAAFD ADDADDDAADDADEDABAAAB DDDFFFBDDADDD DDADAADEDAAFBAD F B DAADA A D A F BADA BADFFFBDFFDBDBDABA AAADAFADFABDDF DADDADFABAAFFBDDD ED AA D D A D BF FFA D D AABDA D BF F FBD D DABFFABDADBAAAA FDFFFBDAFD FADFABDAFFDBAABBA FAFFBDAFFBAFFBD ABDFADFABFFABDEDDF BFDFBFDBFFFBDDDF DFAFABD DBFAAFFABDA F ADFAB A D BF DA AB D D DAFDFDDAFDDEDADA DDDFBAAFDAABA

256 ABADDBBABBFFADDD FFDDADEBAFFADADD FDAFDDAFFBDBA DA AB D FDDFAB BA ADA D F FBDBADADFBBDDFD D AFBFDBADFBFFFBDAA BADFFABDAAAFDFDDFAB BADDADDFFBDB DFADFAB ABAABDAABDABDD A FA BA BFD DFADA D κ FDDABBADAAFDDADFBC DDFDDFABBDFDDAFDDA FDAAADFADDABABDFBABF D BF FF A D FB D FDDA AAFADDBBFADAD AADADFADFADCD FADDBFFBDDDBDD FADAFABFAFADF FBD DDA D D BAB B D BA BF FFBDDABAFADADA A D F A D BA DDA AB BABBBAB DDDDDFDFADADAABABBBAB

257 DDDDDDFAFAADBF DBDA D D BDA B D F DAFDBDADAADBAAAADA DDFADADFFBDDAAFAAD DDAFDBDADDDA FFFFBDDFAAD AAADFADDFFFDAADAD κ BBκ DDABBABBADDBADDFADADκFDDD FDDDDFADADDAFADDABDDA ADFADADABDAAFDAAA DADAADFADDA D AB D DFADA A BBA B κ D BDADDFDEDFBADADA FDFADFDABBDAFFCDFA ABFDADAαA β BFBFAAD DFDDFDDADDABFBAABD DAADDFDDDFαAβDBF DADDBBBDFBFADA ABADABABD BFDAADFABDDFDDADFA ADFDA DA BF F ADFA DF AB FDADA FDABFDBFDDFADAFD DADDBABBFDFADADFDD F D DD DD D A D CADADBFDDADFDDAD DBDABFBD DADBDABFBDD FFDADDFDDDDBF

258 FFDBDBFADADDBDABFBD DAFFDAADFADAD κddaddabfdbfdbadfb BFDDFADADDDADADDFDDFABDADBDA BFBDBDDAAFDADADFABDFDBDA ADABFDBADDADDFADκ DBABFBDDDFDAAADFAAB D BA FDA AADFA D D FF ADAADADBDAFDFAD ADAFBADADABDABDBADA ABBDABDFDBD AABFDFDFFAFADAFAD DDDBFDAAADFA FADAAADFDDADFDA AB D A D D DB D FD D A A DABFDAADA DABDFA BA A FEE FAFFFAAF AAA FA AA AB F A D EEDFADFDEEADA F D DF ADA AB AB A A ABFADADDADAD DDADBBDAFDAFAA ADADDBDADDAFAA ADFDABFDDFDBAFA FDAAADFADADDA DABADDFADDBADAAD DAABD

259 DFABDDABDAA ABABDABDDFAFDFADκFD F FDA AADFA A D FAA FADADDFDDDAFAA DAFDFADBADAADFDABDCDFA ADA D A A DFADA κ A FAA DADADADAFDA B CBDAADADBADADDADFA DκDBDBDDDFBFDFADAD AAAABABABDAFAAAB ADAABDAFDDDFADκFDAADA DADBFDFAADFADADFBFADAAB BαAβ, DA,DDAFDFD DDDCAADFADABADADADA AADABFAABFAABDABDAD FDAADADDADDDFFDA DDFAFDFADABBAB BDFDFADADκADAD DABFDDFADADκADAFF DDADAADADAAADFADF AFDDADFDDAFDDBDABFBD DAADDFAFABDADDBDABFBD DABAFDAB FAAADFADDFADFAFAFAADFA FADBBABABADBFFDABF DADAAADFAABDABFD FDAFAAADFADAFDDED FD D FAA ADFAFADA A DA DA AB A FAA D D DAD BF A FD A A

260 FADFADFDFFADADADBD DDAAABDAFFFDAABABBAB ABFDADBFDBADAADDB ADFAABAAABDAD ABABADADFDADAD DFDAABABFADDADFD ADADDFDFABFDDAADA DABCκDDFDDFADAFDκDAA FDDAABDA BFDDAFDAAADFAADAD A A BADA ADFA BA DF BDA F FDA DAF DF ADA A DA DABDABBABABDBDA BADADFAAADADADAD D FA FD D F D BFBA ADADAADFADADκAF BABFBDADABABDADAFA DBDAFAAADACBFABBAA A FD DDA BDA ADADBFDAAADEDFAAAA ADAADADD EDAAADDABBD ABDADADADFADAD κβ

261 DABAFDDAABDA AADADADFBADFADADκD D BADA FA DA B DA DADA ADADDDFAA ADDAFFBADADDABA ABFDADADDFDF AB A A F FA DF F A FFDAABADAFDDDBABAB DDADDAADDF ADAFAFADA D ABF A D F ADADDAD CFFAADDDDABDA FADκAFADBA ABDADADFADADκDDABF DADA ADA D D A ADADDABDADFADADκA FAAFADFAABADBFA AADADDBDABFAA ADADDDDAAD D FA A A B D ADADDBFFFADA ADAFD A A F D A A ADADAFAAAADA BBADDAADADACAFFD ADAADAABDFDAA F CD FA A A D ADA DA D ADADADBADAADADA DFADADκFDFADADAABDA CDDDDAFDFADA DκDADDFAD

262 κdadaadaabadfad κadaaadbdebfd BFDBDABDADABDABADADFA F F DA D A DFADA FDA D BADAADADADDAD ABFDFFADAADFDD BAAADADADκAD DAFAFAFAAFAAFA DAADD A FADADAAAFB DDABDDFADADAFDDFBF AADDABFADFA DFDDFADADFBFDADA FDFABDAADA DADFDDFABDFADκDDADADAF D FDD BF AB D A D A F AA ABFDAAFAA ADA D D D D D D C A A FDD BFDBDBFABDADAD ABDBDADAAB FABBBDFADFDBABAB ADDDFDAADADABAABCDFA DFAADFDBABABADDD FDADDAADADAB DBADBDFAAADA FADAAAADADADB DAFA FA FAA ADA AF E FDDBFAABFBADA

263 DCDABDBAB A D A F BFA AB B C AFADADDκκαA BADDDADDADAA DDDDBFAABABAFDDDF DAFAFDADDDFDB DAABABABFAADDABADAADA DDADADAAABAFFDDA AAFDBDAADADAAAD ADB A DFABAADBDADAD DAABDAFADDFFA DA A DDA D FBA A FDA ADA D FDDFAB ADFA A D ABD A DDFAD DAABAFAAADADABAD ABABBDADDADAAD FAADFFDBAAAABDAA DFDFDDDAADCBFA DBABABABDDDADABDA AABDDDDADADDFDAD DABDFADDADBABAB DADDADFFDFBFADADAD DAFAAAFADBAFAAADFAA FABFADBFCDDDABD BFDFABDAFFDADA BAADDABDAA ADADADDADFA BDFADAAABDABDA

264 DAFADADADFDD DADAFFDDBABABDFDDDA DADFDFADDFBAADADDAF FFADADFFAD DAADABFDAFAAAB DDADABABDFADFAB FDABADFABDBDAF FADFAADF A BA D D B FB BA D BDA ADADABAADADCBDA DABFBADADDADA DFDBCAAAAADAAADDA DAAAAFDADDAA F D F DA D A BFD D DA DA ADA BBDAABFDFDAFADFD AACAACDFADFDBA DA FA DA DFA DA D DA D DF DBDABDADDDADDFABDA DFDDADABFBDAFBADFBADAAA ADADCBADABDADFDDAFDDDA DDDDFBDBFFDA FDADFDBCADDDAD DA AA F D BDA FAA FDA D BAADFDFDDAFDD

265 DABDAABBA ADBADADDADFADAFAAAD κdddadadbdaaaddafa E FAB D DA D ADDA A D BAFFABAABFD F BFD DFADA D κ D D D ADABABDADABFAFFEBAA BDABBABFBFDABAD FAA DFADA D κ FD D D A DDA A DA B A A BFA DFADA D D FADDFADAFADDABDFD DDBDABFBDADFBDDBADA FAADFκEDFFBD F D A D D F A F FA BADA BB F FDA AADFA E DB F DA A BA DFADA D κ FDADDABDDDAD BABADDADBFBFA BAB D A D DA AA A BADA ADADADDAFD AFDA D ADA D DC AB D BADADFFBDDBA BADDADDFADADκBADA ADFFADAAFBDAADADADB DFADFADADκDDFADA ADA A BBB A D FDA A DFADA DFADDDAAFFBD ADABFDFAADFADAEDDDABDA DBADFFBDAADFADAFDFAD κ FD D D DA D A D AB

266 DADFADADκBFDFBA DFADADBFD CBACEACCDDABCACBκDCDD AFFFFDFDFκFECFDFFF FFFFCFFFCFCFCFDFFFECECCF DDFFFCDDFFCFFDEDDF DFFDDCDFκαFDCDDCFCFκF FFFCCFCDDFCFFCDF κdf EFFCDDFFDFDFDCCEFFCF DCDCDFCCDFFCECFFCFκFF CDDFC F CFCFC F DFC F CCD F FCF F CCDDFDCDFDCCFFDCFDCFFF FCFFCFDCFFFDCFDCDFFDFFDCF CFDFCCDEDFEFFCFDFFCFCF FFFFDCFDFCDFDCCCFFDFF DEDFCFFFFFFFFFFDCF FFCFFDFFFFFDCCFCFCFFCFCFC CFDFFFFCCDDFFCFD FDFκCFFFCFCDDF CDFFDFCFFFCDFFF DCFCFFDFFDCDCFDFFCFFF CFCF FDCF D F F DFF F DFF F CDDFCFFDFCDDFCFFCDF κfff FDFFCFFDCFCFFDFFFCFDFD FDDFDCDFDCCFDFDC ABADDDFDDFBDFADA DκDDDADDAD

267 BFDBFDAABDABABB DDADADABDAABA FFBDAABADFFABDF DBADAABABBABDDAABDAD BAAAFDDAADFABDABFD FDDADDFAD DDDDFBBFDBDAFAADADF DB C A DDDA A BADA ADA E D D AFDABDADADDADDADF FDAAABDADABDABFAFAA ADAADFADADκADDAA FDDAABDADABAFAAAB FAFFDADDCD ABDDADADBFBFDBA FABDDBADABDDFADADκA DADFDAADFA EDBBDBAAFBFD DFADADκADABDADABDA BF BFD A FD DA DADA BDA BA FAA FADDFDBFDDBDDD FDAABDDAFCBFD DFADADAADDAFDD

268

269 FECEFD FADDDDDFDFDAF FFEFEEFDFEFC DFADAADADAADDA FAFADFADDEAA FFAFEEF EADADDAA ADFAB FFAFEFA FFCDDDA ADFA FA A FD D AD AAFA DDAA DAFBFFFFDDFADAD FAADFADADAAAADDFADAA DAFFFFFFFDA FAFADADAFFE DD DCDDFADAD FDADAADFDAADDFADAADDA DCADFADAA FDAFFDADFDADFADFF DEFFCFA ADFDAADDFADAAADDA DAAADFA DAADDFADADA EFFEF F FF BF FDADDAAADAAFDFA BFDBFFFFF DAFADDAFDFDA DDADEDF CFDEFFEFFFF EAFAFDFACDDAAADDFAFAD FA FEEAFDFFF ADFAADAADDFADAFAA FDFADACADA BF EF C EADFAFFA DADDDFDFDFADADAADFD A EECEDAADF DAADAFFDDAAAFF DA DAADF AFAAADADA

270 EFDDFE DAFDAAAADFADAFFA FDFA EFEF ECDFADFDD ADFADAFFAFAD CFDDFDDD DA FEDEFFFF FDADAAAD FDAFFAD FADF AFA DAFDA DDA DD DFADA EDFA FDBFF DDDAFADADFAA DAAADFDAA DFEFADFDADA AADDDDDCADFAFAD DFBFEBFFDAD DFDAADDAEDFA FCFF ADFFDAADADFADAADDAAFA DDD F AEDA F CDFDA DADDFDFDADFAAFA FA D E F DA DAD FDA FAAFA AAFADAFDAAFFDFFAFEDFA AFFDA EDFBEEFFC DFFAFAFAFDDFF DD AEDA DFAFDDCFDA FDAAF EEDADAADFAD FAFEDF DDDFDA FFFDFFDAFAADDDAFAFA A FBED FFDADAFA DDAADADFFFED EAAFFADDDADA A FEEFAD DFDADAFADAFAD ADAEDFA

271 FFFEFFDAA DFDAFDDADAAD DFFFDD FEBAFAD FAADAEDDDFAAAEAFDADA F E F F BF DA D AADFDAAADDADDFAA F E A BF EDA F DADADAFDA FFAFEFF DEEFADDADD DCFAA ADFADAADAD FDADDFADFDFFDFA FDEFFFE ADFD FDDA D FD DFA ADFA D D A DADFADFEDF EFFDFDA ADDFADAADFFDFDAFAADDAEDFA EFCDAA DFDAADDFADAADDDFAFAFDAD DFADAEDFA EFEADADFADDFADA DFDADADADAAFAADFAA ADAAADA B FADFAFEDFA FEFEFEFEFF AFADDADAAADAA CEAEDF FFD FFEFADDDFFEF ADAADFDAAADFAF DFDADAA BBEFEFC EDFADAFFDFDAADDDA DFAFAD FEFA FDDDDDDDAFDFADDAA ADA FFCFEFFEFF AFDADAAFFA CFAD DAA FFEDAF EDAADADAFAA

272 DADFADAAFDDADAAA D FFFDCEF E DA FAA A DAA DA A D DAF FDFDA FFBEFADADD FAFADDFDAEDAFADFAE DFAD FEFDAFA DFAFDFA FEA DFDADDFADAFAAADAA DFFAFAD FEAAAADDDAF AFAAADA FE ADDEAFADFDFDF FFDFDF FDAAFD ADDAFDFA FEDF DADFAFDFA FEDFADFA DAFDADFADFFDAAFDAADA FEAEDDAADA DFFDFA DFAFDA DAFAADFDAADDAEDFA CBFD ADAFDADADFA FEDFA FADAFDFA DADADADFAAFFDA D B E E A FDAAADADFADADDF FEEFDADF DADAAAFADFAFDADAEDFA DFDFDAFDFDDA DDFDD CFEF ADDAFADCDA FDFAD FFFE DFAFAFAFAFDFDDFADA ADADAEDFA FFE EFDDFAFADFDFDFA

273 FEFFFFD ADFAAADFDADADDFADADAA ADFADDFAAFAD FFEFFCEFFAD DFFDADFAADADDFADAAC EFCAA DFADADDAADADAFFDADD DAADDDDDA CCFDAFD CDAAFEDFA FFFCFDFF FDADFADDFADAADFDAFA FAADADDFADADA EECD CEFEEDAADFAADAA DDADAFDDDAFDFA FEFAFFCD FDAADAAFDDFA DAAADFDADAAFDDAFDDDFDAADAF ADDDFDFAFD FCEEFD FDAADDAADAADAFDEDDEDFA FFFBBC DFDADADADADDDDDA FAEDFA EE DDDFADAFDFAAD BDBFFFFD FDAFDFAADAFDF A FEFECA DDDDADDAAFFDAFADFAFA DADDFADAEDFA ADADDDADAADA ADADADDFADAA FEFEE DFDADDFDAADFDFDF FADDFFDA BBFFEEDFE EFDADAAFADA ADADCCAADFAA EE CF D FAD A D FD A D A D A FDFA C F F F AD ADADFDAADADEDFA FFFEFEFFEF DDFFFAFAA BCD

274 DADFAD ADAAFFFADACAFFAFDAAA DA DDFF DCAAADADDADFADDFAAAAA DDADAFFDFA EEC ADDADFDAAFFDA DADDAEDDD DAAFFDADAF EFDEFF DA FA AD FA F DFADA D DA FFEEFAFB DAACADFAADAFAADA EDFA FFADFA D F D A DFDA A D AA DFADA DD D FADDDDADDA EFFDD DAAADFAFDDDDAAADADADF DADA DAFDADF DAFAFDFDDADADFAAAD F F AD ADA A ADAFAADA FAAFADAFDDDFAAEFA CFFEFFF BADFAADFAFAADADDFADAA ADFADFAAAADA FF B FF E E FADFAAADFDADFF DFADADCFAAAADAAD ADADFADA FEACD DDDAC FF A FADA DFDDADDFAAFFA FFFFDADEDF ADDDAFDFDFFFDAD EDFDDADADE FDFC FFFFADFDFDAD FDAAAAADADAADD EFDFC FFEFEAA ADE

275 FEFF ADFADDFADFADAAFAADADDFADAA DDDDDFFAFAAFAF EFEDCADAAC DADDDADAAAAF FFEFFEEDAEFE CEFFCDDAF FAD AFD DAF DDDDFDA DA C FDF DFFDFF FDF FEFDD AFAFADFDAFFAAFDA FAEDFA FFFFAC FDAADFAD FAFCDDDAD FDF FFEFFDADFDD AFAFEDFA FCEEEFD FADADAFAFA DDAAF FFEEFE FFFFAFAFA DFFCCF EDADFFCDDAAFADDDDA FDDDEDAFFDDF FDAADDADAEDFA DEFDFA EDFA FEFDFEF EADFAAAFDE DDDAEAADDA E A AFF DAADADFADFAADFDA DFADA CFFB DAFAADFADFDAF EDFA CFFEEF DFAFADAF EDF CECBFAFBF DFADDADA ADFDFDAAADDADDDDDFADAA CAAFAACFDA FDCCDCFFD CFFFFEDFF D F AF A FF F FAAF FA FDAAADFDAFDD

276 CFEEAEE FEDFDADAADD DADAFAFAADDEDFA CF A FF AD F DDADADFAFDDFADAA ADFDAFDA CEFEFDDFD ADADAAAD EBFDFFFFF EFECDAADADFD ADEDFA BEFFA DFDFDFFDFDD AADDFDA CECFFC EEEFDFAFAD ADDDFFDFADFDAAAAD D F D A A D ADDEDFA DDADFAFA D F D FB A BADFDAAFADBBDAFDF FEFCEFFF EEEEDDDFADAFADFDDADFA DFFDFFFADAFAFD FFFEE EAADAFAFADDDDADFA FEDF FEBCC ADAADADFDADEDFA FFDFD ADFADFAFDAAADAFDFAD DF A EDADDDFAFAFDDADDDFD FDDAEDFA FAAADAA DDAAFDDADFAAFADA FDDAF AADDFADADDDADDDDFDAA ADADDA FFA AFDFDDFDFDDDDADD DAAA EAEEFFBEEFB FADAFFADFADFACFFAADFD AFDF

277 EBDEFDEDEEBFBE DFDDAD DFFDD DFDAADDAADAA ADAADADDADDDADDA DFFDD DDAAFDDAAADACCDAD DADDDADDADA FFEBFFC A F FA D ADFA D D A DFADAFADFAADFDDA EDFA FDEFAEAFFD ADAADAADAFDA EFFFFED CDFADAADFAD FEEDAADAFAAADAD AFDAADFDAAAA E F F C C DDFADA D DFDDADFAFCFDAADA EDEFADAD AEDDDAFDFDADFDAFDFA EEFAFADFDADAAFD AADFDAADADAFDEDFA EEFDADDAAD ADDFDAD FFEEE FADADADFDAFD CADFADFAADADADADFAEDFA ECDEFE FCEDFDAD FADDDFADAADDDDDDDDAD FDDAAADA DAFADFD ADDDFDADAAA FAED AADAFADAAAAFDDAFDDDB F D F DDAAFADDDADADD ADFADDAEDFA E FD DAF DDD D DFDA DAFFDFDFDDADAFDFAFAFD FEF C E B D F AFAAEDFA FEFEBFD FDAFDFDAADAAADFAA DDFAAAADADA

278 FFEDFAFEE EEDDFAAFADADADAE DDDEDFA ADAAADFAFFD BFFEBFFF FFDFD FADAADADDFDFA FFDEDDADFADDA DAADA EFFDA DDFAFCDDFADAADADAAAD FDAFADEDFA FEFBDDAD FAFAADAADADAFDAAFEDFA FEDFAF DFDDDFADAAAADAD D FFFEF FFADAADADFD ADFDADADDFDA FFEFADAAA ADFAFAAEA FADEFDAD ADFAAAFFFCAAEDFA FEEDA AFCADAFADD FDADCDDDDFAD FEFF DFDAA ADDADDFAFAEDFA FFFFEF EEEFDDDDAFD AADAFDDAFAFDFA FEFAFFD DFFDAFDDAFDDDAEDFA FADDFFDA DFAFADFAFDA FDFED EADFADFAADDFDA FAD DFDFD ADACDADF FFFDFDAAD FDFDADD FEA DFDADFAAEDDFFDA DADA DFFDDF ADADADFDADFADAAA DD

279 FFDEAD AAADADAAADFDA EDFA FCAFCEC ADADFFDFDDFADFDA DFA FCDCFD ADFADFDADAFFADADAA DAADADAAAADA FCDFFEDAE BDDAADAEFFA ADFAFAAFAAFFAA FCFFECDFDB EDAFDEFADAD FAADFAFAD FFCADF DADFAFADADADFDFFDE DDDA FAADFADAADAEDD FDADDFDAFEDFA DEFABEDF DADADADADFAD DFFD CEDADDADA CDDDDFAADD DDDAADFAAADFDDADA BCFADADDADF DADFADFDAAAAFDDADD DDA F E D A DDDDAFDAEDFA FFDFB DFCAADFDADFAADFAADF AFADDAADFAADDDFADADFFDA FDBFB E D D F AF A D A FAAFDFADACAAADA EABFFFD DFFFDDD FADFADDAFA FFAEFDAADAACDD FA F D FA DAA A C D DADAFFDFAD FFFFEFCEFA D FA D F DADA DFDA A FADFDADFADDDFADADDF ADDDADFADAADA

280 FDFBDFDAE FFAFDFADFF DFDADAFDA FFBDADA DFDADADADAFDEDFA FAFFCEE DAFDFDDFD FADDEDFA EFFEECAADFADDA ADA D AFAD A A DA A BFBDFAD FFAFDDFDA FAFAADADAEF A EDFFFDEAEDE EFEEDADDDFADADACE DADDFDADAAD FFDAAAADDADFEDFA FFEEB DFDAFADFFA DAFFEDEFAADAFDAAFFDAF D FADAAADDDDFAAFD FADAFAACACDDDD FFDAD FFFDFFDFEDDE EFFAADAFDDFDA DA D DAA A D FA DD D DA FAF BFEBEEFFDF EFAFDDADFDAFADA AADADDFAD DFFEDADF DAAADAADFADDDFFD ADFDAADFADFADDAADFADDFADAFA D EBAEEAEDD FECEDADFDA DFADAAADDFAADDADAFEDFA EDEFBD EADDADDFFDDFADDFAAFF DFDDAFADFA AEDFEBF FDADDFDAAFAB FEFADDFFDDFAADA ADF DFFBD DADAEEAAAEEDAA D FBDFDFD FAFAADDA

281 FFED FDFFEADFADFAADDDE FDFADADDDEDFA F E FF F AADAAAAAA FDAADAAADFD D FEFFD DFAAFADFDADA DA FEEFADADF DFDAFAD FFFCEDD FFEAADADAD DDDFAFDDA DAADADFDDDAAFDAADFADADD DA AEBEEFAAD DFADAADFFEAFFADDFD A FFFCFFFF DFDFFDDAADADFDFDF DFFFDFBE DAEDAFA FDDAAFAAD FDBFFDD F D AD A CA D DDDFFADADAFDFBC FEDDDFEFAA FAFDFDA DFEF CDAFDDAAAAFA DAADCADFAA DDFFF DEFDADDAFDDA DDADAFDADAFDDADF FFDAFADFAAAD DAFDDABC FDFBDFBFCD EAAFADFD AFDDAF EADDDDFADAFAADA EFBAEFFBEDFD AADADFADAADFAACAFEDFAAF EDFA ADBEFDFDF FFFAFFADDFDA F DA DFDA DA C FA

282 FFECFFDAE FAAF FA FF DAA A DFDA FD DF EFFCFD AFDADFDAADDDFDD FDDFAFAADFADA DAAF DDDDAFDAADADDAF DDAFF DDFDADFF DFAF DFFFFEFDDFADA FDDFAADAADFAAADFDADD FEDFA DAFADDFADA AADDADADADDD EFEFF A E F FD D D AAAAFDFAFAFAA CEFFDFFEA BDADAF DDDADFDADAFAD FEFFFEBD FADADADDDFADAADFDAD F FEFFFEB DDDADADDDAA AADFDDADFADDFAADA FFFEBEFDFD ADFAADADAAAADFADDFAA A FFFFBDCADAD FDADFADADDAADDA DD EFAFBB CADFAAADDADAADADDFADADADFAADD ADAAADA FFBFDDDA FAFADADFADADDDFDAD ADFAFAADDDDDDA D D DFDA ADADDFADA FAADD DDFDAFA DADAADAAFFFAAEAA DFFD DFADDDFADAAFDFADDDA BFBD FAFDDAADD FAFF

283 FFEEFBF FDDFDDFADAADAFAA DAFDF FFFF FADFDAFAFADFA ADA FFFFF FFDFDAD AFAFAAFEDFA FFEA FDDFAAFADDADFA DADAAAAFAEDF FFFF FAAFFDAADDADDAEF FFFFFBD ACADAACAAADAA DFADADDDAFAADAB DCEEDADFD D EFF FDADAADAFADDFD FDAADDDAEDFA EFFEEFF FADFDDFDAADF DDADFDD EFDCFDEFDF FEEEDFADAADAF DADFDAAFFADDADADAFDDAFAFA AA DAFFD DFEDF FFE EAFAADDAAADAFAD AAAFAFFDDEDFA F AADAACCDF FFEFDAAFA DAAFFDAFEDDDA FEFEAFAFDAD FDADAEDFA FFBF D E DA C D FFDAFDFDDFAAFDAFDDA D DCDAAAF FFADAFDFADFAFAADA DDFAADFDAD FADDDDAAADFADA FFDFA BDFADDAADFADDA

284 BDDFE BEAFDDFDFDADA FADDFDADFDAA DFEEDADDEFEDF DEFBDFADDFADAAADDDAD DFDAADF EAFADFD DDADFAFDF EDDFDF D FA D AFA FDF FDA D F DDADDEDFFFDDA DFEDFA FDEFFEECCEFEF EECDAAFDFDDAA FDADFAADDDDFFDA FDDA FFE FECDFAADAAADAD AADDDDA CFCCFDEF FFCDFDDADFDAADFAF AFADFACDFDF DDFFFCDFD DFADD DD AD DA A D D ADDAAFADADDDA A F E FDA A ADAAAADA CDDFDFDDA FADADDDFDFAADA FBFCEBFEB C C E ADADADADA DDAAFA F B FF E ADFA FA D FD FDDA AADDAD FDA D DDDFADAF FBCEFFCA DDADADDAFAADF AADDAFFDDAFAA DAFFDD FDADAEDFA EBFCBFED DDFAFDADAFAFDFA EDCBBFAD AFDAADADADFADAAFFE ADFA EECBF FDFDDFADAADFADDFFDDA DADADDFADADA DDAFDAFAA ADD

285 FFFADFAADF DADADEAAFDA FDDFFEDFADFA F D F D A AD FDA A E DD D FDFFDEDFA FBED E AD FDA D F D A ADAAEDFA FDFFBE DAADDAADADAFDAADD D FCFFFADAFAD FDAFADFADDDDAAFDD AFADAADADDAFAD FADFFFDFDFADAADA ADFADFDAADDADA FF D B DFF E E D C DA F DD F D AFAFADAFFD FDFDA D AD DAFA ADA DAA D F DAADEDFA FEAFD FDAFF FDFDAAFADDADDA FD FFCEFFFF ECAFDFDADDD FDAFAADFAFADEDFA FF FF AEDADADDDADA F FFBBDDFF FFBFADFDAFEDFA E E E FFFDAFADDAEDA DAFAAFDAAFCA EB FCDDAFAADA DFADADDDADDFADAADFAEDFA FFDFEAEFF FADADEDFDFDFDA DAFDA FFEEEFFE FDAAEADFADFAADAD ADFADFDFA FFADAADDDAFAD DAFF

286 FEEDADDFD DFDADAFDA FECFFFEEF FFAFCDADFADADDFADAD ADAFDFADACF FFFFBFAAADAD ADDDDDFDAFADDF EDFA BEDFDAD DADADFADAFAFAAFA FDFDDFADDDA FEDFDADDA DFAEDCCDDCD ADAFAAD FEFDDAF AADDDFFDEDFA AEFFFD ADAFAAAFAAEFEDFA EBEF DFDCCDDAD AADADADAADA F E E FF BFCD AFDFA FFA FFAFDFAFADFDADFADAADAD FAFDADADDDDFADADA FFF F ADA D DA D DA DD DFADAADFDADFAAAADA FFBBFFAA DFDFDDDAADDFADADADDD DAD FFFEDDFD ADADFAFAFDD F C AF F A A EADCDDFAFDDADFDAADFD ADDDDFADAEDFA FFEAFAADF DDFADFDADAADADEDFA EEFFDDDDAAAA DFFEBFFC AEFFEAFADAFAAD AFADADFDADAAFDDAFDDDDAA ADAFA F FF B F BF DFA DAFADFDDADDAAFA AAADA

287 FFEFEDA DFDAADADDFADADAFFDDA FDF FEFFFDADFA DFDADFADA FAF DADFDADDADFDD EEEFFDFAAA DADAFAADDFDAFD FD BAFBAF F F E F A DFAD DA ADFADDFADAFDDDFDADAAFDDAF DDDDAAA AFFE FDFADAADAAC DAAFDDA EEFCEFE CDDADAAFADDAF AD E D F D AFAFAADADAAFAEDFA FEFEFBFCF FCEAFDADFDFDDFADA DADFDADDADEDFA FDDFAAF DFDADDDAFDDFADAADDFFAD EFFFFDF DAFAFAADAFDDA CFDFFDFDFDADAAAADA EEF ADDDAFB EEDF DAFADADAADAFFFEDFA EEDFFDFE CADCADADDFADADA DAADDADFDAAD FFBFDAAA AFAAADADDADD FFFAAEAFFDFD FEFDFADAFFAF ADADFDFFAF FFADAADFA EDF FFF FADAADFDADFAADFADA ADDDADEDFA FEAF DFDDDADADFADAFD DFADFDDAADAA

288 FFFFDFE DFDADDFFFDAFDEDFA EFDEBFFE FBFADAFDADFADA ADFAADDFDAFDAADAAAA DA EFFFB DADFADAADFADDA DFDAADDAEDFA FECE FFDFDADFADDFADADDF FCAADFAAAADFAAAE DA EECFEFD AAAFFDFAAFDAFAD EEEFFDDDAAAABDD EFCEAFF DAA A AFD DAF DDD D FA A D ADA DA FADAFDF EFEFFC AAADDFDDDAADAD FDFAEDFA EBEFDFDADADADD FDDFFA EFFF EDFFDA AFFAB ECFFFFFAD FDAADAFAADDFAFDD AFAEDFA E D F DFDDFAEDF EADAADAAD FAFADFADADDBCB EEED CFDFDD FDAADAFDADDAFAFD AADFDDCEDFA EEFBFE BEFADADFAFA DADAAFAEDFA EEAFF AADDDFADFDA CFADDEDFA EFDDAFFAADFDA DFAFDAAADEDDA EFFFDADD AAD D F D A D ADA FDAF FD ADADDDFFDFA

289 EFFCBEDDF DAFDDAAFDDFAAD B EBDFBFEDA FADADFAAA EBDFBFE FADDFDFADADAA A EECFE FAAADADD DFADFDAAFF E E DD D F D A ADFADFFDFEDFA EEDFAFA DDFDDFDFFADFDDFDA EDFA EFFDFAFD F EBEFE FEAADFADFD AADADDDFAADAFFA EEEEDF FEDDFDDADFADAAADAF FDFAAA EEEADED FEEAFDADDA DAADFFDFDFAADDAA ADAAAAFD EFFFDDE DFDADAADDADADAAFA DADEDFA EFEDDFDAD FADDADFAADDAD EEBFFADDAFDFADDA AADAFDAAEADD D EFDADFDAAE AADDFDDAADDDEDFA EFF EFF E DDA DD DFADA AFDDAA EBDF ADAAADFADDFAFDFDAADD ACB EEDDF DADFDADAADAF AAFDAADA EFDADADADA ADDFDFA EEFEDD ADDADDFAAD

290 EBEDCEFF DAADADFADFDFF AFAFDDAADADADAEDFA EFDEEAED FDADAAADAFAEDDF E FF CDDD ADFAEDFA EEF EDECAADDD FA EFAAAD ACAADADFFDDAADDAA EDDDEFCDF FFCAFADAFA DADAAADAFDDFFAD EDFEDDFADADDF DADFADAFAFDEDFA EEDDBDEFE CADFADFDADFAAD DAFEDFA EFFEDFDEFF FFDAFD EFFFFFF DDFFAFFAADFF EFFFFEDFBEE DADDAFDFADDB E E F D E E B E DFADDFADAAADAFADFD ADDFDA EF E D D F B FEEBEFADFDAADAF AFFFDDFAD EFBFDEFFE EFDAFAADA ADAFDADFAADCEDFA EFFFFDFFDF AADFDAFFDADDD EFFFAAAFA DDDD EF B E DFF E FFBDFDAADAFADA DAAFFDFAFDDFADDDFCA ADADEDF EF B E D D DFFEFFBAAADFADAADFADFAC DDAFDFA

291 EFBDDDFFE FFBEDAADFADFADDDF DAFAFDDDAFDFA EFFF E D A D D C FFADDAFADDDAFDF AD EFFFDFFDFD DAFDDAFDA EFFDFFFEFFFE BFDFAFDAD DDAFFFFDADDAAAFADDEDFA E D D DADFDDADAF DFDACDFAADAAFAFDFDDAEDFA ECCFE DFFDFDADADFA DFAEADAFA ECFFBE FDFAADFAAAAD AFADDFDDDA BEEEFFFEFD DDFAFAA BEEFFFDFBEFFFD FEFDDD CDAADDADAFFDDDAA CFDFA BEFFEAE DFDA DA DD DAA D FFD DA D DDAFDFA BBFFFEAFF EAFAAFDFADDAFFDDAAA DFDADAFDA BF A B B E A E FD F DFDAAAA B C C E E F E ADDADADDAFAFAFD FADFDFDADDDFADAA BCECFF DAFDFDFDDFAAAD A C F D D DFDA DA F DD B C F D A AADAADDAFDDADAADA FAEDF BEAFFFFF F E F DFDA DFA FAFDADAFACDDA BEFFFDAA FDFDADFDFADAA

292 BFFFB ADFAAAFDADAFDCEDFA BFFCFCFFF EFEFFDA DADFDADAFADFDA FDDADA BEDDFD AFAADAAFAADAAFDD DA BFEEFD DFDADDFFFFFEFD AAADA BEFFDE EDFDFD F D D A DDA DD DFADA BFFEFBADADDAD DDDFAADA BFEFFEFFBFF E D F D AADFAD DADADFDA BF F EAFA FD A FDD ADADFAFADAAAADA BFDADFDFDA DFDDDFADAEDFA BDECDEBDFF EEADFDADAFDDDFD ADFDFFD BF D A D E FFF F DAADDFADADFDAFFAF ADDFFAEDFA ADFFDFDAADAAADAD FACEDFA ADDADFD EAFEADFADA FFDAAADFADAFDFFB ADDEFADAFADAA DAFDDFFADFFADAADAFD FFEDFA AFDFBFFEDFFE EBEEFAFADDADAAF FA AA D D AD D DAD AD DA F DDA AFFAFAAADDA FDADFFAE AEBEFDADFDDA DADAAAAD AFFEFDADA DFDDA CDF F

293 ACFEFBDAF EFDAADAD DFAFADB AF F B F F E A DAAADAAC DAAADFDFA AFCEFEEFED DFFDCDDAAADFD AAFDAAFADDDDDFAAF AFEFFECC DCDAAFADAFAEDFA ACFB BCDFDFFDDAF DAAFAFA AEFBEFFEDE DFDADADFFDAAB FEEFF AFDFFEADFDDDDA FAFADDAFDD E E D F D A AADFADADDFADAFADDFDADEDFA FBDFDA D ADFA A D DAADA EDD F DA DA FFBDF D A D DAADA DDDDAF DA A FD ADFAA CBFADAFF FAAFFADDAADDDAAAAFDDAF DDDEDFA EDDAFADFDAFDFAD F FFEEFDDFA DFDAFAAADADAADFD ADFAFAD FFEEFE DADADFDAADDAA DFAAEDFA FFEDAADDDFADA AFDDAFADFDAADFA DA FF E F D D CAFADDCADFAADFDAADD DAADFADADDEDFA BFFFFFDAA DADDADFADFAEDFA EFDCFD FAFDFAFAFAADDAD DDFAAFAADDEDFA FFFFFDAADDDDDD AADDDDDAADAEDFA

294 FFFFDFDAADA FDDDDADDADAADFAAADDDD DAAEDFA CFFEEFDF DDDEFAFDDAFAAD DDAFDDFDAADFDDD ADFAF F D D A FDA FD F D DA AD FA FDFA EDDDAAFDDAD FF DFDAFAADFAAFDF DDDAAFDEDFA FADF FEFAFFFADFD ADAFAAFFAFADDADA EFFFEEF BDFAFFAAD FDAFDADFADAFAF FDADAADAD A FF C D E B D AFADDDADFDADF FEF EAFADDAAADAFDFAFAD DAAAFADFDFAD FCFFEFF EFDADDAAADF DDAAAFADFD FFFFECD FADDFDAD DFADFDA DFDFFDFA F FDDADD FAADCADAFDDA FDFAFDDDDFDA AEDF C F E FADADDEEFDAA ADAFADFDADAFDA ADADFDD CFEADDD FDFDDADADAFDF FEFADDA DFDAFDADAFDAEDFA

295 EFDA DDFAAADFDDADDAA DA E C DA A ADAEDDDDDADAAAADA DCFDABF EEADAEDADAA AADDDADDF EFFDDFADAD AAFFDFFDAADADAFD FAFAD FEDFDFFFED FF DF FF E AF D ADFD FDAADDAFDAAA FC FDADFDAEDFA EFFDDD DADDDFDDFFDA DA FEADDAEDEFA DFDADADADFADFDFEDFA FF E F FD DDFDD DE DDDAAEDDDDDADDF FEFDDFD EDFDDFAAAAAFDDADADAD FEFBFEDFE FDFFCADADAFADA DEDF FAEAADFDAAFDDAFDDD DDFDADAB FFFECFFFFA AADFAADADFDDFDA FAFAFDDAAAFADAEDFA FFFEEDF DFFFFDCA DEEDAFDAAFFA FFF DFDADDFADA A FFE DDADADFADDDDADADD AADA FFB ADDFADADAADADAFAD D

296 FAFADD FDDDDAFDDDFADADDADAADAAD DFADA FFECDDAFD AFA FDFDADDADDA FCADFDFDA CDD FFFFADD FAADFAAAADDFADADDAADF FFFAA DFADAADFAAACEDFDA FDDFF DADFADFADDAFAAD FAD FFADAAFFADDDDDADDEDF FF F F D AFDDA DAAFDADDDAAA FFEFFFEDFFD ADAFAAEDDBCB FFEDBADAFADAACA DADDFDAFADFDF FDFDAADFAFAFEDFA BEF FDAFDDDFDDADAA DDDCDDDEDFA EECED EADADFDFAFAAD FDAFDFAAFAD EEFF DADFAFADADAAA FDAADA DAFAFFD FAFDADAFDFDDDDABCD FCFEFEFEEB DFADDAAFFEDDFA FFADDADFDAFAFEDFA DFFF F E E DDCADADFDA FDFA F BF F DFF EF E CADAAAAAAADAFDFA DABCD FFDBEBFEFE DAAFDACEFFAD FDFA

297 FFEEFEDFF DFAADADAFDFFAD CFEEADFA ADFAAFAFDDFF FDADDA ADFDAAFADADDDFAAAAD EFEFEFDFAA AADFADADDADFDAF AD EFDDFEEFAFADAD FDADADDFAADFADDFADA ADDDDFAFD AFADFAEDFA ADADADDDDFD ADFDFAAAADAAEDFA ADEADDDFADADD FDADEDFA ADFDDADFDAADA FDFDAAADADAAFDAFEDFA AEFDFD DDFFAFFFDADFADDFADAD EDFA BEFAD DDDAFADAFDFA BBFBBEC CDAFDADADDADDAD FAAFAAAAA BBFFECD FDADFAAAFDAF DDDFADAEDFA BECADDD AAAFD BBFCD DDADFADAAADFADFADDDAADA FCA DFFFADAADDD F D FAF DFA DF ADA D FEEDAFFADDFDFDAFFDADAF DDDAADAFA FAEFBBC DAADADDADADAFA DADAFFDA FDEFFDEAEDFE AFDADAAAFAADDFAAD FDADADFDFA EDFDFADFDFADADD FDAADADDFADAAAEDFA

298 E E FFF B F FADA A D A FA DF A A AD DFADAADAFADFDAFAD FBFEFDFF FDFFADAADFADD AFDFA FFFEBFDF AFADADFAAAFADAFD FDADA DDFCDD FDFADADADDFADAADFDA ADDAEDFA ADDDA DADD FADAAD DADAFADDDDFDAF EAFDAADADDFADAADA AADFADA EDDFADADFDFDDAD AADADDFADAAEDFA FFEFAFDFAFF AADFAADADDDFADAFAD FFFDFAFDFFDA F DAFDFFADFADFDAA FFAEFEDFA FADADEFEEFFDEE EDFAAADADADADF DAFFFAAFFAEDFA EDCDDFC D D AF A D AD AFAAFAFAAFD DDAAFF CFFDFDA DDFADADDDADDDADDDDD DAFAAFAAADA CFFFFADADDDA ADAFDAFAAADDAFADD FDF FFADADDDFDAF ADDA FEFF AAADFADAADAF DFADAAADDDA FDFFD DFAFDDAADAD FAADDADDA

299 DDFEADDFADAD DFDAADDDDFAD DFDAADFEADDAD DEDFEDAAD AFDDDDDDDDFFDADFDADD ADFADDFADA DFEDAADFAAA DDDDFAAADDAD DFADAADFA DFEFEDAADFAA FFADADFADFAAADFAAADE DBDDFEFEDEDAA D FFA D A AD A A A AFA FDEDFA D A DF E D F E D FAAADEDFDA AEDAAFAFAFA EEFEF FBFBFAAADAFA FDDAADAFAFDFA FFFFEF EEFDAFAFDADAFA FAFADDDAFDFADDFDF FFFEF AFADDAFAADDDFDAA ADDADAFDFA DADCFDFF DFFDDFFDADF DAFADFDADADADAD DADDEDFA DEEEFDBFD EFEAFDAFDFADAADDAFDF F DEFECFDD AFADAFADAFD A DDFBFDEEE FFADDAAADDFDAAFA D DADEB DFFDDDAFAFAFD FDAFADAFDD DEFFEFFBC FDDFFAD DFFCDDAAADA DFFFEFBF DDAFA DFDADADDADFDFA

300 DFEFEBEFEBF AFADDAAD EDFA DFEBFDDAFDADDAD FADDFADAFDDFD DEEAED DFDF DEEFEFCFFE F AAAAAFFA BCD DFEEADFAA EDADAAADFADDFAAB D B ADFA A D AFADADADDDDAEDFA DCEFFE DAD DFFDDD ADA D A DA A A AFA DFFCEFFFF ADFDAFDAADFAFD ADDFADADFDDFAFAD DFEFCFADA ADADAADADF DFADAEDF DFDDFF ECFFAFDAAFFA DFBFDEDEDDF C DA F D AFA D F DFDADAFDF DFBFDFDDF D AF A F F D DAD D FFADCDAFA DFFFEFEDFEFD AFAADFDAAAD DAFDADAFEDFA DDAAADFFFDFDA DFFF DFDAADADAAFFADAF AADADAAA DFBFFF ADAAFFADFDAADAFDAAAF ADFADDFAAAA DFFCFCDDFEFF EDADAADADADADDDFADA DF DEDEAEDFE CEDADFDADFAADA AAAFADFFDFA DDB FDAADAFAADAFDD ADA

301 DAFF AEFCFDFEAAFDFA ADAA D FAD DA F DD D D D ADADFAADA DEFFFEF D FA ADA D DA D D ADFDFDDADAADEDFA DEFEFFFDDA D F AF A D A A D FD FDDA ADAAAD DFFDFAFD FFDDDAFDAFDA EFED FADAFADAFDDFFA EFFFCCE DDFDDDDDDAFDADFDDDA DDDFADADA FBEFFDDEFF CAEFAFFDDDAFDADAADF DFDADAFAFA BDFFDAFDAAD AFAFDAD EDADFADDADFA DFAAAA EEF EDAFCCCDDFAFADAA AFDDAEDFA FAAD FFEEEDAAAFD DFAFAAADAA FFBFAFF FDFDAA FDFDFADADFAD EFEADADAD FAFA EEDADAF DFAFAFDFDA FFCFFEFFC DAFFADADDFAFAB D FADADA CFDEB DFDAFFADAFDAA FDAADDF DDFAAADAAFADDFB EDAADAEC ADFDAD

302 D AADFDADADACAD ADFAA EBEEAACCCDCCAD DFDADAFDEDFA DFEAFDAD FDAFDF DADAADAAFDA FD A FF EDDAAA ADDADAA E A D F E D EB E FFEDADAADD ADFAFEDAADFAADDDD ADAFADADDAFDA DEFEDFD ADAFDADEDFA DEDFFEFEFE FADAADFDA EDFA DEFEADADDD DADADFDAEDFA CFFDD DFDAFAFDADAFDADAFFDAA DDFEDFA CAFEFCE FFEADADADD DADDDF DFFCC FFAAFADFD ADDAAADAAF FCFEEFEFC EAAFADDFAFA DFDAADAEDFA FEFDDADFF ADAD DEFFADAADFD AADDAAADFDFAEDFA EFDFDADDF DFAEDDAAFAEDFA FBDFDFF BFDFEEFBFCFDA AFDFADFDDAAFAD EE DADDFDADDAADA EAA FECE CAADDFDAFDA ADFADDADDDFADA DDDAAFDDFDAD

303 EADDAAADED ADFADAADD EFAFDADFAD AAEDFA EFADFADAADDFAFDF FECFCEDE ADFADFFDDFF AADD FDDDFDFDDDDF FCEDFFADFAAADD DDAADDDADAADDADFADADA DDDADAAAFAA FDADDAADFDADEDFA FFFACEA DADAFDAADAFA AEBE AAADFADADFDAADAA DFFFDBEDFFE DFDADAFDAFFAF AEDFA DDAFADDAF DDDA FFDBFEFDD BDEADFAADDDAFD FDDADFD FFBAEFEDDA DFAFFADAADDAFDFFD FBFDFD BDFADD EEFDADFDADDAB FFDFBFDF FFFDDFAAD AD AFDAA FA DA F E E AFAAFFDAFDAAFAFADADAAA DFDAFD FBEEEFFDFDFB FAEFFDADFAFA ADEDFFEFDDA DFDADACA FDFBDFFE FF F FA EE F DAA A DFDAFDDAD FFFDFC ADAFDFAADDD FADDDDFADAAA

304 FFEDEDE AAADFADADDADADDADADAA DFDADA DDEFDCE DFDADDAAADADAAFD DAADDDDAA EFBFDFDA DA CE DFAD A E ADA A AADFAADAD FBBF FDDDADFAFA AAFAADAADDDAAAADADAF FFBFE FFFDDAFDDAFADEDFA FDDFFFF DAFFADAFDDFF DAFFADADA DDFDAADADADADDDEDFA DBFCFDFEFE EEFEDFADFADF DAFADAFDAAFAADAA ECAFADDA FAFAFAAA DDDFAFA AFAADDAADFDADEDFA EFFFDEFFE FEFDAAAADADDD DFAADDDDFADAAA ECFCAD ADAADFAADFDAADDEDFA EFFD ADAADADFAEDD FEEFDADFDDFADAA FDDAFDDAFDAADFAD FEFEFEDFAD FAFDFDFDACDFAEDFA FEEDFDADA DFDDDADAFDAFDDA DFDADFAD FABDDF DEADAF DDDFDAADFA

305 FEEDEAEDEFADA DFDADADAAADDAF AAAAFD F FF DAD F DFDA DAAFD DAF DDDFD F A DA D DFAAADFDA EF F F F D F DDDADFADADDAAD D FFEEFC FAAADDAFFFA DDADDADAADADADFADAA ADEFF AFFDFFF DF D A DDA ADD D ADFA AFAADAFDFADACEDFA BFDFE DAFADAADFA AEDFA BFDFED AFAFADDADFADFADADDA AEDFA F D F AF A ADFADDFADADDFADDDAA AADFAFAD FDFBFEDEEEFE DFDACDFAFAAFDFDDAD DDA FBEDFFEFFF EFDDA DDAADEDFA FFEDD DFADAADFFDFFAFDDDAADDA AB FEFFBDADFA ACDDAADADAFAADFAEDFA B F E D AFADFDADAFDDEA FDFFAFAAADA

306

307

308 Bonnet et al. Retrovirology 2012, 9:77 RESEARCH Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation Open Access Amandine Bonnet 1,2,3, Voahangy Randrianarison-Huetz 1,2,3, Patrycja Nzounza 1,2,3, Martine Nedelec 1,2,3, Maxime Chazal 1,2,3, Laetitia Waast 1,2,3, Sabrina Pene 1,2,3, Ali Bazarbachi 4, Renaud Mahieux 5, Laurence Bénit 1,2,3 and Claudine Pique 1,2,3* Abstract Background: The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4 + T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results: In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4 + primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions: These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4 + T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation. Keywords: Retrovirus, Leukemia, NF-kappaB, Ubiquitin, SUMO, Nuclear speckles * Correspondence: claudine.pique@inserm.fr 1 INSERM, U1016, Institut Cochin, 22 rue Méchain, Paris, France 2 CNRS, UMR8104, Paris, France Full list of author information is available at the end of the article 2012 Bonnet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

309 Bonnet et al. Retrovirology 2012, 9:77 Page 2 of 16 Background Human T-lymphotropic virus type 1 (HTLV-1) is the agent of Adult T-cell Leukemia, a fatal hematopoietic malignancy due to the transformation of CD4 + T lymphocytes. The Tax regulatory viral protein plays a pivotal role in HTLV-1-induced T-cell transformation. Indeed, Tax triggers permanent T cell proliferation through a variety of mechanisms including promotion of cell cycle, deregulation of apoptosis and activation or repression of cellular gene promoters (reviewed in [1-4]). Notably, Tax is a powerful inducer of the NF-κB pathway, an activity shown to be required for HTLV-1-induced immortalization of primary CD4 + T lymphocytes [5]. In physiological conditions, the NF-κB pathway is transiently activated in response to extracellular stimuli (reviewed in [6]). These results in the activation of the cytoplasmic IκB kinase (IKK) complex, which consists of two catalytic subunits, IKKα and IKKβ and a regulatory subunit, NF-κB essential modulator (NEMO)/IKKγ. Once activated, IKK induces the phosphorylation and degradation of the NF-κB inhibitors IκB, liberating the NF-κB factors which then translocate to the nucleus. Contrasting with the physiological situation, Tax is able to activate the NF-κB pathway in a permanent manner by acting on both the cytoplasmic and nuclear phases. In the cytoplasm, Tax binds to NEMO [7] and recruits adaptor proteins and kinases that in turn promote IKKα/β activation ([8-11] and reviewed in [12]). In the nucleus, Tax binds to and stabilizes the binding of NFκB factors, including RelA/p65, to the NF-κB dependent promoter [13,14]. In the nucleus, Tax also assembles into particular structures called Tax nuclear speckled structures or Tax nuclear bodies [15-17]. This was shown to depend upon the presence of an N-terminal region located between residues 50 to 75 of Tax (Tax speckled structure localization signal, TSLS) [18]. NFκB-mediated transcription may arise in these structures, since they contain components of the NF-κB pathway such as p50, RelA/p65 and NEMO [16,19,20]. In addition, repression of cellular promoters was also associated with Tax nuclear bodies [21]. Tax nuclear bodies also contain components of splicing complexes [17] and DNA damage response machineries [22] and were, therefore, proposed to mediate other functions than transcription (reviewed in [23]). In previous studies, we and others demonstrated that Tax is ubiquitinated and SUMOylated [20,24-26]. A series of studies focusing on the role of Tax ubiquitination demonstrated the critical role of this modification in NF-κB activation. Indeed, reducing or increasing Tax ubiquitination by interfering with ubiquitination or deubiquitination enzymes was shown to block or enhance Tax-induced NF-κB activation, respectively [27-30]. NFκB activation was associated with Tax conjugation to K63-linked ubiquitin chains, which were shown to be essential for Tax binding to NEMO and IKK activation [30-32]. K63-linked ubiquitin chains also promote the targeting of Tax and NEMO to perinuclear spots associated to the centrosome and the Golgi apparatus, believed to represent a Tax-induced cytoplasmic signaling platform [32,33]. Tax SUMOylation was initially associated with nuclear events. Indeed, SUMO-1-conjugated Tax subpopulations were found in the nucleus and coexpressing Tax along with SUMO-1 was shown to increase the nuclear fraction of Tax. Moreover, SUMO-1 was found to colocalize with Tax in nuclear bodies [19,20,24]. Tax possesses 10 lysine residues (referred to as K1 to K10), among those K4 to K8 serve as targets for ubiquitination and K6 to K8 as targets for SUMOylation (Figure 1). We and others previously showed that mutating lysines K4 to K8 abolishes both Tax ubiquitination and SUMOylation and renders Tax inactive for RelA nuclear translocation, a defect restored by making a Tax ubiquitin fusion protein. Mutating only lysines among K6 to K8 still allows RelA nuclear translocation, but strongly reduces NF-κB promoter activation, which is partially restored upon fusion to SUMO-1 [20,24]. These findings led to the proposition of a two-step working model in which K63 ubiquitination of Tax first intervenes in the cytoplasm to activate IKK and allows RelA nuclear translocation, while Tax SUMOylation is subsequently required for RelA-dependent promoter activation within Tax nuclear bodies. However, subsequent observations suggest a more complex picture. Indeed, it was reported that mono-ubiquitination in the nucleus activates the nucleocytoplasmic shuttling of Tax in stress conditions [34]. Moreover, fusing lysine Tax mutants to SUMO-1 was shown to enhance NEMO targeting to cytoplasmic perinuclear spots while fusing them to ubiquitin was shown to restore the formation of nuclear bodies [19]. In addition, RNF4, an ubiquitin ligase that preferentially ubiquitinates SUMOylated substrates, was recently reported to be involved in Tax ubiquitination [27]. These recent findings favor the notion that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. How Tax post-translational modifications and their impact on Tax localization are synchronized with NF-κB activation is still unclear. Moreover, the importance of Tax post-translational modifications and nuclear bodies has not been investigated in CD4 + T cells yet. In this study, we revisited the role of Tax nuclear bodies and Tax SUMOylation on Tax activities. We confirm that Tax SUMOylation correlates with the formation of Tax nuclear bodies. We also demonstrate that, surprisingly, impaired nuclear body formation still allows Tax to fully activate a NF-κB promoter in either cell lines or primary CD4 + T cells. In addition, we provide evidence that the

310 Bonnet et al. Retrovirology 2012, 9:77 Page 3 of 16 Figure 1 Description of the Tax-P79AQ81A mutant. Schematic representation of the primary amino-acid sequence of Tax showing the N-terminal nuclear localization signal (NLS, amino-acids 1 50), the Tax speckled structure localization signal (TSLS, amino-acids 50 75) and the potential TRAF-binding motif (boxed) in which alanine substitutions were introduced (Tax-P79AQ81A mutant). The lysine residues targeted by ubiquitination and SUMOylation are also indicated. degree of Tax NF-κB activity correlates with the level of Tax ubiquitination but not SUMOylation. These data provide the first direct evidence that Tax nuclear body formation and Tax SUMOylation are dispensable for Tax-induced NF-κB activation. Results Tax-P79AQ81A, a Tax mutant defective for nuclear body formation In the search for potential functional motifs in Tax, we selected a PxQxT sequence (aa 79 83) because this sequence fits with a putative motif for binding to the TRAFs (TNF-receptor associated factor), which are ubiquitin ligases acting in the NF-κB pathway [35]. Interestingly, the PxQxT motif is also just adjacent to the TSLS (Figure 1), suggesting that it might be involved in the nucleocytoplasmic trafficking of Tax. It was previously shown that residues at position 1 and 3 of the PxQxT motif are the most critical for binding to the TRAFs [36]. Hence, a mutant in which the P79 and Q81 residues were changed to alanines (Tax-P79AQ81A, Figure 1) was generated to study the role of the PxQxT motif in Tax modifications and activities. The subcellular localization of wild-type (wt) Tax and Tax-P79AQ81A was first compared in HeLa cells (Figure 2A). As previously described [24], wt Tax was detected both in the cytoplasm and in the nucleus, where it formed well visible nuclear bodies (NB) (67% of the cells). A dramatic change in nuclear localization was found for Tax-P79AQ81A since Tax-P79AQ81A was present in the nucleus as diffuse staining in all transfected cells, and very few and very small nuclear bodies were detected in only 8% of the cells while 92% of Tax positive cells did not show any nuclear bodies (Figure 2A). A dramatic reduction in nuclear body formation by Tax-P79AQ81A was also found in transfected 293 T cells and more importantly, in transfected CEM T cells (less than 10% of the cells, Figure 2B and 2C). Hence, mutations of the P79 and Q81 residues do not alter the nuclear import of Tax, but preclude Tax nuclear body formation. This confirms the importance of the TSLS-containing N-terminal region of Tax in nuclear body formation and suggests that the P79 and Q81 residues are part of this nuclear body targeting signal. Tax-P79AQ81A properly activates the cytoplasmic steps of the NF-κB pathway In the cytoplasm, Tax binds to NEMO and activates the IKK complex, a process that requires the targeting of both Tax and IKK to perinuclear spots (PS) [32,33]. In immunoprecipitation assays, we confirmed that wt Tax coprecipitated endogenous NEMO and induced the phosphorylation of IKKα/β (Figure 3A, lane 2). Tax- P79AQ81A also properly coprecipitated with endogenous NEMO and induced the phosphorylation of IKKα/β (Figure 3A, lane 3). In contrast, and as expected from earlier data [7], neither NEMO binding nor IKK activation was observed for the NF-κB-defective M22 mutant (Figure 3A, lane 4). A cell fractionation procedure described for the purification of cytoplasmic aggresomes, which are centrosomalassociated insoluble structures containing ubiquitinated proteins [37], was used next to study Tax and NEMO targeting to perinuclear spots. Comparable amounts of wt Tax and Tax-P79AQ81A were found in the insoluble fractions, indicating that both proteins were similarly targeted to cytoplasmic aggresomes (Figure 3B, Tax panel, lanes 5 and 6). Similar enrichment of NEMO was observed in the insoluble fraction of cells expressing either wt Tax or Tax-P79AQ81A (Figure 3B, NEMO panel, lanes 5 and 6), as compared to mock transfected cells (lane 4), indicating that both Tax proteins were equally efficient to relocalize NEMO to cytoplasmic aggresomes. Confocal microscopy experiments further showed that endogenous NEMO was targeted to perinuclear spots in almost 100% of Tax-positive cells regardless of whether the cells had they produced wt Tax or Tax-P79AQ81A (Figure 3C). Wt Tax was also concentrated in perinuclear spots in 76% of cells as compared to 49% of Tax- P79AQ81A-expressing cells (Figure 3C). Of note, this

311 Bonnet et al. Retrovirology 2012, 9:77 Page 4 of 16 Since the final consequence of IKK activation is the nuclear translocation of RelA, we analyzed the localization of endogenous RelA in Tax-expressing cells (Figure 3D). While RelA was found in the cytoplasm of Tax-negative cells, it was clearly relocalized to the nucleus in the totality of cells expressing either wt Tax or Tax-P79AQ81A. Interestingly, the pattern of RelA mirrored that of Tax since while RelA was found in nuclear bodies in cells producing wt Tax, it was detected as a diffuse staining in cells producing Tax-P79AQ81A (Figure 3D). These results demonstrate that Tax-P79AQ81A properly activates the cytoplasmic steps of the NF-κB pathway and induces nuclear RelA translocation in absence of nuclear body formation. Figure 2 Tax-P79AQ81A is defective for nuclear body formation. Confocal microscopy analysis performed in (A) HeLa cells; (B) 293 T cells or (C) CEM T cells showing the distribution of wt Tax or Tax-P79AQ81A (green). Nuclei were stained with DAPI (blue). The percentages of cells containing Tax in nuclear bodies (NB) are indicated, and Tax nuclear bodies are pointed with arrows. At least 100 cells were analyzed in each condition. difference was due to the reduction of the cell population containing Tax-P79AQ81A in both perinuclear spots and nuclear bodies while the proportion of cells containing Tax only in perinuclear spots was comparable between Tax-P79AQ81A and wt Tax (Additional file 1: Figure S1). Tax-P79AQ81A is as active as wt Tax for NF-κB promoter activation Nuclear body formation was proposed to facilitate activation of the NF-κB pathway at the nuclear level. Whether Tax-P79AQ81A is able to drive gene expression from a NF-κB promoter was, therefore, investigated. NF-κB reporter gene assays performed in HeLa (Figure 4A) and 293 T cells (Figure 4B) showed no significant difference (p > 0.05) between the NF-κB promoter transactivation levels of wt Tax and Tax- P79AQ81A. The same experiments were performed in T cells, including the CEM T cell line (Figure 4C) and primary CD4 + T cells (Figure 4D). In both T cell systems, Tax-P79AQ81A was also fully able to transactivate the NF-κB promoter. Furthermore, Tax-P79AQ81A transactivated a CREB promoter similarly to wt Tax in all cell types, confirming that the protein was functional (Additional file 2: Figure S2A-D). In all reporter gene assays, Tax-M22, defective for NF-κB activation and Tax-M47, defective for CREB activation, were included as controls. Hence, while it is unable to form nuclear bodies, Tax- P79AQ81A is fully active in term of NF-κB promoter activation in both adherent cells and T cells, including primary CD4 + T cells. Tax nuclear bodies are hardly detected in HTLV-1-infected T cells The previous findings, suggesting that absence of nuclear bodies did not alter Tax-induced NF-κB activation, prompted us to investigate the status of nuclear bodies in HTLV-1-infected T cells. Confocal microscopy experiments were performed in two HTLV-1-infected T cell lines, C8166 cells that contain defective HTLV-1 proviruses still allowing Tax production [38] and HUT- 102 cells, which contain wt proviruses and produce viral particles [39]. To facilitate the observation of Tax-positive cells, C8166 and HUT-102 cells were first mixed with uninfected CEM T cells, giving therefore the background

312 Bonnet et al. Retrovirology 2012, 9:77 Page 5 of 16 Figure 3 Tax-P79AQ81A activates the cytoplasmic steps of the NF-κB pathway. (A) Ability of wt Tax and Tax-P79AQ81A to bind to endogenous NEMO and induce the phosphorylation of IKKα/β subunits. HeLa cells were transfected with a control plasmid or with the Tax-His constructs, including the NF-κB-defective Tax-M22 mutant as a negative control. Proteins precipitated using the anti-tax mab (IP Tax) were blotted with either an anti-nemo antibody or with the anti-tax sera. In parallel, total proteins (Lysates) were blotted with anti-tax sera and with anti-nemo or anti-phospho-ikk antibodies, as indicated. NS: non specific. (B) Purification of aggresomes formed in wt Tax or Tax-P79AQ81A producing HeLa cells. Soluble and insoluble fractions were prepared according to [37] and proteins in each fraction were blotted with either an anti-nemo antibody or the anti-tax sera. (C-D) Confocal microscopy analysis performed in HeLa cells showing the distribution of Tax (green) and endogenous NEMO (C) or RelA (D) (red). Nuclei were stained with DAPI (blue). At least 100 cells were analyzed in each condition. signal. Strikingly, while we used the same procedure that allows easy detection of nuclear bodies in transfected T cells, Tax nuclear bodies were found in less than 8% of the two HTLV-1-infected T cells (Figure 5). Importantly, NEMO-enriched perinuclear spots were clearly visible in both C8166 and HUT-102 cells (Figure 5, arrow heads), indicating IKK relocalization by endogenous Tax. Moreover, high luciferase production was detected upon transfection of the pnf-κb-luciferase reporter plasmid in these cells (data not shown). These results show that Tax, endogenously produced in HTLV-1-infected T cells, does not form nuclear bodies, although it is fully able to activate the NF-κB pathway. Tax-induced NF-κB promoter activation correlates with the level of Tax ubiquitination but not the level of Tax SUMOylation Since Tax nuclear bodies were previously linked to Tax SUMOylation, we analyzed the post-translational modifications of Tax-P79AQ81A. Purification of wt Tax

313 Bonnet et al. Retrovirology 2012, 9:77 Page 6 of 16 Figure 4 Tax-P79AQ81A properly activates a NF-κB promoter in either cell lines or primary CD4 + T cells. NF-κB promoter activity in Tax-transfected HeLa cells (A), 293 T cells (B), CEM T cells (C), and primary CD4 + T cells (D). Cells were transfected with a control plasmid or with the Tax-His constructs along with the NF-κB reporter plasmid and the Renilla luciferase expression plasmid for normalization. To validate the experiments, the M22 (defective for the NF-κB pathway) and M47 (defective for the CREB pathway) mutants were included in each experiment. Fold induction was calculated by dividing the firefly/renilla ratio of each Tax protein with the firefly/renilla ratio obtained with the control plasmid. The results represent the means and standard error of the means (SEM) from at least four independent experiments performed in duplicates. ns: not statistically significant. and the mutant was performed in a highly denaturant guanidine-containing buffer in order to avoid copurification of non-covalently bound partners. Blotting the purified proteins with a pool of sera from HTLV-1-infected individuals revealed comparable amounts of modified Tax products between wt Tax and Tax-P79AQ81A (39% and 49% of total Tax respectively, Figure 6A). The conjugation of wt Tax and Tax-P79AQ81A to either endogenous ubiquitin or SUMO was next examined. Wt Tax and Tax-P79AQ81A were conjugated to endogenous ubiquitin (Figure 6B) and more importantly to endogenous K63-linked ubiquitin chains (Figure 6C) at similar levels. Considering that K63-linked ubiquitin chains were shown to be critical for Tax interaction with NEMO, these results are consistent with our data showing that Tax-P79AQ81A binds to NEMO like wt Tax. Contrasting with the level of ubiquitination, Tax- P79AQ81A displayed a severe reduction (78%) in conjugation to endogenous SUMO compared to wt Tax (Figure 6D). This reduction of SUMOylation was confirmed by experiments in which Tax or Tax-P79AQ81A was expressed together with a HA-SUMO-1 construct (Figure 6E). In all the pulldown experiments, wt Tax and Tax-P79AQ81A were expressed and purified at similar levels (Figure 6A-E, Tax panel). Hence, Tax-P79AQ81A is properly ubiquitinated, in particular with K63-linked ubiquitin chains, but is barely SUMOylated. Nevertheless, this mutant is fully able to transactivate a NF-κB promoter, suggesting that SUMOylation is not essential for Tax-induced NF-κB activation.

314 Bonnet et al. Retrovirology 2012, 9:77 Page 7 of 16 Figure 5 Tax nuclear bodies are not detected in HTLV-1-infected T cell lines. Confocal microscopy analysis performed with the HTLV-1-infected cell lines C8166 and HUT-102 showing the distribution of endogenous Tax (green) or NEMO (red). Nuclei were labeled with DAPI (blue). C8166 or HUT-102 cells were mixed with HTLV-1-negative CEM T cells as an internal negative control (indicated by asterisks). Perinuclear clusters of NEMO in Tax-positive cells are pointed with arrow heads, and the percentages of cells containing Tax in nuclear bodies (NB) are indicated. At least 200 cells were analyzed in each condition. To further analyze the relationship between Tax SUMOylation and NF-κB promoter activation, the properties of Tax-P79AQ81A were compared to those of the previously described lysine Tax mutants [24]. NiNTA pulldowns were performed in 293 T cells, in which protein expression is higher than in HeLa cells, ensuring fine quantification. Similarly to what we found in HeLa cells, Tax-P79AQ81A was properly ubiquitinated but barely SUMOylated in 293 T cells (Figure 7A). The lysine Tax mutants displayed the previously identified phenotypes: defect in both ubiquitination and SUMOylation (Tax-K1-10R, Tax-K4-8R), reduced ubiquitination and lack of SUMOylation (Tax-K6-8R, Tax-K7-8R) and low SUMOylation with only a slight reduction in ubiquitination (K7R) (Figure 7A). Interestingly, this latter pattern is very similar to that of Tax-P79AQ81A. In agreement with our previous studies [24], strong impact of lysine mutations on NF-κB activity of Tax was observed (Figure 7B, upper panel). Tax-K6-8R and Tax-K7-8R showed low NF-κB activity (Figure 7B) but wt level of CREB promoter activation (Additional file 2: Figure S2E), confirming their specific defect in NF-κB activation. NF-κB reporter gene assays further showed only a slight reduction in the NF-κB activity of Tax-K7R (Figure 7B), which mirrored its slight reduction in ubiquitination (Figure 7A). Furthermore, when the levels of modifications for each mutant were plotted against the level of NF-κB activities, a linear relation was clearly observed between Tax-induced NF-κB promoter activation and Tax ubiquitination (R 2 = 0.94) but not Tax SUMOylation (R 2 = 0.73) (Figure 7C). Tax ubiquitination is believed to govern Tax binding to NEMO and thereby, IKK activation. Indeed, nonconjugable lysine Tax mutants fail to bind to NEMO [24], and the same defect is observed upon silencing of Ubc13, the ubiquitin conjugating enzyme shown to mediate Tax conjugation to K63-linked ubiquitin chains [30]. We further assessed the role of Tax ubiquitination on NEMO binding by analyzing the ability of the mutants used above to bind to either endogenous NEMO or endogenous phospho-ikkα/β (Figure 7D). Like for NF-κB promoter activation, a linear relation was found between the amount of phospho-ikk associated to Tax and Tax ubiquitination (R 2 = 0,94) but not SUMOylation (R 2 = 0,58) (Figure 7E). These results provide direct evidence that ubiquitinated Tax is the species that binds to IKK and triggers IKK activation. Altogether these data demonstrate that low SUMOylation does not prevent Tax-induced NF-κB activation and that Tax ubiquitination is the predominant determinant for Tax-induced NF-κB activation. Fusion of SUMO-1 increases the ubiquitination of Tax-P79AQ81A We previously reported that fusing SUMO-1 to certain lysine Tax mutants partially rescued their ability to form nuclear bodies [24]. We thus wondered whether fusion of SUMO-1 to Tax-P79AQ81A could restore its nuclear body localization. Fusion of SUMO-1 to wt Tax increased the proportion of cells containing Tax nuclear bodies, as previously described [20,24] (98% of total NB (NB and NB + PS) for Tax-SUMO-1 as compared to 67% for non-fused Tax). A higher proportion of cells containing nuclear bodies was also observed upon SUMO-1 fusion to Tax-P79AQ81A (69% for Tax-P79AQ81A- SUMO-1, as compared to 8% for Tax-P79AQ81A). However, these nuclear bodies were less numerous (usually 2 to 3 per nucleus) than in the case of wt Tax and were

315 Bonnet et al. Retrovirology 2012, 9:77 Page 8 of 16 Figure 6 (See legend on next page.)

316 Bonnet et al. Retrovirology 2012, 9:77 Page 9 of 16 (See figure on previous page.) Figure 6 Tax-P79AQ81A is defective for SUMOylation. NiNTA experiments performed in HeLa cells showing the total level of Tax modifications (A), or the amounts of Tax products conjugated to endogenous total ubiquitin (B), endogenous K63-linked ubiquitin chains (C), endogenous SUMO (D) or overexpressed HA-SUMO-1 (E) for either wt Tax and Tax-P79AQ81A. (A-D) HeLa cells were transfected with a control plasmid or each of the Tax-His constructs and in (E) along with a HA-SUMO-1 construct. Tax proteins purified using nickel columns were revealed with anti-tax sera or with anti-ubiquitin, anti-k63-linked ubiquitin chains, anti-sumo-2/3 or anti-ha antibodies, as indicated. The percentage of Tax modification was calculated by dividing the amount of high molecular weight Tax products by the amount of total Tax (modified + unconjugated). The percentages of ubiquitinated or SUMOylated Tax were normalized on the amount of unconjugated Tax (Tax-Ub/Tax) and expressed in comparison to wt Tax (100%). much smaller than those formed by wt Tax (Figure 8A). Moreover, the recruitment of RelA within these small nuclear bodies were only seen in 11% of nuclear bodiescontaining cells, showing that fusion of SUMO-1 did not allow the formation of nuclear bodies with wild-type phenotype (Figure 8A). Confocal experiments also showed that fusion of SUMO-1 slightly decreased the number of cells containing Tax in perinuclear spots, an effect observed for both wt Tax (63% of Tax-SUMO-1 expressing cells as compared to 77% of wt Tax expressing cells) and Tax-P79AQ81A (33% of Tax-P79AQ81A- SUMO-1 expressing cells as compared to 51% of Tax-P79AQ81A expressing cells). Moreover, an increased cytosolic staining was observed for both wt Tax-SUMO-1 and Tax-P79AQ81A-SUMO-1, as compared to their non-fused counterparts. To confirm this, cell fractionation experiments were performed, in which cell extracts were separated in soluble cytosolic, intermediate (containing the perinuclear spots) and nuclear fractions, as previously described [32] (Figure 8B, upper panel). Quantification of the amounts of Tax in all three fractions (total, lower panel) revealed that the total amounts of Tax-SUMO-1 or Tax- P79AQ81A-SUMO-1 were increased compared to their respective non-fused counterpart. This increase was due to higher amounts of either Tax-SUMO-1 or Tax- P79AQ81A-SUMO-1 in the cytosolic fraction (lower panel) with few changes in the two other fractions (quantification not shown). This confirms the confocal microscopy observations (Figure 8A) and suggests that fusion of SUMO-1 stabilizes Tax in the cytosol. Since Tax conjugation to K63-linked ubiquitin chains was correlated to the cytoplasmic localization of Tax [32], we compared the levels of ubiquitination of fused and non-fused proteins (Figure 8C). Strikingly, we found that fusion of SUMO-1 increased the conjugation to K63-linked ubiquitin chains of Tax-P79AQ81A but not of wt Tax. Altogether these results indicate that fusion of SUMO- 1 only partially rescues the formation of nuclear bodies by Tax-P79AQ81A. Moreover, they reveal an unexpected effect of the SUMO-1 fusion that stabilizes wt Tax and Tax-P79AQ81A in the cytosol and increases the ubiquitination of the mutant. Discussion In this study, we directly analyzed the role of Tax nuclear bodies and Tax SUMOylation on NF-κB activation. Previous studies have described that Tax forms nuclear spots called Tax nuclear bodies or Tax speckled structures [16,17]. A Tax speckled structure localization signal (TSLS) positioned between residues 50 and 75 was subsequently mapped in the Tax sequence [18]. In order to identify new functional motifs of Tax, we selected the PxQxT motif at position because it fits with a TRAF-binding motif and is adjacent to the TSLS. We found that this motif does not control Tax interaction with the TRAF since its mutation alters neither Tax ubiquitination (this study) nor the co-precipitation of Tax with either TRAF2 or TRAF5 (data not shown). In contrast, mutations of the P79 and Q81 residues dramatically reduce the formation of Tax nuclear bodies, confirming the role of the TSLS and showing that this sequence includes the PxQ motif. We and others have demonstrated that Tax ubiquitination, especially conjugation to K63-linked ubiquitin chains, permits Tax binding to NEMO [24,30,32]. Here we report that Tax-P79AQ81A, which is conjugated to either total ubiquitin or K63-linked ubiquitin chains at the same level than wt Tax, binds to NEMO and activates IKK like wt Tax. Moreover, analysis of a series of Tax mutants allowed us to show that the amount of endogenous phospho-ikkα/β coprecipitated with Tax correlates with the level of Tax ubiquitination but not SUMOylation. These findings confirm the critical role of Tax ubiquitination in NEMO binding and IKK activation and also demonstrate that Tax SUMOylation is dispensable for these processes. Tax conjugation to K63-linked ubiquitin chains was also shown to relocalize Tax and NEMO to perinuclear spots [32,33]. However, recent findings showed that NEMO targeting to perinuclear spots is also impaired upon sirna-mediated SUMO silencing [19]. Using both microscopy analysis and cell fractionation, we found that endogenous NEMO is recruited in perinuclear spots at the same level in cells producing either wt Tax or Tax-P79AQ81A. Hence, lowering Tax SUMOylation has no effect on NEMO targeting to cytoplasmic spots. The effect of SUMO silencing could be explained by the role of a minor fraction of

317 Bonnet et al. Retrovirology 2012, 9:77 Page 10 of 16 Figure 7 (See legend on next page.)

318 Bonnet et al. Retrovirology 2012, 9:77 Page 11 of 16 (See figure on previous page.) Figure 7 The degree of Tax NF-κB activity correlates with the levels of Tax ubiquitination but not SUMOylation. (A) NiNTA experiments performed in 293 T cells showing the levels of Tax conjugation to endogenous ubiquitin or SUMO. 293 T cells were transfected as indicated and proteins purified on Nickel columns were revealed using anti-ubiquitin, anti-sumo-2/3 or the anti-tax sera. The percentages of ubiquitinated or SUMOylated Tax were normalized on the amount of unconjugated Tax and expressed in comparison to wt Tax (100%). (B) NF-κB reporter assay in 293 T cells. Cells were transfected with control or Tax-His constructs along with the NF-κB or the Renilla luciferase plasmid for normalization. Fold induction was calculated by dividing the firefly/renilla ratio of each Tax protein with the ratio of the control plasmid. Results represent the means and standard error of the means (SEM) from three independent experiments performed in duplicates. (C) The level of either ubiquitination or SUMOylation of the Tax mutants was plotted against their NF-κB activities. The regression line shows a correlation between Tax NF-κB activity and ubiquitination (determination coefficient = 0.94) but not SUMOylation (determination coefficient = 0.73). (D) Association of the Tax proteins to the IKK complex in 293 T cells. Total proteins (Lysates) or proteins precipitated using the anti-tax mab (IP Tax) were blotted with anti-nemo, anti-phospho-ikk or the anti-tax sera, as indicated. (E) The regression line shows a correlation between Tax binding to phospho-ikkα/β and ubiquitination (determination coefficient = 0.94) but not SUMOylation (determination coefficient = 0.58). SUMOylated Tax or of a SUMOylated unknown substrate in the cytoplasmic targeting of NEMO. Tax nuclear bodies were previously reported to contain RelA and NEMO and therefore identified as transcriptionally active structures [16,19,20]. Surprisingly, we found that lack of nuclear body formation by Tax- P79AQ81A does not prevent this mutant from activating both the cytoplasmic and nuclear steps of the NF-κB pathway. Importantly, such proper NF-κB promoter activation was observed not only in adherent cells but also in T cells, notably CD4 + primary T cells. The composition of Tax nuclear bodies has essentially been studied in transfected adherent cells [15-17], and we were indeed able to detect these structures in all transfected cells, including T cells. However, using the same staining procedure, we observed that Tax nuclear bodies are nearly absent in HTLV-1-infected T cells. Hence, Tax nuclear bodies appear to be visible when Tax is transiently produced but not in an endogenous situation. This may suggest that nuclear bodies represent a storage compartment rather than transcriptionally active structures. However, it cannot be excluded that small clusters of Tax, undetectable by confocal microscopy, are indeed formed in HTLV-1-infected T cells. Further investigations are therefore needed to clarify the pattern and role of nuclear Tax, in particular in HTLV-1-infected CD4 + T cells. Our work also allowed us to further explore the relationship between Tax ubiquitination and Tax SUMOylation. Indeed, as mentioned above, Tax-P79AQ81A mutant whose endogenous SUMOylation is reduced by around 80% is ubiquitinated at the same level as wt Tax, both in terms of total ubiquitination and specific conjugation to K63-linked ubiquitin chains. This strongly suggests that Tax SUMOylation is dispensable for Tax ubiquitination. That Tax SUMOylation may represent a signal for Tax ubiquitination was indeed recently proposed based on findings showing that RNF4, a SUMOtargeted ubiquitin ligase (STUbL), was able to modulate Tax ubiquitination [27]. It was shown that RNF4 induced the ubiquitination of a SUMO-1 fused recombinant Tax protein in vitro and that sirna-mediated depletion of RNF4 abolished Tax ubiquitination. However, we found here that the SUMO-1 fused form of Tax was ubiquitinated at comparable level as non-fused Tax in HeLa cells. Moreover, we show that in contrast to RNF4 depletion, low Tax SUMOylation does not prevent Tax ubiquitination in cells. Of note, a GFP-tagged Tax was used in the RNF4 study [27] while our experiments were performed using a Tax-6his construct, which could lead to difference in Tax modifications and/or localization. In addition, it cannot be excluded that the low residual level of SUMOylation of Tax-P79AQ81A could be still sufficient to promote Tax ubiquitination. However, this would likely have been associated to a certain degree of reduction of Tax ubiquitination, as observed in RNF4- depleted cells [40]. Along with these findings, our data suggest therefore that RNF4 may not directly modulate wild-type Tax ubiquitination, but acts in an indirect manner by interfering with ubiquitination machineries or with direct regulators of Tax ubiquitination. We previously concluded that ubiquitination and SUMOylation were both required for optimal NF-κB activation by Tax through analysis of lysine mutants and SUMO-1-fused proteins. In this study, we revisited the role of Tax SUMOylation through a direct approach based on an ubiquitinated but intrinsically weakly SUMOylated Tax mutant. We found that Tax-P79AQ81A retains most of the NF-κB activity of wt Tax, while in the same conditions, very little NF-κB activity was measured for a mutant defective for both ubiquitination and SUMOylation (Tax-K4-8R). Potent NF-κB activation by Tax- P79AQ81A was not only observed in 293 T cells and HeLa cells but also in T cells. Indeed, Tax-P79AQ81A is as active as wt Tax in CEM T cells and more importantly, in primary CD4 + T lymphocytes. Of note, study of another mutant, K7R, confirms that weak SUMOylation does not preclude NF-κB activation. Finally, we were able to document that the abilities to activate a NF-κB promoter of a series of Tax mutants correlate with their levels of ubiquitination but not of SUMOylation. It could be argue that low level of SUMOylation would be

319 Bonnet et al. Retrovirology 2012, 9:77 Page 12 of 16 Figure 8 (See legend on next page.)

320 Bonnet et al. Retrovirology 2012, 9:77 Page 13 of 16 (See figure on previous page.) Figure 8 SUMO-1 fusion increases the cytosolic level and ubiquitination of Tax-P79AQ81A. (A) Confocal microscopy analysis showing the distribution of Tax or Tax-P79AQ81A fused or not to SUMO-1 (green) and of endogenous RelA (red) as well as nucleus staining (blue). The percentages of cells containing Tax in only nuclear bodies (NB), perinuclear spots (PS) or in both locations (NB + PS) are indicated. The percentages of cells containing RelA in the nucleus and the percentages of nuclear bodies-positive cells containing RelA in nuclear bodies are also indicated. At least 100 cells were analyzed in each condition. (B) Cell fractionation analysis. Cell extracts were separated in a cytosolic (C), intermediate (I) and nuclear (N) fraction as described [32]. Upper panel: Proteins were blotted with either an anti-tax sera; anti-gm130, a marker of the intermediate fraction (Golgi apparatus), or anti-lamins A/C, a marker of the nuclear fraction. Lower panel: the intensity of the Tax bands in all three fractions was quantified (Total Tax) and normalized to 100% for wt Tax. The proportion of Tax in the cytosolic fraction was calculated by dividing the intensity of each cytosolic Tax band by the value of Total Tax. (C) Ubiquitination of non-fused or fused wt Tax and Tax-P79AQ81A proteins. Ni-NTA experiments were performed in HeLa cells transfected with a control plasmid or the Tax-His constructs together with a HA-Ub- K63 plasmid. The percentages of HA-Ub-K63 conjugated products were normalized on the amount of unconjugated Tax and expressed in comparison to wt Tax (100%). sufficient to regulate some Tax activities, even in absence of Tax nuclear bodies. However, our findings provide strong evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation. That low SUMOylation does not alter Tax-induced NF-κB activation appears to contradict our previous findings showing that fusion of SUMO-1 to lysine mutants restored their NF-κB activities. However, we believe that our current and earlier data can be reconciled in light of recent findings from other groups. Indeed, we and others previously noticed that the SUMO-1 fusion restores the NF-κB activity of some but not all lysine Tax mutants: i.e., it restores the NF-κB activities of Tax- K6-8R or Tax-K7-8R (also referred to as Tax-R4-6 K), which retains partial ubiquitination, but not that of Tax- K4-8R, which is no longer ubiquitinated [20,24]. Moreover, we documented that fusion of SUMO-1 does not increase the NF-κB activity of either wt Tax [24] or Tax- P79AQ81A (data not shown), which are both fully ubiquitinated. Fusion of SUMO-1 appears, therefore, to only enhance the NF-κB activity of partially but not fully ubiquitinated Tax proteins. As mentioned above, RNF4 was recently shown to induce the ubiquitination of a recombinant GFP-Tax protein fused to SUMO-1 in vitro [27]. Hence, artificial fusion of SUMO-1 to the Tax mutants may similarly enhance their ubiquitination by facilitating the interaction with RNF4. Strikingly, it was previously reported that fusion of SUMO-1 increases the endogenous ubiquitination of Tax-K7-8R/Tax-R4-6 K but not Tax-K4-8R [20]. Furthermore, we show here that fusion of SUMO-1 stabilizes both Tax and Tax- P79AQ81A in the cytosol but only significantly increases ubiquitination of Tax-P79AQ81A. This latter effect is reminiscent of the cytoplasmic relocalization and enhanced ubiquitination of the GFP-tagged Tax construct upon RNF4 overexpression [27]. Why RNF4 would only increase the ubiquitination of Tax mutants but not wt Tax remains to be elucidated. Because these proteins differ by the presence or absence of SUMOylation, it could be speculated that the natural SUMO chains of Tax may somehow prevent the interaction of wt Tax or Tax- SUMO-1 with RNF4. Whatever the exact mechanism involved, these findings support the view that the effect previously attributed to the fusion of SUMO-1 to lysine Tax mutants was actually linked to Tax stabilization and/ or facilitation of Tax ubiquitination. Conclusions Our findings provide strong evidence that Tax SUMOylation and formation of Tax nuclear bodies are dispensable for proper NF-κB pathway activation by Tax, especially in natural target cells of HTLV-1 infection. In contrast, preventing both ubiquitination and SUMOylation of Tax is detrimental for NF-κB activation, highlighting the critical importance of the ubiquitindependent cytoplasmic events that involve the Tax/IKK interaction. Targeting ubiquitination pathways has emerged as a new promising therapeutic approach of malignancies [41]. Given the critical role that Tax-induced NF-κB activation plays in HTLV-1-induced T cell transformation [5], such approach would be especially relevant in the treatment of HTLV-1-induced T-cell malignancies. Methods Cell culture and transfection HeLa and 293 T cells were grown in Dulbecco s modified Eagle s medium supplemented with 10% fetal calf serum, 2 mm glutamine and antibiotics (Invitrogen) and were transfected using the lipofectamine reagent (Invitrogen). HTLV-1-infected T cells C8166 and HUT-102 as well as HTLV-1-negative CEM T cells were grown in RPMI 1640 medium supplemented as above along with 0.5% glucose and were transfected using the DMRIE-C reagent (Invitrogen), following the manufacturer s instructions. Primary human CD4 + T cells were purified from peripheral blood samples of healthy donors from EFS (Etablissement Français du Sang, Paris). After separation of mononuclear cells by density gradient, CD4+ T cells were isolated by positive selection using CD4 + T lymphocyte enrichment immunomagnetic beads (Beckton Dickinson, France). Purified CD4 + T cells were then cultured in RPMI 1640 medium supplemented as above and

321 Bonnet et al. Retrovirology 2012, 9:77 Page 14 of 16 containing 10% inactivated human serum (Sigma Aldrich) along with 50 IU/mL interleukin-2 (IL-2, PeproTech, France) and 3 mg of phytohemaglutinin-m (PHA-M, Sigma). CD4 + T cells were transfected using the Amaxa nucleofector (VPA-1002, Lonza) with the T23 program following the manufacturer s instructions. Plasmids All the Tax constructs used in this study encode proteins fused to a C-terminal 6His tag (His). Tax-His, lysine Tax mutants, Tax-M22-His and Tax-M47-His cloned in the psg5m vector, HTLV-1-LTR-Luc, NF-κB-Luc and prl- TK plasmids were described elsewhere [24,32]. To generate the Tax-P79AQ81A mutant, a fragment comprised between the EcoRI and PmlI restriction sites of the Tax cdna was mutated and amplified using the following primers: forward mutagenic Tax primer [5 CTCC- TTCGCGACCGCGAGAACCTCTAAG3 ] and reverse mutagenic Tax primer [5 CTTAGAGGTTCTCGCGGT- CGCGAAGGAG3 ] as well as the cloning primers TaxEcoF [5 GTAATACGACTCACTATAGGGCGAATT- C3 ] and TaxPmlIR [5 CACGTGGGGCAGGAGGGGC- CAGGTG3 ]. Two separated PCR reactions were first performed using either the forward mutagenic Tax primer and TaxPmlIR or the reverse mutagenic Tax primer and TaxEcoF, and the two amplified fragments were mixed and used to perform a global PCR reaction using the TaxEcoF and TaxPmlIR primers. The final PCR product was then cloned in the ptopo vector (Invitrogen), and the EcoRI-PmlI fragment of ptopo-tax-p79aq81a was finally introduced into the psg5m vector. Correct introduction of the mutation was attested by the presence of a NruI site (introduced into the mutagenic primers). The Tax-P79AQ81A mutation was then introduced in the Tax-SUMO-1-6His plasmid by exchanging the EcoRI-PmlI fragments. The integrity of all constructs was verified by sequencing. Antibodies Tax was detected using a pool of sera from HTLV-1 infected individuals (anti-tax sera) or the anti-tax monoclonal antibody (mab) 168-A51 (NIH AIDS Research and Reference Reagent Program, USA). The following primary antibodies were used: Ubiquitin (P4D1 from Tebu Bio or Fk2 from Millipore), Ub-K63 chains (D7A11; Cell Signaling Technology), SUMO 2/3 (ab3742; Abcam), HA-tag (12CA5; Roche), RelA/p65 (sc-372) and IKKγ (sc-8330) (Santa Cruz) phospho-ikkα/β (C84E11; Cell Signaling), GM-130 (610822, BD Biosciences) and Lamin A/C (2032, Cell signaling). HRP-conjugated anti-human, anti-mouse and anti-rabbit IgG (Promega) were used as secondary antibodies in western blot. The following secondary antibodies were used for immunostaining: goat anti-rabbit IgG conjugated to Alexa Fluor 594 or Cyanine 5 (Invitrogen) and donkey anti-mouse IgG conjugated to fluorescein isothiocyanate (FITC; Jackson Immunoresearch). Luciferase assays Luciferase assays were performed in duplicates in 24- well plates for HeLa or 293 T cells ( /well), CEM T cells ( /well) or sorted CD4 + primary T cells ( /well). CD4+ primary T cells were starved by removing PHA and IL-2 from the culture medium 24 h before transfection. HeL, 293 T and CEM cells were cotransfected with 500 ng of either the NF-κB-Luc or HTLV-1-LTR-Luc (CREB) reporter plasmid, 50 ng of the Renilla reporter plasmid prl-tk and 1 μg of the control or the Tax plasmids. CD4 + primary T cells were cotransfected with 2 μg of either the NF-κB-Luc or HTLV-1-LTR- Luc reporter plasmid, 500 ng of the Renilla reporter plasmid prl-tk and 3 μg of the control or the Tax plasmids. Luciferase activity was quantified 24 h posttransfection for 293 T cells or 48 h post-transfection for HeLa cells or T cells using the Dual Luciferase Assay System (Promega) and values were normalized with Renilla activity. Statistical analyses were performed using the student test. Cell lysis, cell fractionation, immunoprecipitation and immunoblot Preparations of cellular aggresome were performed as described in [37]. Cell fractionation in cytosolic, intermediate and nuclear fractions was peformed as described in [32]. Immunoprecipitations were carried out as follow: at 24 h post-transfection, HeLa cells were lysed in lysis buffer (50 mm Tris HCl ph8, 1% NP40, 0.5% deoxycholate, 0.1% SDS and 150 mm NaCl) supplemented with protease and phosphatase inhibitors (Roche). Cell lysates were incubated overnight with the anti-tax mab at 4 C, and antibody complexes were captured on protein G- sepharose beads (GE Healthcare) 1 h at 4 C. Sepharose beads were then washed 5 times in wash buffer (120 mm NaCl, 20 mm Tris HCl ph8, 0.2 mm NaF, 0.2 mm EGTA, 0.2% deoxycholate, 0.5% NP40) before elution in Laemmli buffer. Proteins in cell fractions, immunoprecipitated proteins and total cell lysates were separated by SDS-PAGE, transferred to nitrocellulose membranes and blotted with specific antibodies. For quantification, shortly exposed films were scanned with an AGFA scanner, and signal densities of proteins were measured with ImageJ software (Wayne Rasband; NIH). Signal density in an empty lane was also measured and subtracted from the signal of each band. Ni-NTA pull-down At 24 h post-transfection, HeLa cells were lysed in reducing and highly denaturing conditions in buffer A (6M

322 Bonnet et al. Retrovirology 2012, 9:77 Page 15 of 16 Guanidium-HCl, 0.1M NaH 2 PO 4, 10 mm imidazole, ph 8) and incubated with Ni 2+ -NTA (nitrilotriacetic acid) beads (Sigma) for 3 h at room temperature. The beads were washed three times in buffer A, twice in buffer B (buffer A diluted 1:4 in buffer C) and twice in buffer C (25 mm Tris HCl ph 6.8, 10 mm imidazole). The proteins bound were eluted in Laemmli buffer, separated by SDS-PAGE, transferred to nitrocellulose membrane and blotted with specific antibodies. Film quantification was performed as described above. Confocal analysis HeLa or 293 T cells were seeded on glass coverslips in 24-well plates the day before transfection and staining was performed 24 h post-tranfection. At 24 h post-transfection, transfected CEM T cells were washed once with PBS and deposited onto poly-l-lysine coated coverslips in RPMI 1640 medium for 1 h at 37 C. Both cell types were washed twice with PBS, fixed with 4% paraformaldehyde for 15 min, washed twice with PBS, permeabilized with cold methanol for 5 min, and washed twice with PBS. The cells were incubated in PBS containing 2% BSA and 0.1% Tween for 30 min and then with primary antibodies diluted in PBS buffer containing 2% BSA and 0.1% Tween for 1 h. After 3 washes with PBS containing 0.1% Tween, the cells were incubated with secondary antibodies diluted in PBS buffer containing 2% BSA and 0.1% Tween for 45 min. The cells were washed with PBS-Tween buffer, and incubated with DAPI (Sigma) diluted in PBS for 10 min for nucleus staining. After two washes with PBS, the coverslips were mounted in FluorSave Reagent (Calbiochem). Laser scanning microscopy was performed using a Leica TCS resonant scanner multi-photon (spinning disc) with a 63X objective, and images were analyzed using ImageJ software. Additional files Additional file 1: Figure S1: Subcellular localization of wt Tax and Tax-P79AQ81A in the cells. Description of data. Confocal microscopy analysis performed in HeLa cells showing Tax localization (green). Nuclei were stained with DAPI (blue). The percentages of cells containing Tax in only nuclear bodies (NB), in only perinuclear spots (PS) or in nuclear bodies + perinuclear spots (NB + PS) are indicated for both wt Tax and Tax-P79AQ81A. At least 200 cells were analyzed. NB and PS are indicated by arrows and arrow heads, respectively. Additional file 2: Figure S2. CREB promoter activities of the Tax proteins used in the study. Description of data. (A-D) Comparison of the CREB promoter activities of wt Tax and Tax-P79AQ81A in Tax-transfected HeLa cells (A), 293 T cells (B), CEM T cells (C) and primary CD4 + T cells (D). Cells were transfected with a control plasmid or with the Tax-His constructs along with the CREB reporter plasmid and the Renilla luciferase expression plasmid for normalization. (E) CREB promoter activities of the lysine Tax mutants in 293T cells. In all experiments, the M22 (defective for the NF-κB pathway) and M47 (defective for the CREB pathway) mutants were included as controls. Fold induction was calculated by dividing the firefly/renilla ratio of each Tax protein with the firefly/renilla ratio obtained with the control plasmid. The results represent the means and standard error of the means (SEM) from at least four independent experiments performed in duplicates. Competing interests The authors declare that they have no competing interests. Authors contributions A.Bo. designed and performed the work, analyzed the data and wrote the paper. V.R. performed experiments with primary cells, analyzed the data and edited the paper. P.N and M.N contributed to biochemical experiments and analyzed data. M.C., L.W. and S.P. contributed to molecular biology experiments. A.Ba. and RM contributed reagents and ideas for the work and edited the paper. L.B. designed experiments and edited the paper. CP designed and supervised the study and wrote the paper. All authors approved the submitted manuscript. Acknowledgments The authors thank Anne-Lise Haenni, Florence Margottin-Goguet and Cecilia Ramirez for critical reading of the manuscript and members of the Cellular Imaging platform of the Cochin Institute for their help. We thank the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH, for the anti-tax mab. This work was supported by grants from the Ligue contre le Cancer (Comité de Paris), Institut National du cancer (InCA), Cancéropôle Lyon Auvergne Rhône Alpes (CLARA) and Fondation de France. Author details 1 INSERM, U1016, Institut Cochin, 22 rue Méchain, Paris, France. 2 CNRS, UMR8104, Paris, France. 3 Université Paris Descartes, Sorbonne Paris Cité, Paris, France. 4 Department of Internal Medicine, American University of Beirut, Beirut, Lebanon. 5 INSERM, U758, Ecole Normale Supérieure de Lyon, Lyon, France. Received: 3 March 2012 Accepted: 1 September 2012 Published: 25 September 2012 References 1. Journo C, Douceron E, Mahieux R: HTLV gene regulation: because size matters, transcription is not enough. Future Microbiol 2009, 4: Taylor JM, Nicot C: HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 2008, 13: Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L: The HTLV-1 tax interactome. Retrovirology 2008, 5: Peloponese JM Jr, Kinjo T, Jeang KT: Human T-cell leukemia virus type 1 tax and cellular transformation. Int J Hematol 2007, 86: Robek MD, Ratner L: Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 tax mutants expressed in a functional molecular clone. J Virol 1999, 73: Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009, 27: Harhaj EW, Sun SC: IKKgamma serves as a docking subunit of the IkappaB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus tax protein. J Biol Chem 1999, 274: Shembade N, Ma A, Harhaj EW: Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327: Journo C, Filipe J, About F, Chevalier SA, Afonso PV, Brady JN, Flynn D, Tangy F, Israel A, Vidalain PO, et al: NRP/Optineurin cooperates with TAX1BP1 to potentiate the activation of NF-kappaB by human T- lymphotropic virus type 1 tax protein. PLoS Pathog 2009, 5:e Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW: The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008, 9: Yu Q, Minoda Y, Yoshida R, Yoshida H, Iha H, Kobayashi T, Yoshimura A, Takaesu G: HTLV-1 tax-mediated TAK1 activation involves TAB2 adapter protein. Biochem Biophys Res Commun 2008, 365: Sun SC, Yamaoka S: Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 2005, 24:

323 Bonnet et al. Retrovirology 2012, 9:77 Page 16 of Petropoulos L, Lin R, Hiscott J: Human T cell leukemia virus type 1 tax protein increases NF-kappa B dimer formation and antagonizes the inhibitory activity of the I kappa B alpha regulatory protein. Virology 1996, 225: Suzuki T, Hirai H, Yoshida M: Tax protein of HTLV-1 interacts with the Rel homology domain of NF-kappa B p65 and c-rel proteins bound to the NF-kappa B binding site and activates transcription. Oncogene 1994, 9: Baydoun H, Duc-Dodon M, Lebrun S, Gazzolo L, Bex F: Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins tax, Rex and p30ii in specific nuclear subdomains. Gene 2007, 386: Bex F, McDowall A, Burny A, Gaynor R: The human T-cell leukemia virus type 1 transactivator protein tax colocalizes in unique nuclear structures with NF-kappaB proteins. J Virol 1997, 71: Semmes OJ, Jeang KT: Localization of human T-cell leukemia virus type 1 tax to subnuclear compartments that overlap with interchromatin speckles. J Virol 1996, 70: Fryrear KA, Durkin SS, Gupta SK, Tiedebohl JB, Semmes OJ: Dimerization and a novel Tax speckled structure localization signal are required for tax nuclear localization. J Virol 2009, 83: Kfoury Y, Setterblad N, El-Sabban M, Zamborlini A, Dassouki Z, El Hajj H, Hermine O, Pique C, de The H, Saib A, Bazarbachi A: Tax ubiquitylation and SUMOylation control the dynamic shuttling of tax and NEMO between Ubc9 nuclear bodies and the centrosome. Blood 2011, 117: Lamsoul I, Lodewick J, Lebrun S, Brasseur R, Burny A, Gaynor RB, Bex F: Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol Cell Biol 2005, 25: Chin KT, Chun AC, Ching YP, Jeang KT, Jin DY: Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 2007, 67: Durkin SS, Guo X, Fryrear KA, Mihaylova VT, Gupta SK, Belgnaoui SM, Haoudi A, Kupfer GM, Semmes OJ: HTLV-1 tax oncoprotein subverts the cellular DNA damage response via binding to DNA-dependent protein kinase. J Biol Chem 2008, 283: Lodewick J, Lamsoul I, Bex F: Move or die: the fate of the tax oncoprotein of HTLV-1. Viruses 2011, 3: Nasr R, Chiari E, El-Sabban M, Mahieux R, Kfoury Y, Abdulhay M, Yazbeck V, Hermine O, de The H, Pique C, Bazarbachi A: Tax ubiquitylation and sumoylation control critical cytoplasmic and nuclear steps of NF-kappaB activation. Blood 2006, 107: Peloponese JM Jr, Iha H, Yedavalli VR, Miyazato A, Li Y, Haller K, Benkirane M, Jeang KT: Ubiquitination of human T-cell leukemia virus type 1 tax modulates its activity. J Virol 2004, 78: Chiari E, Lamsoul I, Lodewick J, Chopin C, Bex F, Pique C: Stable ubiquitination of human T-cell leukemia virus type 1 tax is required for proteasome binding. J Virol 2004, 78: Fryrear KA, Guo X, Kerscher O, Semmes OJ: The SUMO-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein tax. Blood 2012, 119: Lavorgna A, Harhaj EW: An RNA interference screen identifies the deubiquitinase STAMBPL1 as a critical regulator of human T-cell leukemia virus type 1 tax nuclear export and NF-kappaB activation. J Virol 2012, 86: Yasunaga J, Lin FC, Lu X, Jeang KT: Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol 2011, 85: Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW: The human T-cell leukemia virus type 1 tax oncoprotein requires the ubiquitinconjugating enzyme Ubc13 for NF-kappaB activation. J Virol 2007, 81: Shibata Y, Tanaka Y, Gohda J, Inoue J: Activation of the IkappaB kinase complex by HTLV-1 tax requires cytosolic factors involved in tax-induced polyubiquitination. J Biochem 2011, 150: Kfoury Y, Nasr R, Favre-Bonvin A, El-Sabban M, Renault N, Giron ML, Setterblad N, Hajj HE, Chiari E, Mikati AG, et al: Ubiquitylated tax targets and binds the IKK signalosome at the centrosome. Oncogene 2008, 27: Harhaj NS, Sun SC, Harhaj EW: Activation of NF-kappa B by the human T cell leukemia virus type I tax oncoprotein is associated with ubiquitindependent relocalization of I kappa B kinase. J Biol Chem 2007, 282: Gatza ML, Dayaram T, Marriott SJ: Ubiquitination of HTLV-I tax in response to DNA damage regulates nuclear complex formation and nuclear export. Retrovirology 2007, 4: Au PY, Yeh WC: Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 2007, 597: Ye H, Park YC, Kreishman M, Kieff E, Wu H: The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 1999, 4: Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES: Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 1999, 146: Bhat NK, Adachi Y, Samuel KP, Derse D: HTLV-1 gene expression by defective proviruses in an infected T-cell line. Virology 1993, 196: Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC: Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980, 77: Wang YT, Yang WB, Chang WC, Hung JJ: Interplay of posttranslational modifications in Sp1 mediates Sp1 stability during cell cycle progression. J Mol Biol 2011, 414: Sun Y: Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther 2003, 2: doi: / Cite this article as: Bonnet et al.: Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation. Retrovirology :77. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at

324

325

326

327

328 κα

329

330

331 µ

332

333 γ

334

335

336

337

338

339

340

341

342

343

344

345

346 ψψ

347

348

349

350 κ

351

352 κ

353 κ

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

Global excess liquidity and asset prices in emerging countries: a pvar approach

Global excess liquidity and asset prices in emerging countries: a pvar approach Global excess liquidity and asset prices in emerging countries: a pvar approach Sophie Brana, Marie-Louise Djibenou, Stéphanie Prat To cite this version: Sophie Brana, Marie-Louise Djibenou, Stéphanie

Διαβάστε περισσότερα

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model.

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Mitra Ahmadi, Lucie Sancey, Arnaud Briat, Laurent Riou, Didier Boturyn,

Διαβάστε περισσότερα

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena Koussou Mian Oudanang To cite this version: Koussou Mian Oudanang. DYNAMICS OF CHANGE WITHIN

Διαβάστε περισσότερα

Jie He. To cite this version: HAL Id: halshs https://halshs.archives-ouvertes.fr/halshs

Jie He. To cite this version: HAL Id: halshs https://halshs.archives-ouvertes.fr/halshs Pollution haven hypothesis and Environmental impacts of foreign direct investment: The Case of Industrial Emission of Sulfur Dioxide (SO2) in Chinese provinces Jie He To cite this version: Jie He. Pollution

Διαβάστε περισσότερα

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,

Διαβάστε περισσότερα

SPFC: a tool to improve water management and hay production in the Crau region

SPFC: a tool to improve water management and hay production in the Crau region SPFC: a tool to improve water management and hay production in the Crau region J.C. Mailhol, A. Merot To cite this version: J.C. Mailhol, A. Merot. SPFC: a tool to improve water management and hay production

Διαβάστε περισσότερα

ABCDA EF A A D A ABCDA CA D ABCDA EF

ABCDA EF A A D A ABCDA CA D ABCDA EF ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA ABBFA AAFAB ABCDAEF AAABBA AA CADA BABA AA DA ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA CAA BABADFAAFAB BCAFAB ABCDAEF AAABBA

Διαβάστε περισσότερα

Evaluation et application de méthodes de criblage in silico

Evaluation et application de méthodes de criblage in silico Evaluation et application de méthodes de criblage in silico Hélène Guillemain To cite this version: Hélène Guillemain. Evaluation et application de méthodes de criblage in silico. Sciences agricoles. Conservatoire

Διαβάστε περισσότερα

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Hervé Rivano To cite this version: Hervé Rivano. Algorithmique et télécommunications

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

A Convolutional Neural Network Approach for Objective Video Quality Assessment

A Convolutional Neural Network Approach for Objective Video Quality Assessment A Convolutional Neural Network Approach for Objective Video Quality Assessment Patrick Le Callet, Christian Viard-Gaudin, Dominique Barba To cite this version: Patrick Le Callet, Christian Viard-Gaudin,

Διαβάστε περισσότερα

Inflation Bias after the Euro: Evidence from the UK and Italy

Inflation Bias after the Euro: Evidence from the UK and Italy Inflation Bias after the Euro: Evidence from the UK and Italy Pasquale Scaramozzino, Giancarlo Marini, Alessandro Piergallini To cite this version: Pasquale Scaramozzino, Giancarlo Marini, Alessandro Piergallini.

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix algeriensis NRRL B-24137 and Biochemical Characterization of Two Pyrrothine N-Acyltransferases in This Extract.

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires Aldo Decio Pourchet To cite this version: Aldo Decio Pourchet. Développement

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

Les gouttes enrobées

Les gouttes enrobées Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Langages dédiés au développement de services de communications

Langages dédiés au développement de services de communications Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications

Διαβάστε περισσότερα

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development Isabelle Buisson, Ronan Le Bouffant, Mélinée Futel, Jean-François Riou, Muriel Umbhauer To cite this version:

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

Modélisation de la réaction d alkylation du motif zinc-thiolate

Modélisation de la réaction d alkylation du motif zinc-thiolate Modélisation de la réaction d alkylation du motif zinc-thiolate Delphine Picot To cite this version: Delphine Picot. Modélisation de la réaction d alkylation du motif zinc-thiolate. Chimie. Ecole Polytechnique

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Microcredit: an answer to the gender problem in funding?

Microcredit: an answer to the gender problem in funding? Microcredit: an answer to the gender problem in funding? Sophie Brana To cite this version: Sophie Brana. Microcredit: an answer to the gender problem in funding?. CR10/EFI08. 2008. HL Id:

Διαβάστε περισσότερα

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L )

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L ) Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L. 288-1) Guillaume Nicolas To cite this version: Guillaume Nicolas. Des données anatomiques

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

First report from an advanced radiological inventory for a spent fuel reprocessing plant

First report from an advanced radiological inventory for a spent fuel reprocessing plant First report from an advanced radiological inventory for a spent fuel reprocessing plant Philippe Girones, Boisset Laurence, Ducros Christian To cite this version: Philippe Girones, Boisset Laurence, Ducros

Διαβάστε περισσότερα

ABCDEDF AABCDABEFBB FBCBFBAADB ACBAC ACCDCBFA DDAEFBBBB ADBB EF DB B B BDB CD DBB ABBBBADD EFCBCBBBFAB CEFB BFBC B ABCAAA ACFABBBCA B A CDA CD D ABBCDDEFB EFDDAACBBA BADAEFBEF BCCBBBAABB DCCBDABBD ABABBBBB

Διαβάστε περισσότερα

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon Natalia Egorova To cite this version: Natalia Egorova. Spectres

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Χίος, 4/2/2019. Ως επιλέξιμοι κρίθηκαν: ΕΠΙΛΕΞΙΜΟΙ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ Α/Α ΚΩΔΙΚΟΣ ΑΙΤΗΣΗΣ ΕΠΙΛΕΞΙΜΟΤΗΤΑ. Διαθέτει τα απαιτούμενα προσόντα

Χίος, 4/2/2019. Ως επιλέξιμοι κρίθηκαν: ΕΠΙΛΕΞΙΜΟΙ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ Α/Α ΚΩΔΙΚΟΣ ΑΙΤΗΣΗΣ ΕΠΙΛΕΞΙΜΟΤΗΤΑ. Διαθέτει τα απαιτούμενα προσόντα Χίος, 4/2/219 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΤΗΣ 52418/2 ΠΡΟΣΚΛΗΣΗΣ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣΓΙΑ ΣΥΜΜΕΤΟΧΗ ΣΤΗΝ ΠΡΑΞΗ ΜΕ ΤΙΤΛΟ«ΕΝΔΥΝΑΜΩΣΗ, ΕΝΙΣΧΥΣΗ ΤΩΝ ΔΕΞΙΟΤΗΤΩΝ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗ ΤΩΝ ΠΡΟΣΟΝΤΩΝ ΤΩΝ

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

Discouraging abusive behavior in privacy-preserving decentralized online social networks

Discouraging abusive behavior in privacy-preserving decentralized online social networks Discouraging abusive behavior in privacy-preserving decentralized online social networks Álvaro García-Recuero To cite this version: Álvaro García-Recuero. Discouraging abusive behavior in privacy-preserving

Διαβάστε περισσότερα

Space weather influences on atmospheric electricity

Space weather influences on atmospheric electricity Space weather influences on atmospheric electricity Article Accepted Version Nicoll, K. A. (2014) Space weather influences on atmospheric electricity. Weather, 69 (9). pp. 238-241. ISSN 1477-8696 doi:

Διαβάστε περισσότερα

,,-# $% &.(#./ %0 ) &, ((# ).!#3 8( # #2!*

,,-# $% &.(#./ %0 ) &, ((# ).!#3 8( # #2!* &'(!"# $% ) *+(#$%#,,-# $% &.(#./ %0 ) &, ((#.1 2 3.4235*6#)7 1 #$%1 &#& "#$ ).!#3 8(. 423 6# #2!* % /%% (:% % $%# ;(# ("% (6 )# $%1# #2 @! ) 372

Διαβάστε περισσότερα

Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total Synthesis of Eupomatilone 2

Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total Synthesis of Eupomatilone 2 University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total

Διαβάστε περισσότερα

AE F F E C F E D ABC D

AE F F E C F E D ABC D AEFFECFED CB BC EFEFFEEEEE BFCEBFE ABCD ABCDEFCE CCAABCDEFCE DA EFF EFF EFEFFF EFF EFF EF F EF F EFF EFF EF CCAABCDEFCE A FCF FBF FEBF F FB FA ABCDBEFFBA FCFDBABCCB ABBFCFFDABCCB ABCD ABCDEFCE CCAABCDEFCE

Διαβάστε περισσότερα

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation J. Kron, Michel Bellet, Andreas Ludwig, Bjorn Pustal, Joachim Wendt,

Διαβάστε περισσότερα

! " #! $ %! & & $ &%!

!  #! $ %! & & $ &%! !" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original)

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original) Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original) H Steve Ndinga-Koumba-Binza To cite this version: H Steve Ndinga-Koumba-Binza. Phonetic and Phonological

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

! "! #" # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! '

! ! # # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! ' ! "! #" # $ #% & '#()!!*$( & +( $#!,-'(. $ ), ( )* /0 1234 $ 5- (6 7# 8,6 - - /& 4&! ' 6,!(*$(- (,('& 9 !" # $% $% $$!" #$ # % # &'&&&&&'& &() #* $$ & '' $( $) * $ +"&,-&!" +$ )$ " ## +," )- )) ## &. ''

Διαβάστε περισσότερα

A qualitative and quantitative analysis of the impact of the Auto ID technology on supply chains

A qualitative and quantitative analysis of the impact of the Auto ID technology on supply chains A qualitative and quantitative analysis of the impact of the Auto ID technology on supply chains Evren Sahin To cite this version: Evren Sahin. A qualitative and quantitative analysis of the impact of

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

"#$%%!&' ( *+,%%- !%!%!*&."$%%/-0! !%!%4!*&."$((,%/ !%!%(!*&."$,1,$,%/,!%!%"!*&."$"%%%%!!%!%$!*&."$"(,/$!!%!%2!*&."$",%%%/%0 !%!%!*&.

#$%%!&' ( *+,%%- !%!%!*&.$%%/-0! !%!%4!*&.$((,%/ !%!%(!*&.$,1,$,%/,!%!%!*&.$%%%%!!%!%$!*&.$(,/$!!%!%2!*&.$,%%%/%0 !%!%!*&. "#$%% &' ( )* *+,%%- %%*&."$%%/-0 %%,*&."$((,%%%/ %%(*&."$,1,$,%/, %%"*&."$"%%%% %%$*&."$"(,/$ %%1*&."$"(%%%/23 %%2*&."$",%%%/%0 %%4*&."$((,%/ %%-*&."$"",%%/4 %%*&."$(%%%/% 56)7)89)7:;8

Διαβάστε περισσότερα

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

9 1. /001/2 27 /8? /89 16 < / B? > DEE F !" #$ %! &!$ % ' $ ($ $ ) #%*!! +!(, % -. /001/2 03 4 /1. / 5 /6 0/078/2 27 91 1:3 /14 10 72 91.1;11 27 < 2 82 27 = 9 /62025 9> / = 9> 0/80 > /8? /89 16 < 3 9 4 24 4 /11 / 89 ;1 @ = 271002 A1? B 602 C

Διαβάστε περισσότερα

!"## $%"&'%()% &#% * &"(!%+"&,&& *- $&#% * %''%"( *./ $%+"#!#%#"()0'& *1 %2%&%&'%",&3 (%# * %3&4%0+&%"0 %+'56789: ** $%#%';+""'%() */

!## $%&'%()% &#% * &(!%+&,&& *- $&#% * %''%( *./ $%+#!#%#()0'& *1 %2%&%&'%,&3 (%# * %3&4%0+&%0 %+'56789: ** $%#%';+'%() */ !"## $%"&'%()% &#% * &"(!%+"&,&& *- $&#% * %''%"( *./ $%+"#!#%#"()0'& *1 %2%&%&'%",&3 (%# * %3&4%0+&%"0 %+'56789: ** $%#%';+""'%() */!" #$%& 03

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών. Εργαστήριο 5

Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών. Εργαστήριο 5 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών Εργαστήριο 5 ΕΝΤΟΛΗ: openssl (Linux) Το OpenSSL είναι μια βιβλιοθήκη κρυπτογράφησης για την υλοποίηση

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement

Διαβάστε περισσότερα

Geometric Tomography With Topological Guarantees

Geometric Tomography With Topological Guarantees Geometric Tomography With Topological Guarantees Omid Amini, Jean-Daniel Boissonnat, Pooran Memari To cite this version: Omid Amini, Jean-Daniel Boissonnat, Pooran Memari. Geometric Tomography With Topological

Διαβάστε περισσότερα

Measurement-driven mobile data traffic modeling in a large metropolitan area

Measurement-driven mobile data traffic modeling in a large metropolitan area Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &

Διαβάστε περισσότερα

!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%

!!#$%&'()%*$& !! )!+($,-./,0. !! )!% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$% !!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc

Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc Rémi Vannier To cite this version: Rémi Vannier. Profiterole : un protocole de partage équitable de la bande

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Modeling floods in a dense urban area using 2D shallow water equations

Modeling floods in a dense urban area using 2D shallow water equations odeling floods in a dense urban area using 2D shallow water equations E. ignot, A. Paquier,. Haider To cite this version E. ignot, A. Paquier,. Haider. odeling floods in a dense urban area using 2D shallow

Διαβάστε περισσότερα

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Διαβάστε περισσότερα

La naissance de la cohomologie des groupes

La naissance de la cohomologie des groupes La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.

Διαβάστε περισσότερα

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436 ! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +

Διαβάστε περισσότερα

Supplementary Information 1.

Supplementary Information 1. Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse

Διαβάστε περισσότερα

"#! "!$ "#$%#&&' " %&+'(( " " %&)*! ! &'+"!!./! "&+-"!

#! !$ #$%#&&'  %&+'((   %&)*! ! &'+!!./! &+-! ! "#! "!$! "#$%#&&' " %&!'(( " " %&)*! %(! &'+"!! "&+, "&+-!./! "&+!./! "&+-"! " %&+'(( ))",! 1 /)/,! " )+! "/$ ""!"$ "!(!2"/! " "!!! %+,! /! 1/3 )/-/! "!!!/!(!!/!!!+ "!//#"4""$ $" %& )!"'/!"!!5! )/!!,5

Διαβάστε περισσότερα

Pathological synchronization in neuronal populations : a control theoretic perspective

Pathological synchronization in neuronal populations : a control theoretic perspective Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

! #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& ! #$ -4*30*/335* !" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,

Διαβάστε περισσότερα

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

Παρατηρήσεις στα ϑέµατα

Παρατηρήσεις στα ϑέµατα Παρατηρήσεις στα ϑέµατα του διαγωνισµού ΘΑΛΗΣ 2013 της Ε.Μ.Ε. Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 20 Οκτωβρίου 2013 1 Γενικές Παρατηρήσεις Οι απόψεις των παιδιών Τα ϑέµατα, ιδίως

Διαβάστε περισσότερα

Leucotriènes et pathologies cardiovasculaires :diabète et hypertension artérielle

Leucotriènes et pathologies cardiovasculaires :diabète et hypertension artérielle Leucotriènes et pathologies cardiovasculaires :diabète et hypertension artérielle Gaëlle Hardy To cite this version: Gaëlle Hardy. Leucotriènes et pathologies cardiovasculaires :diabète et hypertension

Διαβάστε περισσότερα