A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E"

Transcript

1 TECHNICAL INFORMATION SERIES July 1976 Number 1 A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E LO G A N K. K U IP E R IO W A GEOLOGIC SURVEY DR. STANLEY C. GRANT Director and State Geologist 123 North Capitol Street Iowa City, Iowa 52242

2

3 TECHNICAL INFORMATION SERIES J u ly 1976 Number 1 A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r IOWA GEOLOGICAL SURVEY DR. STANLEY C. GRANT DIRECTOR AND STATE GEOLOGIST 123 NORTH CAPITOL STREET I owa c i t y, I owa 52242

4

5 A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r R esearch D iv is io n Iowa G e o lo g ic a l S urve y Abstract A mathematical model fo r the determ ination o f the surface temperature o f m aterials on the surface o f the earth is derived and solved nu m erica lly. The m aterial is assumed to be opaque and compact. Its surface is assumed to be f l a t and coincident w ith the plane o f the e a rth ' s surface. The problem is m athem atically represented by the fo llo w in g one dimensional heat conduction equation and boundary co n d itio n : (k /ρc) ϑ2t (x,t) / ϑx2=ϑt(x, t ) / ϑt 0<x k ϑt( x,t) / ϑx x =0 = f [T ( 0,t),t] T (x,0) =constant The temperature of the m a te ria l a t distance x beneath it s surface a t time t is T(x, t). The thermal c o n d u c tiv ity, d e n s ity, and s p e c ific heat are k, ρ, and c re spective ly and are assumed to be

6 constant. The function f is e x p lic itly and n o nlinearly dependent upon T(0,t) and t, and is composed o f the follo w in g heating or cooling e ffe c ts : d ire c t and scattered s u n lig h t, ra diant thermal energy em itted by the m a te ria l, a ir convection, evaporation, and condensation a t the m a te ria l s surface. The function o f f is dependent upon: the albedo, e m is s iv ity, and evaporation opportunity o f the m a te ria l, the temperature, re la tiv e hum idity, and wind v e lo c ity o f the a ir above the m a te ria l, the d e clin a tio n o f the sun, and the geographical la titu d e o f the m a te ria l. The temperature, re la tiv e hum idity and wind v e lo c ity of the a ir above the m a teria l were assumed to be constant. Results fo r T(0,t ),f[ T ( 0,t),t], and the various components of f [ T ( 0, t ), t ) are presented in graphical form. Results fo r T (0,t) a t various s ig n ific a n t items t during the solar day are given in tabular form. The solutions were ca rrie d out fo r t s u ffic ie n tly large th a t T(0,t) became approximately p e rio d ic. The model predicts th a t the surface temperature o f a ty p ic a l earth cru st m aterial a t a given time is dependant only to a ra th e r small degree upon the temperature o f the m aterial more than approximately 6 days p r io r to th a t tim e. In tro d u c tio n The d a i ly and s e a s o n a l v a r ia t io n o f th e s u rfa c e te m p e ra tu re o f m a te r ia ls on th e e a r t h s s u rfa c e is a phenomena w h ic h is f a m i lia r to a l l o f u s. A q u a n t it a t iv e u n d e rs ta n d in g o f t h is phenomena and i t s n a tu r a l causes is im p o rta n t i n te m p e ra tu re m apping o f th e e a r t h 's s u rfa c e by means o f rem ote s e n sors lo c a te d in a i r o r s p a c e c r a ft. 2

7 The s u rfa c e te m p e ra tu re o f a g iv e n m a t e r ia l a t a g iv e n tim e o f th e y e a r and day depends on a v a r ie t y o f n a t u r a l h e a tin g and c o o lin g e f f e c t s and on th e in h e r e n t p r o p e r tie s o f th e m a t e r ia l. Any re a s o n a b ly p r a c t ic a l m a th e m a tic a l model d e s ig n e d t o q u a n t it a t iv e ly p r e d ic t s u rfa c e te m p e ra tu re s w i l l n o t be a c c u ra te s im p ly because m ost n a t u r a l h e a tin g and c o o lin g e f f e c t s a re d e pendent upon w e a th e r c o n d itio n s, w h ic h a re im p o s s ib le t o p r e d ic t a c c u r a te ly. W ith c e r t a in a ssu m p tio n s a b o u t w e a th e r c o n d itio n s, how ever, a m a th e m a tic a l m odel can be d e velo p e d w h ic h le n d s c o n s id e ra b le in s ig h t in t o th e s u r fa c e te m p e ra tu re phenomena and i t s c a u s e s, and w h ic h can be used as a g u id e f o r th e q u a n t it a t iv e p r e d ic t io n o f s u rfa c e te m p e ra tu re s. Problem and S o lu tio n The p ro b le m i s t o d e te rm in e th e s u r fa c e te m p e ra tu re o f an opaque, com pact m a te r ia l on th e e a r t h 's s u r fa c e. Suppose t h a t th e m a t e r ia l's s u r fa c e, in c o n ta c t w ith th e atm osphere, i s f l a t and c o in c id e n t w it h th e p la n e o f th e e a r th 's s u r fa c e. F u r th e r, assume t h a t c o n d itio n s a re such t h a t, a t a g iv e n tim e t, th e te m p e ra tu r e t o f th e m a te r ia l i s th e same a t a l l p o in ts a t d is ta n c e x v e r t i c a l l y b e lo w th e m a t e r ia l's s u r fa c e. The d is ta n c e x is zero on th e s u rfa c e and in c re a s e s fro m zero to w a rd th e e a r th 's c e n te r. W ith t h i s a s s u m p tio n re g a rd in g T i t fo llo w s th a t th e f o llo w in g fo rm o f th e h e a t e q u a tio n 3

8 i s v a l i d in th e m a te r ia l : ( k / ρc)ϑ 2T( x, t ) / ϑ x 2=ϑT( x,t ) / ϑt 0<x ( 1 ) The th e rm a l c o n d u c t iv it y, d e n s ity, and s p e c if ic h e a t a re assumed t o be c o n s ta n t and a re r e s p e c t iv e ly d e n o te d by k, p, and c. One a ls o h a s: k ϑt( x,t ) / ϑx = f ( t) (2 ) X =0 w here f ( t ) i s d e fin e d as th e r a te o f h e a t flo w o u t o f th e m a t e r ia l a t i t s s u rfa c e p e r u n i t s u rfa c e a re a. D iv id in g f ( t ) in t o 5 s e p a ra te te rm s : f ( t )= 5 i=1f i (t) (3 ) -f1(t ) =(1-A)R 0co sθ 0e x p ( s e c Ө0) /. 9 0 (4) A - A lbedo o f m a te r ia l. R0 - Ir r a d ia n c e re c e iv e d fro m th e sun above e a r th 's atm osphere (.139 Wcm- 2 ). Ө0 - Sun z e n ith a n g le. co s Ө0 = c o s Өc o s φc o s [2 t( 2 4 h r ) -1] + s in Өs in φ Ө - D e c lin a tio n o f sun. φ- G e o g ra p h ic a l l a t i t u d e o f m a te r ia l on e a r th 's s u r fa c e. t - L o c a l s o la r tim e. 4

9 - f ( t ) = ϵ ot 4 ( xa m3gm- 1 ) (5) 2 a ϵ σ - Absorbtance (emissivity) of material. - Stephan-Boltzmann constant (5.67x10-12 Wcm-2 K -4 ). Ta- Air temperature above the material's surface in degrees Kelvin. xα - Absolute humidity of air above material's surface. f 3 ( t ) = ϵ σt4 (0, t ) (6) f ( t ) = [ T ( 0, t ) ~ T a ] ( V sec f t - 1 )x 4 a ( Wcm-2 K-1 ) (7) v a- Velocity of air assumed to be moving parallel to and above the materials - surface. T (0,t) - Surface temperature of material in degrees Kelvin. f 5 ( t ) = a { e [ T ( 0, t ) ] - e [ T a]ra } (mm o f Hg)-1 x ( Va sec f t - 1) ( Wcm- 2 ) (8) a - E v a p o ra tio n o p p o r tu n it y o f th e m a t e r ia l. Ra - R e la tiv e h u m id ity o f a i r above m a t e r ia l's s u r fa c e. e [ t ] -S a tu ra te d v a p o r p re s s u re o f w a te r a t te m p e ra tu re T. e [T ]= [ (T K -1 ~ )2 ](mm o f Hg) t - T e m p e ra tu re in d e g re e s K e lv in. 5

10 The f i r s t te rm f 1 ( t ) a p p ro x im a te s th e r a d ia n t e n e rg y fro m th e sun and in a d d it io n t h a t r a d ia n t e n e rg y re c e iv e d fro m th e sun b u t s c a tte re d by th e atm osphere b e fo re a r r iv in g a t th e m a t e r ia l's s u r fa c e. M ost o f t h i s r a d ia n t e n e rg y w i l l have w a v e le n g th s in th e.3-3 μ r e g io n. The s e m ie m p ir ic a l e x p re s s io n g iv e n f o r f 1 (t) was d e te rm in e d fro m m easurem ents ta k e n d u r in g th e summer in C o lo ra d o (H u ls tro m, ). I t i s in te n d e d t o be a re a s o n a b le a p p ro x im a tio n f o r c le a r a tm o s p h e ric c o n d itio n s o n ly. The second te rm f 2( t) a p p ro x im a te s th e th e rm a l r a d ia n t e n e rg y re c e iv e d fro m th e a tm o sphere. M ost o f t h i s r a d ia n t en erg y w i l l have w a v e le n g th s in th e 3-14 μ r e g io n and o r ig in a t e s p r i n c i p a l l y fro m th e w a te r v a p o r in th e a tm o sp h e re. P a r t o f th e e x p re s s io n g iv e n f o r f 2 (t) was d e riv e d fro m g r a p h ic a lly p re s e n te d m easured d a ta ta k e n by S loan e t a l. ( ). The t h i r d te rm g iv e s th e th e rm a l r a d ia n t e n e rg y e m itte d by th e m a te r ia l as d ic t a t e d by th e S te p h a n - B o ltzm a n n la w. The f o u r t h te rm a p p ro x im a te s th e c o n v e c tiv e h e a t lo s s (g a in ) due to th e passage o f a i r assumed t o be m oving p a r a l l e l t o and above th e m a t e r ia l's s u r fa c e. I t is an exam ple o f th e s o - c a lle d Newton h e a t exchange b o u n d a ry c o n d it io n. The n u m e ric a l c o e f f ic ie n t s in th e te rm w ere d e te rm in e d (McAdams, 1954) by la b o r a to r y e x p e rim e n ts m e a s u rin g th e te m p e ra tu re o f a ro u g h copper p la t e b e in g c o o le d (h e a te d ) by a w in d o f v e lo c it y v p a r a l l e l t o th e p l a t e 's s u r fa c e. 6

11 The f i f t h term a p p ro x im a te s th e h e a t lo s s due to th e e v a p o ra tio n o f w a te r fro m th e m a t e r ia l's s u r fa c e. T h is te rm was o b ta in e d by m u lt ip ly in g th e e v a p o ra tio n r a te o f w a te r from th e m a t e r ia l by th e h e a t o f v a p o r i z a tio n o f w a te r. S e v e ra l s e m ie m p e ric a l fo rm u la e f o r th e e v a p o ra tio n r a te o f w a te r fro m m a te r ia ls e x is t in th e l i t e r a t u r e (W is le r, ). The one chosen was d e te rm in e d by Rohwer, and sea le v e l b a ro m e tric p re s s u re was used in h is fo r m u la. The c o n s ta n t a i s th e s o - c a lle d e v a p o ra tio n o p p o r tu n ity (W is le r, 1949) o f th e m a t e r ia l. F o r m a te r ia ls c o n ta in in g no w a te r a w o u ld be z e ro. F o r h ig h ly p o ro u s m a te r ia ls w h ic h a re s a tu r a te d w ith w a te r a w o u ld be a p p ro x im a te ly 1. The a b s o lu te h u m id ity xa in te rm f 2 ( t ) i s o b ta in e d by means o f th e id e a l la w w it h te m p e ra tu re Ta and p re s s u re e [ta ] Ra. The a p p ro x im a tio n g iv e n f o r e[t] was d e te rm in e d e m p ir ic a lly fro m t a b u la t io n s f o r s a tu r a te d w a te r v a p o r p re s s u re and is re a s o n a b ly a c c u ra te f o r k <t <310 k. I n te rm s f 2 ( t ), f 4 ( t ), and f 5 (t) th e q u a n t it ie s ta, Va, and Ra o c c u r. These q u a n t it ie s depend upon w e a th e r c o n d itio n s and th u s change w it h tim e. A t f i r s t assume t h a t th e y a re c o n s ta n t, and n o te t h a t f 1 (t) depends e x p l i c i t l y upon t, t h a t f2(t) is a c o n s ta n t, and t h a t f 3 ( t ), f 4 (t), and f 5 (t) depend e x p l i c i t l y upon T ( 0, t ) T h u s : f ( t ) = f [ T ( 0, t ), t ] 7

12 In (1) and (2) T ( x, t ), x, and t have th e d im e n s io n s o f te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. T ra n s fo rm th e s e th re e q u a n t it ie s in t o d im e n s io n le s s fo rm by means o f th e fo llo w in g s u b s t it u t io n s : T ( x,t) = K 0u ( y,τ) x = c 0y t= S0τ w here K0=R01/4σ- l / 4 c0=kr0-3/ 4 σ- l / 4 S0=R0-3 / 2σ- l / 2 k ρc The q u a n t it ie s u ( y, τ ), y, and τ a re d im e n s io n le s s te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. In te rm s o f th e s e new q u a n t i t i e s (1) and (2) become: ϑu2( y, τ ) /ϑ y 2 = ϑu (y, τ ] / ϑτ 0<y (9) ϑu ( y, τ ) / ϑy y=0= f [ K0u(0, τ ), S 0 τ]r0-1 = F [u(0,τ ), τ ] (10) The o n ly p la c e w here t e x p l i c i t l y o c c u rs in f ( t ) is in th e c o s [2 t(2 4hr)-1] te rm f o r c o s Ө0 in f 1 ( t ). T h is te rm becomes cos [2 η-1τ] where η = (2 4 h r)s 0-1 when one re p la c e s t by S0τ. The q u a n t it y η is d im e n s io n le s s and is in v e r s e ly p r o p o r tio n a l t o th e square o f th e th e rm a l i n e r t i a (k ρc ) 1/2. 8

13 μ (y,0 ) = μ0 0< y (11) The s o lu t io n f o r μ (0,τ ) as d e te rm in e d fro m ( 9 ), ( 1 0 ), and (11) is (C arslaw and J a e g e r, ): μ (0,τ )= u0- -1/2 0 τ(τ - z )-1/2 F [ μ (0,z ), z] dz (12) E q u a tio n (12) was s o lv e d n u m e r ic a lly. The p r o cedure was to a p p ro x im a te F [ μ ( 0, z ), z ] in th e u s u a l manner by a s e r ie s o f p o ly n o m ia ls o f 1 s t o r 2nd o r d e r. An in d ic a t io n o f th e a c c u ra c y o f t h i s p ro c e d u re may be o b ta in e d by com paring th e r e s u lt s f o r μ ( 0, τ ) f o r th e two o r d e r s. The d is c re p a n c y betw een u ( 0, τ ) u s in g 2nd o rd e r p o ly n o m ia ls was le s s th a n.01% f o r τ >0. The d is c re p a n c y te n d e d t o become le s s f o r la r g e r τ. These s o lu tio n s show t h a t μ ( 0, τ ) - μ ( 0, τ +n) f o r s u f f i c i e n t l y la r g e v a lu e s o f τ. f o r u0. T h is is p a r t i c u l a r l y tr u e f o r an a p p r o p r ia te c h o ic e T h is r e s u lt is p h y s ic a lly re a s o n a b le s in c e one w ould e x p e c t th a t μ ( 0, τ ) w ould be m a in ly d e te rm in e d by th e f o r c in g fu n c tio n F f o r s u f f i c i e n t l y la r g e τ, r a th e r th a n th e m a t e r ia l' s i n i t i a l te m p e ra tu re a t some la r g e tim e in th e p a s t. The n u m e ric a l s o lu tio n s were tim e phased in a manner such t h a t τ and t w ere zero a t 18 h rs (6 PM) lo c a l s o la r tim e. S o lu tio n s f o r μ ( 0, τ ) w ere fo u n d f o r 0<τ <6η, o r e q u iv a le n t ly T ( 0,t) was fo u n d f o r 0<t <6 d a ys. V a lu e s f o r T ( 0, t ) - T a a t 6 h rs lo c a l s o la r tim e, τ [0,1 2 h r + n ( 2 4 h r ) ]- T a, in d e g re e s K e lv in a re g iv e n in T a b le 1 f o r tw o v a lu e s o f T0=K0μ0=T( x,0 ) ' The v a lu e s ta k e n f o r th e c o n s ta n ts in F 9

14 w e re : A=.05, ϵ = l.0,ra =. 2 5, Va =5 f t / s e c, T a =285 K, η=.1 8, a=.1,0 = 0, and φ=4 5. N ote t h a t th e v a lu e s l i s t e d f o r τ - τa in T a b le 1 in c re a s e a s y m p to tic a lly w it h n f o r T0=279 K b u t d e cre a se a s y m p to t ic a lly w ith η f o r T0=285 K. F o r s u f f i c i e n t l y la r g e η b o th s h o u ld converg e t o th e same v a lu e. P re v io u s tre a tm e n ts o f t h i s s u rfa c e te m p e ra tu re p ro b le m (W atson, 1971; J a e g e r, 1953) have used a p e r io d ic s o lu t io n f o r τ ( 0, t ). F o r th e s e s o lu tio n s th e i n i t i a l t r a n s ie n t b e h a v io r o f T ( 0, t ), w h ic h depends upon o n e 's c h o ic e o f T (0, t ), w h ic h depends upon o n e 's c h o ic e o f τ 0, is n o t p r e s e n t. Such s o lu tio n s a re le s s com plex b u t c o n ta in le s s in fo r m a tio n p a r t i c u l a r l y i f one supposes t h a t τ0 is an a p p r o p r ia te e a rth s u b s u rfa c e te m p e ra tu re. R e fe r r in g t o th e p r e v io u s ly l i s t e d v a lu e s f o r th e c o n s ta n ts i n F, to g e th e r w it h τ0 =28 2 K as th e "s ta n d a rd c h o ic e " o f c o n s ta n ts, f ig u r e 1 shows T ( 0, t ), 5 days <t <6 d a y s, f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. F ig u re _ 2 shows F ( τ )= 5 i=1 F i ( τ ) and F i ( τ ) = f i (t)r 0-1, i = l, 2, 3, 4 / 5, 5 days <t <6 days a g a in w it h th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. TABLE 1. T [0,1 2 h r + n ( 2 4 h r) } - Ta T0(K) n

15 TABLE 2. a1, a2, and a 3 o f T ( 0, t ) f o r 5 d a ys < t <6 d a y s. C o n s ta n ts a1 ( K) a 2 ( K) a 3 ( K) s ta n d a rd A= ε = R =.75 a V =15 f t / s e c a T = K a η= a= θ=.3 ra d ia n s T0=2850K T a b le 2 shows th e v a lu e s fo u n d f o r a1, a2, and a3 as d e p ic te d in F ig u re 1: - a1 = T (0, 5 d a y s )-T a - a2 = T ( 0,t)m in -T a a3 = T ( 0,t) max -T a 11

16 LOCAL SOLAR TIME (HRS) Figure I. T(0,t) for 5 days < t < 6 days and with the "standard choice" of constants. 12

17 Figure 2. Ft } F1,F2,F3, and F4 for 5 days / 6 days and with the "standard choice" of constants. 13

18 The minimum and maximum v a lu e s f o r T ( 0, t ), 5 days < t< 6 d a y s, a re r e s p e c tiv e ly T ( 0, t ) min and T ( 0, t ) max E n tr ie s shown in th e colum n headed " c o n s ta n ts " in T a b le 2 show th e d e p a rtu re s fro m th e "s ta n d a rd c h o ic e ". Thus A=.15 in th e second row o f T a b le 2 means t h a t th e s e le c tio n o f c o n s ta n ts was th e "s ta n d a rd c h o ic e " e x c e p t t h a t A was e q u a l t o.1 5 r a th e r th a n.05 as i t is in th e "s ta n d a rd c h o ic e ". The re ason t h a t th e s e r e s u lt s a re in t a b u la r r a t h e r th a n g r a p h ic a l fo rm i s t h a t th e v a r io u s c u rv e s f o r T (0, t ) a re a l l v e ry s im ila r in shape b u t have d i f f e r e n t v a lu e s f o r a 1, a2, and a3. In e v e ry case T ( 0, t ) min was r e a liz e d a t fro m 12 to 36 m in u te s a f t e r s u n r is e. E x c e p t f o r th e va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t ' s maximum v a lu e a t fro m 60 t o 84 m in u te s a f t e r 12 h rs lo c a l s o la r tim e. F o r th e Va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t s maximum v a lu e a t fro m 36 to 60 m in u te s a f t e r 12 h r s. lo c a l s o la r tim e. F o r an u n d e rs ta n d in g o f th e r e s u lt s in T a b le 2 i t is im p o r ta n t t o u n d e rs ta n d th e b e h a v io r o f th e te rm s Fi, i = l, 2, 3, 4, 5, as th e y depend upon th e c o n s ta n ts in F. F1 and F2 a re h e a tin g te rm s, F 3 i s a c o o lin g te rm. F 4 and F 5 can e it h e r h e a t o r c o o l th e m a t e r ia l. The h e a tin g e f f e c t o f F1 is decreased f o r in c r e a s in g A and, f o r p o s it iv e φ in c re a s e d f o r ϴ in c r e a s in g fro m z e ro. The h e a tin g e f f e c t o f F2 in c re a s e s f o r in c r e a s in g ϵ, t a, and R. a F1 is t y p i c a l ly o f g r e a te r im p o rta n c e th a n F2, b u t c o u ld have le s s n e t h e a tin g e f f e c t th a n F2 when ϵ, Ta, 14

19 and Ra a re la r g e. The c o o lin g e f f e c t o f F3 is in c re a s e d f o r in c r e a s in g ϵ. F3 is p e rh a p s t y p i c a l l y th e m ost im p o rta n t c o o lin g te rm. The e f f e c t o f F4 is to c o o l th e m a te r ia l when T ( 0,t) > T a b u t t o h e a t th e m a te r ia l when T ( 0, t ) <Ta. I t s e f f e c t i s in c re a s e d f o r in c r e a s in g V a. I t ' s im p o rta n c e becomes c o n s id e r a b le when Va becomes s u f f i c i e n t l y la r g e, f 5 can e it h e r c o o l (e v a p o ra tio n ) o r h e a t (c o n d e n s a tio n ) th e m a t e r ia l. I t ' s e f f e c t i s in c re a s e d f o r in c r e a s in g va and a, and can be o f co n s id e r a b le im p o rta n c e when va and / o r a become s u f f i c i e n t l y la r g e. I t ' s e f f e c t te n d s t o be t h a t o f c o o lin g f o r s m a ll Ra and T a. T a b le 2 is q u it e in c o m p le te. I t c o n ta in s o n ly s in g le v a r ia b le d e p a rtu re s fro m th e "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts. The ta b le may, h o w e ver, be used f o r cru d e a p p ro x im a tio n s f o r a g e n e ra l s e le c t io n o f th e c o n s ta n ts v ia th e f i r s t o rd e r T a y lo r e x p a n s io n : ai (c 1 + Δc 1, c 2+Δc2,.c9+ Δ c 9 ) =a1 (c 2, c 2,... c9) 9 + Δ c jϑ ai ( c l, c 2,... c9 ) / ϑcj j = l i = l, 2,3 The "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts a re cl, + c 2,.c 9. The p a r t i a l d e r iv a t iv e s ϑai / ϑcj may be a p p ro x im a te d fro m T a b le 2. D e p a rtu re s o f th e c o n s ta n ts fro m th e s ta n d a rd c h o ic e a re Δcj. I t is a p p ro p ria te t o c o n s id e r th e l i m i t a t i o n s and 15

20 e x p e c te d a c c u ra c y o f th e s e s o lu t io n s. The te rm F1 assumes c le a r a tm o s p h e ric c o n d itio n s, th u s o u r r e s u lt s a p p ly o n ly in t h i s c a s e. The c o n s ta n ts ta, V a, and Ra a re d e te rm in e d by w e a th e r c o n d itio n s and i n r e a l i t y change c o n s id e r a b ly w it h tim e. I t has been assumed t h a t th e y a re c o n s ta n t, how e ve r. T h is a ssu m ptio n c le a r ly in tr o d u c e s e r r o r in t o th e s o lu t io n s. T r a n s p ir a tio n fro m v e g e ta tio n was n o t c o n s id e re d so t h a t o u r r e s u lt s do n o t a p p ly t o v e g e ta tio n. The m odel is c le a r ly to o s im p le t o p r e d ic t w it h any a c c u ra c y s u rfa c e te m p e r a tu r e s t h a t one w o u ld a c t u a lly m easure in th e f i e l d. I t s h o u ld, h o w e ve r, be u s e fu l f o r p r e d ic t in g, w it h lim it e d a c c u ra c y, th e s u rfa c e te m p e ra tu r e s o f n o n -v e g e ta te d m a te r ia ls u n d e r c le a r a tm o s p h e ric c o n d itio n s when ta, V a, and Ra a re r e l a t i v e l y c o n s ta n t. In c o n c lu s io n i t s h o u ld p e rhaps be em phasized t h a t r e l a t i v e l y l i t t l e a t t e n t io n has been g iv e n t o th e r a t e a t w h ic h th e s o lu tio n s p re s e n te d in T a b le 2 become a p p r o x i m a te ly p e r io d ic. O nly th e d a ta p re s e n te d in T a b le 1 d e a ls w it h t h i s phenomena. R e p re s e n tin g T[0, t + n ( 2 4 h r )], 0<t <2 4 h r, by Tη (O,t ), r e p r e s e n ta tiv e v a lu e s o f T 5(O, t) a re g iv e n in T a b le 2. I t i s e x p e c te d t h a t Tn (0, t ) - T (0, t ) f o r n s u f f i c i e n t l y la r g e. T h is is e x p e c te d to be v a l i d f o r r e l a t i v e l y s m a ll n i f th e 24hr tim e ave rage o f T ( 0, t ) and T0 a re n o t s i g n i f i c a n t l y d i f f e r e n t and η is r e l a t i v e l y la r g e. S o lu tio n s w ere c a r r ie d o u t f o r T ( 0, t ), 0<t <l2 days f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts e x c e p t Ө=.3 r a d ia n and w ith η=.18 and F o r η=.18, a1, a2, 16

21 and a a re r e s p e c tiv e ly , , and f o r n=5 and , , and f o r n= l l. F o r n =.0 1 6, a1, a 2, and a3 are r e s p e c t iv e ly , and f o r n=5 and , , and f o r n = l l. The changes in a1, a 2, and a 3 a re a p p ro x im a te ly.4 f o r η =. 016 b u t a p p ro x im a te ly.15 f o r η=.1 8. I t w o u ld be e x p e c te d t h a t th e changes f o r a1, a 2, and a 3 w o u ld n o t be g r e a te r th a n.15 f o r th e s o lu tio n s in T a b le 2. The v a lu e ta k e n by η f o r m ost e a rth c r u s t m a te r ia ls i s la r g e r th a n.1 8. The m odel w o u ld th u s p r e d ic t t h a t th e te m p e ra tu re o f a t y p ic a l e a r th c r u s t m a t e r ia l a t a g iv e n tim e is d e pendent o n ly t o a r a th e r s m a ll d e g re e upon th e te m p e ra tu re o f th e m a te r ia l more th a n a p p ro x im a te ly 6 days p r i o r to t h a t t im e. 17

22 REFERENCES CITED C a rs la w, H., and Ja e g e r, J., 1959, "C o n d u c tio n o f H eat in S o lid s ", 2nd e d., O x fo rd U n iv e r s it y P re s s, London and New Y o rk, p, 76. H u ls tro m, R.L., 1970, A summary o f s o la r r a d ia t io n measu re m e n ts and a n a ly s e s made d u r in g 1970, R e p o rt No. R , M a r tin M a r ie tta C o r p., D enver D iv is io n, p J a e g e r, J. C., 1953, C o n d u c tio n o f h e a t in a s o lid w it h p e r io d ic boundary c o n d itio n s, w it h an a p p lic a t io n t o th e s u rfa c e te m p e ra tu re o f th e moon, C a m b ri d g e Philos.So c., P ro c., v. 49, p t. 2, p McAdams, W.H., 1954, "H eat T r a n s m is s io n ", 3 rd e d., M c G ra w -H ill Book Company, New Y o rk, p Rohwer C., E v a p o ra tio n fro m fr e e w a te r s u r fa c e s, U.S. D e p a r t m e n t o f A g r i c u l t u r e T e c h. B u l l. 271, Decem ber S lo a n, R., Shaw, J. H., and W illia m s, D., 1956, T herm al r a d ia t io n fro m th e a tm o sphere, J. O p t. Soc. Am., 46, p W atson, K., 1971, A p p lic a tio n o f th e rm a l m o d e lin g i n th e g e o lo g ic a in t e r p r e t a t io n o f IR im ages, P ro c e e d in g s o f th e Seventh I n t e r n a t io n a l Symposium on Remote S e n sin g o f E n v iro n m e n t, The U n iv e r s it y o f M ic h ig a n, p W is le r, C.O., and B r a te r, E.F., 1949, "H y d ro lo g y ", John W ile y & Sons I n c., New Y o rk, p. 152,

23

24 H 6618

Studies on the Athena Parthenos of Pheidias

Studies on the Athena Parthenos of Pheidias University of Iowa Iowa Research Online Theses and Dissertations 1914 Studies on the Athena Parthenos of Pheidias Charles Amzi Vannoy State University of Iowa This work has been identified with a Creative

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ: 2008057

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ: 2008057 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ Σπουδαστές: Δεληλίγκα

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

12 2006 Journal of the Institute of Science and Engineering. Chuo University

12 2006 Journal of the Institute of Science and Engineering. Chuo University 12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

NPI Unshielded Power Inductors

NPI Unshielded Power Inductors FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC

Διαβάστε περισσότερα

Polymer PTC Resettable Fuse: KMC Series

Polymer PTC Resettable Fuse: KMC Series Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

By R.L. Snyder (Revised March 24, 2005)

By R.L. Snyder (Revised March 24, 2005) Humidity Conversion By R.L. Snyder (Revised March 24, 2005) This Web page provides the equations used to make humidity conversions and tables o saturation vapor pressure. For a pd ile o this document,

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES. Fang-Chou Yang. Antenna La b o ra to ry

AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES. Fang-Chou Yang. Antenna La b o ra to ry AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES Fang-Chou Yang Antenna La b o ra to ry R eport No. 77 - i i - ACKNOWLEDGMENTS T his work was done

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod 2003 6 6 00026788 (2003) 0620042206 H arlow, 2 3, (., 70049; 2., 7006; 3., 200433) H arlow,,,,, ;, ; ; F832. 5; F830. 9 A T he Op tim al L PM Po rtfo lio M odel of H arlow s ad Its So lvig M ethod W AN

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR FEATURES NPN SILICON OSCILLATOR AND MIXER TRANSISTOR LOW COST HIGH GAIN BANDWIDTH PRODUCT: ft = MHz TYP LOW COLLECTOR TO BASE TIME CONSTANT: CC r b'b = 5 ps TYP LOW FEEDBACK CAPACITANCE: CRE=.55 pf TYP

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

NTC Thermistor:TSM type

NTC Thermistor:TSM type Features. RoHS compliant 2. EIA size 0402, 0603, 0805, 206 3. Highly reliable structure 4. -40 ~ +25 operating temperature range 5. Wide resistance range 6. Cost effective 7. Agency recognition: UL Recommended

Διαβάστε περισσότερα