A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E
|
|
- Λυδία Αξιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 TECHNICAL INFORMATION SERIES July 1976 Number 1 A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E LO G A N K. K U IP E R IO W A GEOLOGIC SURVEY DR. STANLEY C. GRANT Director and State Geologist 123 North Capitol Street Iowa City, Iowa 52242
2
3 TECHNICAL INFORMATION SERIES J u ly 1976 Number 1 A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r IOWA GEOLOGICAL SURVEY DR. STANLEY C. GRANT DIRECTOR AND STATE GEOLOGIST 123 NORTH CAPITOL STREET I owa c i t y, I owa 52242
4
5 A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r R esearch D iv is io n Iowa G e o lo g ic a l S urve y Abstract A mathematical model fo r the determ ination o f the surface temperature o f m aterials on the surface o f the earth is derived and solved nu m erica lly. The m aterial is assumed to be opaque and compact. Its surface is assumed to be f l a t and coincident w ith the plane o f the e a rth ' s surface. The problem is m athem atically represented by the fo llo w in g one dimensional heat conduction equation and boundary co n d itio n : (k /ρc) ϑ2t (x,t) / ϑx2=ϑt(x, t ) / ϑt 0<x k ϑt( x,t) / ϑx x =0 = f [T ( 0,t),t] T (x,0) =constant The temperature of the m a te ria l a t distance x beneath it s surface a t time t is T(x, t). The thermal c o n d u c tiv ity, d e n s ity, and s p e c ific heat are k, ρ, and c re spective ly and are assumed to be
6 constant. The function f is e x p lic itly and n o nlinearly dependent upon T(0,t) and t, and is composed o f the follo w in g heating or cooling e ffe c ts : d ire c t and scattered s u n lig h t, ra diant thermal energy em itted by the m a te ria l, a ir convection, evaporation, and condensation a t the m a te ria l s surface. The function o f f is dependent upon: the albedo, e m is s iv ity, and evaporation opportunity o f the m a te ria l, the temperature, re la tiv e hum idity, and wind v e lo c ity o f the a ir above the m a te ria l, the d e clin a tio n o f the sun, and the geographical la titu d e o f the m a te ria l. The temperature, re la tiv e hum idity and wind v e lo c ity of the a ir above the m a teria l were assumed to be constant. Results fo r T(0,t ),f[ T ( 0,t),t], and the various components of f [ T ( 0, t ), t ) are presented in graphical form. Results fo r T (0,t) a t various s ig n ific a n t items t during the solar day are given in tabular form. The solutions were ca rrie d out fo r t s u ffic ie n tly large th a t T(0,t) became approximately p e rio d ic. The model predicts th a t the surface temperature o f a ty p ic a l earth cru st m aterial a t a given time is dependant only to a ra th e r small degree upon the temperature o f the m aterial more than approximately 6 days p r io r to th a t tim e. In tro d u c tio n The d a i ly and s e a s o n a l v a r ia t io n o f th e s u rfa c e te m p e ra tu re o f m a te r ia ls on th e e a r t h s s u rfa c e is a phenomena w h ic h is f a m i lia r to a l l o f u s. A q u a n t it a t iv e u n d e rs ta n d in g o f t h is phenomena and i t s n a tu r a l causes is im p o rta n t i n te m p e ra tu re m apping o f th e e a r t h 's s u rfa c e by means o f rem ote s e n sors lo c a te d in a i r o r s p a c e c r a ft. 2
7 The s u rfa c e te m p e ra tu re o f a g iv e n m a t e r ia l a t a g iv e n tim e o f th e y e a r and day depends on a v a r ie t y o f n a t u r a l h e a tin g and c o o lin g e f f e c t s and on th e in h e r e n t p r o p e r tie s o f th e m a t e r ia l. Any re a s o n a b ly p r a c t ic a l m a th e m a tic a l model d e s ig n e d t o q u a n t it a t iv e ly p r e d ic t s u rfa c e te m p e ra tu re s w i l l n o t be a c c u ra te s im p ly because m ost n a t u r a l h e a tin g and c o o lin g e f f e c t s a re d e pendent upon w e a th e r c o n d itio n s, w h ic h a re im p o s s ib le t o p r e d ic t a c c u r a te ly. W ith c e r t a in a ssu m p tio n s a b o u t w e a th e r c o n d itio n s, how ever, a m a th e m a tic a l m odel can be d e velo p e d w h ic h le n d s c o n s id e ra b le in s ig h t in t o th e s u r fa c e te m p e ra tu re phenomena and i t s c a u s e s, and w h ic h can be used as a g u id e f o r th e q u a n t it a t iv e p r e d ic t io n o f s u rfa c e te m p e ra tu re s. Problem and S o lu tio n The p ro b le m i s t o d e te rm in e th e s u r fa c e te m p e ra tu re o f an opaque, com pact m a te r ia l on th e e a r t h 's s u r fa c e. Suppose t h a t th e m a t e r ia l's s u r fa c e, in c o n ta c t w ith th e atm osphere, i s f l a t and c o in c id e n t w it h th e p la n e o f th e e a r th 's s u r fa c e. F u r th e r, assume t h a t c o n d itio n s a re such t h a t, a t a g iv e n tim e t, th e te m p e ra tu r e t o f th e m a te r ia l i s th e same a t a l l p o in ts a t d is ta n c e x v e r t i c a l l y b e lo w th e m a t e r ia l's s u r fa c e. The d is ta n c e x is zero on th e s u rfa c e and in c re a s e s fro m zero to w a rd th e e a r th 's c e n te r. W ith t h i s a s s u m p tio n re g a rd in g T i t fo llo w s th a t th e f o llo w in g fo rm o f th e h e a t e q u a tio n 3
8 i s v a l i d in th e m a te r ia l : ( k / ρc)ϑ 2T( x, t ) / ϑ x 2=ϑT( x,t ) / ϑt 0<x ( 1 ) The th e rm a l c o n d u c t iv it y, d e n s ity, and s p e c if ic h e a t a re assumed t o be c o n s ta n t and a re r e s p e c t iv e ly d e n o te d by k, p, and c. One a ls o h a s: k ϑt( x,t ) / ϑx = f ( t) (2 ) X =0 w here f ( t ) i s d e fin e d as th e r a te o f h e a t flo w o u t o f th e m a t e r ia l a t i t s s u rfa c e p e r u n i t s u rfa c e a re a. D iv id in g f ( t ) in t o 5 s e p a ra te te rm s : f ( t )= 5 i=1f i (t) (3 ) -f1(t ) =(1-A)R 0co sθ 0e x p ( s e c Ө0) /. 9 0 (4) A - A lbedo o f m a te r ia l. R0 - Ir r a d ia n c e re c e iv e d fro m th e sun above e a r th 's atm osphere (.139 Wcm- 2 ). Ө0 - Sun z e n ith a n g le. co s Ө0 = c o s Өc o s φc o s [2 t( 2 4 h r ) -1] + s in Өs in φ Ө - D e c lin a tio n o f sun. φ- G e o g ra p h ic a l l a t i t u d e o f m a te r ia l on e a r th 's s u r fa c e. t - L o c a l s o la r tim e. 4
9 - f ( t ) = ϵ ot 4 ( xa m3gm- 1 ) (5) 2 a ϵ σ - Absorbtance (emissivity) of material. - Stephan-Boltzmann constant (5.67x10-12 Wcm-2 K -4 ). Ta- Air temperature above the material's surface in degrees Kelvin. xα - Absolute humidity of air above material's surface. f 3 ( t ) = ϵ σt4 (0, t ) (6) f ( t ) = [ T ( 0, t ) ~ T a ] ( V sec f t - 1 )x 4 a ( Wcm-2 K-1 ) (7) v a- Velocity of air assumed to be moving parallel to and above the materials - surface. T (0,t) - Surface temperature of material in degrees Kelvin. f 5 ( t ) = a { e [ T ( 0, t ) ] - e [ T a]ra } (mm o f Hg)-1 x ( Va sec f t - 1) ( Wcm- 2 ) (8) a - E v a p o ra tio n o p p o r tu n it y o f th e m a t e r ia l. Ra - R e la tiv e h u m id ity o f a i r above m a t e r ia l's s u r fa c e. e [ t ] -S a tu ra te d v a p o r p re s s u re o f w a te r a t te m p e ra tu re T. e [T ]= [ (T K -1 ~ )2 ](mm o f Hg) t - T e m p e ra tu re in d e g re e s K e lv in. 5
10 The f i r s t te rm f 1 ( t ) a p p ro x im a te s th e r a d ia n t e n e rg y fro m th e sun and in a d d it io n t h a t r a d ia n t e n e rg y re c e iv e d fro m th e sun b u t s c a tte re d by th e atm osphere b e fo re a r r iv in g a t th e m a t e r ia l's s u r fa c e. M ost o f t h i s r a d ia n t e n e rg y w i l l have w a v e le n g th s in th e.3-3 μ r e g io n. The s e m ie m p ir ic a l e x p re s s io n g iv e n f o r f 1 (t) was d e te rm in e d fro m m easurem ents ta k e n d u r in g th e summer in C o lo ra d o (H u ls tro m, ). I t i s in te n d e d t o be a re a s o n a b le a p p ro x im a tio n f o r c le a r a tm o s p h e ric c o n d itio n s o n ly. The second te rm f 2( t) a p p ro x im a te s th e th e rm a l r a d ia n t e n e rg y re c e iv e d fro m th e a tm o sphere. M ost o f t h i s r a d ia n t en erg y w i l l have w a v e le n g th s in th e 3-14 μ r e g io n and o r ig in a t e s p r i n c i p a l l y fro m th e w a te r v a p o r in th e a tm o sp h e re. P a r t o f th e e x p re s s io n g iv e n f o r f 2 (t) was d e riv e d fro m g r a p h ic a lly p re s e n te d m easured d a ta ta k e n by S loan e t a l. ( ). The t h i r d te rm g iv e s th e th e rm a l r a d ia n t e n e rg y e m itte d by th e m a te r ia l as d ic t a t e d by th e S te p h a n - B o ltzm a n n la w. The f o u r t h te rm a p p ro x im a te s th e c o n v e c tiv e h e a t lo s s (g a in ) due to th e passage o f a i r assumed t o be m oving p a r a l l e l t o and above th e m a t e r ia l's s u r fa c e. I t is an exam ple o f th e s o - c a lle d Newton h e a t exchange b o u n d a ry c o n d it io n. The n u m e ric a l c o e f f ic ie n t s in th e te rm w ere d e te rm in e d (McAdams, 1954) by la b o r a to r y e x p e rim e n ts m e a s u rin g th e te m p e ra tu re o f a ro u g h copper p la t e b e in g c o o le d (h e a te d ) by a w in d o f v e lo c it y v p a r a l l e l t o th e p l a t e 's s u r fa c e. 6
11 The f i f t h term a p p ro x im a te s th e h e a t lo s s due to th e e v a p o ra tio n o f w a te r fro m th e m a t e r ia l's s u r fa c e. T h is te rm was o b ta in e d by m u lt ip ly in g th e e v a p o ra tio n r a te o f w a te r from th e m a t e r ia l by th e h e a t o f v a p o r i z a tio n o f w a te r. S e v e ra l s e m ie m p e ric a l fo rm u la e f o r th e e v a p o ra tio n r a te o f w a te r fro m m a te r ia ls e x is t in th e l i t e r a t u r e (W is le r, ). The one chosen was d e te rm in e d by Rohwer, and sea le v e l b a ro m e tric p re s s u re was used in h is fo r m u la. The c o n s ta n t a i s th e s o - c a lle d e v a p o ra tio n o p p o r tu n ity (W is le r, 1949) o f th e m a t e r ia l. F o r m a te r ia ls c o n ta in in g no w a te r a w o u ld be z e ro. F o r h ig h ly p o ro u s m a te r ia ls w h ic h a re s a tu r a te d w ith w a te r a w o u ld be a p p ro x im a te ly 1. The a b s o lu te h u m id ity xa in te rm f 2 ( t ) i s o b ta in e d by means o f th e id e a l la w w it h te m p e ra tu re Ta and p re s s u re e [ta ] Ra. The a p p ro x im a tio n g iv e n f o r e[t] was d e te rm in e d e m p ir ic a lly fro m t a b u la t io n s f o r s a tu r a te d w a te r v a p o r p re s s u re and is re a s o n a b ly a c c u ra te f o r k <t <310 k. I n te rm s f 2 ( t ), f 4 ( t ), and f 5 (t) th e q u a n t it ie s ta, Va, and Ra o c c u r. These q u a n t it ie s depend upon w e a th e r c o n d itio n s and th u s change w it h tim e. A t f i r s t assume t h a t th e y a re c o n s ta n t, and n o te t h a t f 1 (t) depends e x p l i c i t l y upon t, t h a t f2(t) is a c o n s ta n t, and t h a t f 3 ( t ), f 4 (t), and f 5 (t) depend e x p l i c i t l y upon T ( 0, t ) T h u s : f ( t ) = f [ T ( 0, t ), t ] 7
12 In (1) and (2) T ( x, t ), x, and t have th e d im e n s io n s o f te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. T ra n s fo rm th e s e th re e q u a n t it ie s in t o d im e n s io n le s s fo rm by means o f th e fo llo w in g s u b s t it u t io n s : T ( x,t) = K 0u ( y,τ) x = c 0y t= S0τ w here K0=R01/4σ- l / 4 c0=kr0-3/ 4 σ- l / 4 S0=R0-3 / 2σ- l / 2 k ρc The q u a n t it ie s u ( y, τ ), y, and τ a re d im e n s io n le s s te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. In te rm s o f th e s e new q u a n t i t i e s (1) and (2) become: ϑu2( y, τ ) /ϑ y 2 = ϑu (y, τ ] / ϑτ 0<y (9) ϑu ( y, τ ) / ϑy y=0= f [ K0u(0, τ ), S 0 τ]r0-1 = F [u(0,τ ), τ ] (10) The o n ly p la c e w here t e x p l i c i t l y o c c u rs in f ( t ) is in th e c o s [2 t(2 4hr)-1] te rm f o r c o s Ө0 in f 1 ( t ). T h is te rm becomes cos [2 η-1τ] where η = (2 4 h r)s 0-1 when one re p la c e s t by S0τ. The q u a n t it y η is d im e n s io n le s s and is in v e r s e ly p r o p o r tio n a l t o th e square o f th e th e rm a l i n e r t i a (k ρc ) 1/2. 8
13 μ (y,0 ) = μ0 0< y (11) The s o lu t io n f o r μ (0,τ ) as d e te rm in e d fro m ( 9 ), ( 1 0 ), and (11) is (C arslaw and J a e g e r, ): μ (0,τ )= u0- -1/2 0 τ(τ - z )-1/2 F [ μ (0,z ), z] dz (12) E q u a tio n (12) was s o lv e d n u m e r ic a lly. The p r o cedure was to a p p ro x im a te F [ μ ( 0, z ), z ] in th e u s u a l manner by a s e r ie s o f p o ly n o m ia ls o f 1 s t o r 2nd o r d e r. An in d ic a t io n o f th e a c c u ra c y o f t h i s p ro c e d u re may be o b ta in e d by com paring th e r e s u lt s f o r μ ( 0, τ ) f o r th e two o r d e r s. The d is c re p a n c y betw een u ( 0, τ ) u s in g 2nd o rd e r p o ly n o m ia ls was le s s th a n.01% f o r τ >0. The d is c re p a n c y te n d e d t o become le s s f o r la r g e r τ. These s o lu tio n s show t h a t μ ( 0, τ ) - μ ( 0, τ +n) f o r s u f f i c i e n t l y la r g e v a lu e s o f τ. f o r u0. T h is is p a r t i c u l a r l y tr u e f o r an a p p r o p r ia te c h o ic e T h is r e s u lt is p h y s ic a lly re a s o n a b le s in c e one w ould e x p e c t th a t μ ( 0, τ ) w ould be m a in ly d e te rm in e d by th e f o r c in g fu n c tio n F f o r s u f f i c i e n t l y la r g e τ, r a th e r th a n th e m a t e r ia l' s i n i t i a l te m p e ra tu re a t some la r g e tim e in th e p a s t. The n u m e ric a l s o lu tio n s were tim e phased in a manner such t h a t τ and t w ere zero a t 18 h rs (6 PM) lo c a l s o la r tim e. S o lu tio n s f o r μ ( 0, τ ) w ere fo u n d f o r 0<τ <6η, o r e q u iv a le n t ly T ( 0,t) was fo u n d f o r 0<t <6 d a ys. V a lu e s f o r T ( 0, t ) - T a a t 6 h rs lo c a l s o la r tim e, τ [0,1 2 h r + n ( 2 4 h r ) ]- T a, in d e g re e s K e lv in a re g iv e n in T a b le 1 f o r tw o v a lu e s o f T0=K0μ0=T( x,0 ) ' The v a lu e s ta k e n f o r th e c o n s ta n ts in F 9
14 w e re : A=.05, ϵ = l.0,ra =. 2 5, Va =5 f t / s e c, T a =285 K, η=.1 8, a=.1,0 = 0, and φ=4 5. N ote t h a t th e v a lu e s l i s t e d f o r τ - τa in T a b le 1 in c re a s e a s y m p to tic a lly w it h n f o r T0=279 K b u t d e cre a se a s y m p to t ic a lly w ith η f o r T0=285 K. F o r s u f f i c i e n t l y la r g e η b o th s h o u ld converg e t o th e same v a lu e. P re v io u s tre a tm e n ts o f t h i s s u rfa c e te m p e ra tu re p ro b le m (W atson, 1971; J a e g e r, 1953) have used a p e r io d ic s o lu t io n f o r τ ( 0, t ). F o r th e s e s o lu tio n s th e i n i t i a l t r a n s ie n t b e h a v io r o f T ( 0, t ), w h ic h depends upon o n e 's c h o ic e o f T (0, t ), w h ic h depends upon o n e 's c h o ic e o f τ 0, is n o t p r e s e n t. Such s o lu tio n s a re le s s com plex b u t c o n ta in le s s in fo r m a tio n p a r t i c u l a r l y i f one supposes t h a t τ0 is an a p p r o p r ia te e a rth s u b s u rfa c e te m p e ra tu re. R e fe r r in g t o th e p r e v io u s ly l i s t e d v a lu e s f o r th e c o n s ta n ts i n F, to g e th e r w it h τ0 =28 2 K as th e "s ta n d a rd c h o ic e " o f c o n s ta n ts, f ig u r e 1 shows T ( 0, t ), 5 days <t <6 d a y s, f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. F ig u re _ 2 shows F ( τ )= 5 i=1 F i ( τ ) and F i ( τ ) = f i (t)r 0-1, i = l, 2, 3, 4 / 5, 5 days <t <6 days a g a in w it h th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. TABLE 1. T [0,1 2 h r + n ( 2 4 h r) } - Ta T0(K) n
15 TABLE 2. a1, a2, and a 3 o f T ( 0, t ) f o r 5 d a ys < t <6 d a y s. C o n s ta n ts a1 ( K) a 2 ( K) a 3 ( K) s ta n d a rd A= ε = R =.75 a V =15 f t / s e c a T = K a η= a= θ=.3 ra d ia n s T0=2850K T a b le 2 shows th e v a lu e s fo u n d f o r a1, a2, and a3 as d e p ic te d in F ig u re 1: - a1 = T (0, 5 d a y s )-T a - a2 = T ( 0,t)m in -T a a3 = T ( 0,t) max -T a 11
16 LOCAL SOLAR TIME (HRS) Figure I. T(0,t) for 5 days < t < 6 days and with the "standard choice" of constants. 12
17 Figure 2. Ft } F1,F2,F3, and F4 for 5 days / 6 days and with the "standard choice" of constants. 13
18 The minimum and maximum v a lu e s f o r T ( 0, t ), 5 days < t< 6 d a y s, a re r e s p e c tiv e ly T ( 0, t ) min and T ( 0, t ) max E n tr ie s shown in th e colum n headed " c o n s ta n ts " in T a b le 2 show th e d e p a rtu re s fro m th e "s ta n d a rd c h o ic e ". Thus A=.15 in th e second row o f T a b le 2 means t h a t th e s e le c tio n o f c o n s ta n ts was th e "s ta n d a rd c h o ic e " e x c e p t t h a t A was e q u a l t o.1 5 r a th e r th a n.05 as i t is in th e "s ta n d a rd c h o ic e ". The re ason t h a t th e s e r e s u lt s a re in t a b u la r r a t h e r th a n g r a p h ic a l fo rm i s t h a t th e v a r io u s c u rv e s f o r T (0, t ) a re a l l v e ry s im ila r in shape b u t have d i f f e r e n t v a lu e s f o r a 1, a2, and a3. In e v e ry case T ( 0, t ) min was r e a liz e d a t fro m 12 to 36 m in u te s a f t e r s u n r is e. E x c e p t f o r th e va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t ' s maximum v a lu e a t fro m 60 t o 84 m in u te s a f t e r 12 h rs lo c a l s o la r tim e. F o r th e Va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t s maximum v a lu e a t fro m 36 to 60 m in u te s a f t e r 12 h r s. lo c a l s o la r tim e. F o r an u n d e rs ta n d in g o f th e r e s u lt s in T a b le 2 i t is im p o r ta n t t o u n d e rs ta n d th e b e h a v io r o f th e te rm s Fi, i = l, 2, 3, 4, 5, as th e y depend upon th e c o n s ta n ts in F. F1 and F2 a re h e a tin g te rm s, F 3 i s a c o o lin g te rm. F 4 and F 5 can e it h e r h e a t o r c o o l th e m a t e r ia l. The h e a tin g e f f e c t o f F1 is decreased f o r in c r e a s in g A and, f o r p o s it iv e φ in c re a s e d f o r ϴ in c r e a s in g fro m z e ro. The h e a tin g e f f e c t o f F2 in c re a s e s f o r in c r e a s in g ϵ, t a, and R. a F1 is t y p i c a l ly o f g r e a te r im p o rta n c e th a n F2, b u t c o u ld have le s s n e t h e a tin g e f f e c t th a n F2 when ϵ, Ta, 14
19 and Ra a re la r g e. The c o o lin g e f f e c t o f F3 is in c re a s e d f o r in c r e a s in g ϵ. F3 is p e rh a p s t y p i c a l l y th e m ost im p o rta n t c o o lin g te rm. The e f f e c t o f F4 is to c o o l th e m a te r ia l when T ( 0,t) > T a b u t t o h e a t th e m a te r ia l when T ( 0, t ) <Ta. I t s e f f e c t i s in c re a s e d f o r in c r e a s in g V a. I t ' s im p o rta n c e becomes c o n s id e r a b le when Va becomes s u f f i c i e n t l y la r g e, f 5 can e it h e r c o o l (e v a p o ra tio n ) o r h e a t (c o n d e n s a tio n ) th e m a t e r ia l. I t ' s e f f e c t i s in c re a s e d f o r in c r e a s in g va and a, and can be o f co n s id e r a b le im p o rta n c e when va and / o r a become s u f f i c i e n t l y la r g e. I t ' s e f f e c t te n d s t o be t h a t o f c o o lin g f o r s m a ll Ra and T a. T a b le 2 is q u it e in c o m p le te. I t c o n ta in s o n ly s in g le v a r ia b le d e p a rtu re s fro m th e "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts. The ta b le may, h o w e ver, be used f o r cru d e a p p ro x im a tio n s f o r a g e n e ra l s e le c t io n o f th e c o n s ta n ts v ia th e f i r s t o rd e r T a y lo r e x p a n s io n : ai (c 1 + Δc 1, c 2+Δc2,.c9+ Δ c 9 ) =a1 (c 2, c 2,... c9) 9 + Δ c jϑ ai ( c l, c 2,... c9 ) / ϑcj j = l i = l, 2,3 The "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts a re cl, + c 2,.c 9. The p a r t i a l d e r iv a t iv e s ϑai / ϑcj may be a p p ro x im a te d fro m T a b le 2. D e p a rtu re s o f th e c o n s ta n ts fro m th e s ta n d a rd c h o ic e a re Δcj. I t is a p p ro p ria te t o c o n s id e r th e l i m i t a t i o n s and 15
20 e x p e c te d a c c u ra c y o f th e s e s o lu t io n s. The te rm F1 assumes c le a r a tm o s p h e ric c o n d itio n s, th u s o u r r e s u lt s a p p ly o n ly in t h i s c a s e. The c o n s ta n ts ta, V a, and Ra a re d e te rm in e d by w e a th e r c o n d itio n s and i n r e a l i t y change c o n s id e r a b ly w it h tim e. I t has been assumed t h a t th e y a re c o n s ta n t, how e ve r. T h is a ssu m ptio n c le a r ly in tr o d u c e s e r r o r in t o th e s o lu t io n s. T r a n s p ir a tio n fro m v e g e ta tio n was n o t c o n s id e re d so t h a t o u r r e s u lt s do n o t a p p ly t o v e g e ta tio n. The m odel is c le a r ly to o s im p le t o p r e d ic t w it h any a c c u ra c y s u rfa c e te m p e r a tu r e s t h a t one w o u ld a c t u a lly m easure in th e f i e l d. I t s h o u ld, h o w e ve r, be u s e fu l f o r p r e d ic t in g, w it h lim it e d a c c u ra c y, th e s u rfa c e te m p e ra tu r e s o f n o n -v e g e ta te d m a te r ia ls u n d e r c le a r a tm o s p h e ric c o n d itio n s when ta, V a, and Ra a re r e l a t i v e l y c o n s ta n t. In c o n c lu s io n i t s h o u ld p e rhaps be em phasized t h a t r e l a t i v e l y l i t t l e a t t e n t io n has been g iv e n t o th e r a t e a t w h ic h th e s o lu tio n s p re s e n te d in T a b le 2 become a p p r o x i m a te ly p e r io d ic. O nly th e d a ta p re s e n te d in T a b le 1 d e a ls w it h t h i s phenomena. R e p re s e n tin g T[0, t + n ( 2 4 h r )], 0<t <2 4 h r, by Tη (O,t ), r e p r e s e n ta tiv e v a lu e s o f T 5(O, t) a re g iv e n in T a b le 2. I t i s e x p e c te d t h a t Tn (0, t ) - T (0, t ) f o r n s u f f i c i e n t l y la r g e. T h is is e x p e c te d to be v a l i d f o r r e l a t i v e l y s m a ll n i f th e 24hr tim e ave rage o f T ( 0, t ) and T0 a re n o t s i g n i f i c a n t l y d i f f e r e n t and η is r e l a t i v e l y la r g e. S o lu tio n s w ere c a r r ie d o u t f o r T ( 0, t ), 0<t <l2 days f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts e x c e p t Ө=.3 r a d ia n and w ith η=.18 and F o r η=.18, a1, a2, 16
21 and a a re r e s p e c tiv e ly , , and f o r n=5 and , , and f o r n= l l. F o r n =.0 1 6, a1, a 2, and a3 are r e s p e c t iv e ly , and f o r n=5 and , , and f o r n = l l. The changes in a1, a 2, and a 3 a re a p p ro x im a te ly.4 f o r η =. 016 b u t a p p ro x im a te ly.15 f o r η=.1 8. I t w o u ld be e x p e c te d t h a t th e changes f o r a1, a 2, and a 3 w o u ld n o t be g r e a te r th a n.15 f o r th e s o lu tio n s in T a b le 2. The v a lu e ta k e n by η f o r m ost e a rth c r u s t m a te r ia ls i s la r g e r th a n.1 8. The m odel w o u ld th u s p r e d ic t t h a t th e te m p e ra tu re o f a t y p ic a l e a r th c r u s t m a t e r ia l a t a g iv e n tim e is d e pendent o n ly t o a r a th e r s m a ll d e g re e upon th e te m p e ra tu re o f th e m a te r ia l more th a n a p p ro x im a te ly 6 days p r i o r to t h a t t im e. 17
22 REFERENCES CITED C a rs la w, H., and Ja e g e r, J., 1959, "C o n d u c tio n o f H eat in S o lid s ", 2nd e d., O x fo rd U n iv e r s it y P re s s, London and New Y o rk, p, 76. H u ls tro m, R.L., 1970, A summary o f s o la r r a d ia t io n measu re m e n ts and a n a ly s e s made d u r in g 1970, R e p o rt No. R , M a r tin M a r ie tta C o r p., D enver D iv is io n, p J a e g e r, J. C., 1953, C o n d u c tio n o f h e a t in a s o lid w it h p e r io d ic boundary c o n d itio n s, w it h an a p p lic a t io n t o th e s u rfa c e te m p e ra tu re o f th e moon, C a m b ri d g e Philos.So c., P ro c., v. 49, p t. 2, p McAdams, W.H., 1954, "H eat T r a n s m is s io n ", 3 rd e d., M c G ra w -H ill Book Company, New Y o rk, p Rohwer C., E v a p o ra tio n fro m fr e e w a te r s u r fa c e s, U.S. D e p a r t m e n t o f A g r i c u l t u r e T e c h. B u l l. 271, Decem ber S lo a n, R., Shaw, J. H., and W illia m s, D., 1956, T herm al r a d ia t io n fro m th e a tm o sphere, J. O p t. Soc. Am., 46, p W atson, K., 1971, A p p lic a tio n o f th e rm a l m o d e lin g i n th e g e o lo g ic a in t e r p r e t a t io n o f IR im ages, P ro c e e d in g s o f th e Seventh I n t e r n a t io n a l Symposium on Remote S e n sin g o f E n v iro n m e n t, The U n iv e r s it y o f M ic h ig a n, p W is le r, C.O., and B r a te r, E.F., 1949, "H y d ro lo g y ", John W ile y & Sons I n c., New Y o rk, p. 152,
23
24 H 6618
Studies on the Athena Parthenos of Pheidias
University of Iowa Iowa Research Online Theses and Dissertations 1914 Studies on the Athena Parthenos of Pheidias Charles Amzi Vannoy State University of Iowa This work has been identified with a Creative
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ: 2008057
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ Σπουδαστές: Δεληλίγκα
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report
LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
NPI Unshielded Power Inductors
FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC
Polymer PTC Resettable Fuse: KMC Series
Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
By R.L. Snyder (Revised March 24, 2005)
Humidity Conversion By R.L. Snyder (Revised March 24, 2005) This Web page provides the equations used to make humidity conversions and tables o saturation vapor pressure. For a pd ile o this document,
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES. Fang-Chou Yang. Antenna La b o ra to ry
AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES Fang-Chou Yang Antenna La b o ra to ry R eport No. 77 - i i - ACKNOWLEDGMENTS T his work was done
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod
2003 6 6 00026788 (2003) 0620042206 H arlow, 2 3, (., 70049; 2., 7006; 3., 200433) H arlow,,,,, ;, ; ; F832. 5; F830. 9 A T he Op tim al L PM Po rtfo lio M odel of H arlow s ad Its So lvig M ethod W AN
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
NPN SILICON OSCILLATOR AND MIXER TRANSISTOR
FEATURES NPN SILICON OSCILLATOR AND MIXER TRANSISTOR LOW COST HIGH GAIN BANDWIDTH PRODUCT: ft = MHz TYP LOW COLLECTOR TO BASE TIME CONSTANT: CC r b'b = 5 ps TYP LOW FEEDBACK CAPACITANCE: CRE=.55 pf TYP
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
NTC Thermistor:TSM type
Features. RoHS compliant 2. EIA size 0402, 0603, 0805, 206 3. Highly reliable structure 4. -40 ~ +25 operating temperature range 5. Wide resistance range 6. Cost effective 7. Agency recognition: UL Recommended