arxiv: v2 [math.qa] 19 Jan 2018

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v2 [math.qa] 19 Jan 2018"

Transcript

1 Contemporary Mathematcs arxv: v2 [math.qa] 19 Jan 2018 Kostant-Lusztg A-bases of Multparameter Quantum Groups Nahuan Jng, Kalash C. Msra, and Hroyuk Yamane Abstract. We study the Kostant-Lusztg A-base of the multparameter quantum groups. To smplfy calculatons, especally for G 2 -type, we utlze the dualty of the parng of the unversal R-matrx. 1. Introducton Quantum envelopng algebras U q (g) [3, 13] of the Kac-Moody algebras g are one of the mportant classes of quantum groups. Quantum envelopng algebras and ther ntegrable hghest weght representatons enjoy favorable propertes, among whch the canoncal bases of Lusztg [18] or global crystal bases of Kashwara [15] are the most promnent ones. Exstence of such canoncal bases has also been establshed for quantum envelopng algebras U q (g) of Borcherds generalzed Kac- Moody algebras g [14]. On the other hand, quantum envelopng algebras have been extended to Nchols algebras of dagonal types, whch nclude multparameter quantum envelopng algebras as examples, n partcular, one-parameter quantum envelopng algebras U q (g) n Kac-Moody types. In[1] Andruskuwtch and Schneder proved that fnte dmensonal ponted Hopf algebras wth fnte abelan group (wth order > 7) of group-lke elements are essentally Lusztg s small quantum groups and ther varants. Furthermore, Heckenberger classfed the Ncholas algebras wth arthmetc root data [7] and proved results smlar to quantum envelopng algebras (see also [8]). Lusztg [17] ntroduced the Kostant-Lusztg A-base of the quantum groups. The A-base and the fnte dmensonal Hopf algbebra of the quantum group at root of unty have been key fgures n study of Lusztg conjectures, (see [12] for hstory). In ths paper we establsh the Kostant-Lusztg A-forms for the multparameter quantum groups and construct nvarant bases for each factor of the trangular decomposton. Our general result s based on the structure theory for multparameter quantum groups and nformaton on the lower rank cases, most notably the case of G 2. The recent work of Fan and L [4] on two-parameter quantum algebras has made us beleve that one should be able to use our A-forms to construct canoncal bases for the multparameter quantum groups Mathematcs Subject Classfcaton. Prmary 17B37,17B10; Secondary 81R50. NJ s partally supported by Natonal Natural Scence Foundaton of Chna grant # and Smons Foundaton grant # KCM s partally supported by Smons Foundaton grant # HY s partally supported by JSPS Grand-n-Ad for Scentfc Research (C), 16K c 0000 (copyrght holder)

2 2 N. JING, K.C. MISRA, AND H. YAMANE 2. Generalzed quantum groups In ths secton we recall defntons and known results about multparameter quantum groups. We wll use the followng notatons throughout ths paper. The rng of real numbers and ntegers wll be denoted by R and respectvely. For x, y R, let J x,y := {z x z y} and J x, := {z x z}. Then N = J 1, and 0 := J 0,. Let K be a feld of characterstc zero and K := K \ {0}. For x, y K and r 0, we denote (r) x := r 1 k=0 xk, (r) x! := r k=1 (k) x, (r;x,y) := 1 x r 1 y and (r;x,y)! := r k=1 (k;x,y) Defnton of generalzed quantum groups. Let θ N and I := J 1,θ. Let V be a θ-dmensonal R-lnear space wth a bass {v I}. Let V := I v, so V s a rank-θ free -module (or a free abelan group). Let χ : V V K be a map such that χ(x+y,z) = χ(x,z)χ(y,z) and χ(x,y +z) = χ(x,y)χ(x,z) hold for all x, y, z V. We call such χ a b-character. Defnton 2.1. Let π : I V be a map such that π(i) s a -base of V. The generalzed quantum group U = U(χ, π) s the unque assocatve K-algebra (wth 1) satsfyng the followng condtons ()-(v). () As a K-algebra, U(χ,π) s generated by K λ, L λ, (λ V ), E, F ( I). () The followng equatons hold. Let q := χ(π(),π(j)). K 0 = 1, K λ K µ = K λ+µ, L 0 = 1, L λ L µ = L λ+µ, K λ L µ = L µ K λ, K π() E j K 1 π() = q E j, K π() F j K 1 π() = q 1 L π() E j L 1 π() = q 1 j E j, L π() F j L 1 [E,F j ] = δ ( K π() +L π() ) F j, π() = q jf j, () There are subspaces U λ (λ V ) such that U = λ V U λ, U λ U µ U λ+µ, K ±1 π() U 0, L ±1 π() U 0, E U π(), F U π() (v) Let U 0 be the K-subalgebra of U generated by K λ L µ (λ, µ V ). Let U + (resp. U ) be the K-subalgebra of U generated by E (resp. F ) ( I). Then the elements K λ L µ (λ, µ V ) form a K-bass of U 0 and we have the K-lnear somorphsm m : U + U 0 U U defned by X Y XY. (v) There exsts no X U + \ {K} (resp. Y U \ {K}) such that [X,F ] = 0 ([E,Y] = 0) for all I. V π,+ Note that U 0 U 0. For λ V, let U + λ := U+ U λ and U λ := U U λ. Let := I 0 π(). Then U + = λ V π,+ U + λ and U = λ V π,+ U λ. Lemma 2.2. Let Ù be a K-algebra (wth 1) generated by `K λ, `L λ, È and `F satsfyng condtons ()-(v) above (n Defnton 2.1). Then there exsts a K-algebra epmorphsm ξ : Ù U such that ξ( `K λ ) = K λ, ξ(`l λ ) = L λ (λ V ), ξ(è) = E, ξ(`f ) = F ( I). Proof. Let λ V π,+. Assume that there exsts X Ù+ λ \ {0} such that [X, `F ] = 0 for all I. Let I (resp. I + ) be the two-sded deal of Ù (resp. Ù+ ) generated by X. Then I = Span K (Ù Ù 0 I + ). Let Ù be the quotent K-algebra Ù/I. Then Ù also satsfes the same condtons as Defnton 2.1 ()-(v). Let g : Ù Ù be the canoncal map. Then g Ù : Ù (Ù ) and g Ù : 0 Ù (Ù ) 0 are the K-algebra somorphsms. We see that dm(ù ) + µ 1 = dmù+ µ 1 for µ 1 V π,+ wth µ 1 λ / V π,+, that dm(ù ) + λ = dmù+ λ 1, and that dm(ù ) + µ 2 dmù+ µ 2

3 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 3 for µ 2 V π,+ wth µ 2 λ V π,+. We also have a smlar property for Ù. Then we can see the clam of ths theorem by a standard argument usng a drect lmt. By Lemma 2.2, we have the K-algebra automorphsm Ω χ,π : U(χ,π) U(χ,π) wth Ω χ,π (K λ L µ ) = K λ L µ (λ,µ V ), Ω χ,π (E ) = F L π(), Ω χ,π (F ) = K π() E ( I). Defne the bcharacter χ op : V V K by χ op (x,y) := χ(y,x) (x, y V ). By Lemma 2.2, we have the K-algebra somorphsm Υ χop,π : U(χ op,π) U(χ,π) wth (2.1) (2.2) Υ χop,π (K λ L µ ) = K µ L λ, (λ,µ V ), Υ χop,π (E ) = F, Υ χop,π (F ) = E ( I), whch wll be referred as the Chevalley nvoluton. We also have the K-algebra ant-automorphsm Γ χop,π : U(χ op,π) U(χ,π) wth Γ χop,π (K λ L µ ) = K µ L λ, (λ,µ V ), Γ χop,π (E ) = E, Γ χop,π (F ) = F ( I). ( For U = U(χ,π), we have the followng equatons. See [5] for the notaton m r)q and ( ) k r whence E k Fm q. = mn{k,m} r=0 (r) q! ( ) ( m k r q r ( r 1 q )q r( 2k+r+1) 2 s=0 ( K π() +q m+k+s [E,F m ] = (m) q ( K π() +q m+1 L π() )F m 1 [F,E m] = (m) q ( L π() +q m+1 K π() )E m 1 L π() ))F m r E k r,,. For m 0 and, j I wth j, defne E m,,j, E m,,j U+ π(j)+mπ(), F m,,j F m,,j U π(j) mπ() nductvely by E 0,,j := E 0,,j := E j, F 0,,j := E 0,,j := F j, and (2.3) E m+1,,j := E E m,,j q m q E m,,j E, E m+1,,j := E m,,j E q m q je E m,,j, F m+1,,j := F F m,,j q m q jf m,,j F, F m+1,,j := F m,,j F q m q F F m,,j. We have (2.4) We have (2.5) We have Υ χop,π (E m,,j ) = F m,,j, Υ χop,π (F m,,j ) = E m,,j, Υ χop,π (E m,,j ) = F m,,j, Υχop,π (F m,,j ) = E m,,j. [E,F m,,j ] = (m) q (m;q,q q j )K π() F m 1,,j, [F,E m,,j ] = (m) q (m;q,q q j )L π() E m 1,,j, [E j,f m,,j ] = (m;q,q q j )!F m L π(j), [F j,e m,,j ] = (m;q,q q j )!E mk π(j), [E m,,j,f m,,j ] = (m) q!(m;q,q q j )!( K π(j)+mπ() +L π(j)+mπ() ), [E m,,j,f m,,k] = 0 (m 0,k I \{,j}). (2.6) Ω χ,π (E r,,j ) = q r(r 1) 2 q r j F r,,jl π(j) rπ(), Ω χ,π (Er,,j ) = q r(r 1) 2 q r F r,,j L π(j) rπ(), Ω χ,π (F r,,j ) = q r(r 1) 2 qj r K π(j) rπ()e r,,j, Ω χ,π (Fr,,j ) = q r(r 1) 2 q r K π(j) rπ()er,,j.

4 4 N. JING, K.C. MISRA, AND H. YAMANE We have (2.7) Γ χop,π Γ χ,π = d U(χ,π), Γ χ,π Γ χop,π = d U(χ op,π), Γ χop,π (E r,,j ) = E r,,j, Γχop,π (F r,,j ) = F r,,j Kharchenko s Poncaré-Brkohoff-Wtt theorem and Heckenberger s Lusztg somorphsms. We recall the followng theorem by Kharchenko. We also ntroduce some notatons. Theorem 2.3. ([16]) Let χ be a bcharacter and U = U(χ,π) be the generalzed quantum group. Then there exsts a unque par (Rχ π,+,ϕ π,+ χ ) of a subset Rχ π,+ of V π,+ and a map ϕ π,+ χ : Rχ π,+ N satsfyng the followng: Let X := {(α,t) Rχ π,+ N t J 1,ϕ π,+ χ (α)}. Defne the map z : X Rπ,+ χ by z(α,t) := α. Let Y be the set of maps y : X 0 such that {x X y(x) 1} < and (y(x)) χ(z(x),z(x))! 0 for all x X. Then ( ) λ V π,+, dmu + λ = {y Y x X y(x)z(x) = λ}. Moreover, lettng q j := χ(π( ),π(j )) (,j I), for, j I wth j, we have (2.8) {t 0 π(j)+tπ() R π,+ χ } = {t 0 (t) q!(t;q,q q j )! 0}. := Rπ,+ χ Let Rχ π ϕ π χ(α) := ϕ π,+ χ (α)(α R π,+ that for every j I\{}, there exsts N χ,π ( Rχ π,+ ). Defne the map ϕπ χ : Rπ χ N by ϕπ χ ( α) := χ ). Wesaythatχs(π,)-goodftsatsfesthecondton 0 such that π(j)+n χ,π π() Rχ π,+ := 2. and π(j)+(n χ,π +1)π() / Rχ π,+. Let N χ,π Let I and χ be a (π,)-good bcharacter. Defne the map τ χ π : I V by τ χ bcharacter, and π(j) := π(j) + Nχ,π π() (j I). By (2.8), we see that τ χ (2.9) N χ,τχ π whence (τ χ )2 π = π. = N χ,π (j I), π s a (π,)-good Theorem 2.4. ([5]) Let a : I K be a map. Let I. Let χ be a (π,)-good bcharacter. Then there exsts a K-algebra somorphsm T χ,τχ π,a : U(χ,τ χ π) U(χ,π) such that (2.10) where T := T χ,τχ π,a (2.11) R τχ π χ T (K λ ) = K λ, T (L λ ) = L λ (λ V ), T (E ) = a()f L π(), T (F ) = 1 a() K π()e, T (E j ) = a(j)e N χ,π,,j (j I \{}) 1 T (F j ) = a(j)(n χ,π ) q!(n χ,π ;q F,q q j)! N χ,π,,j (j I \{}), and q j := χ(π( ),π(j )) (, j I). Moreover we have = R π χ, R τχ π,+ χ = (R π,+ χ \{π()}) { π()}, ϕ π χ = ϕ τχ π χ. Let, j I be such that j. Let χ be a (π,)-good and (π,j)-good bcharacters. We say that χ s a (π,,j)-good bcharacter f τ χ 1 τ χ m π can be defned for all m N and all t {,j} (t J 1,m ). (2.12) Let m χ,π := Rχ π,+ (π() π(j)) ( J 2, { }). By (2.11), usng the same argument as that for [6, Lemma 4], we have the followng result.

5 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 5 Lemma 2.5. Let χ be a (π,,j)-good bcharacter. Let X := π() π(j). Let m := m χ,π. Let 2y 1 :=, 2y := j (y N). Let π t := τ χ t τ χ t 1 τ χ 1 π (t N). Then for k J 1,m, we have R π,+ χ Moreover f m <, we have ( R π k,+ χ ) = Rχ π,+ ( R π k,+ χ ) X = k. π m = τ χ m+1 τ χ m τ χ 2 π, and Rχ π,+ X = {π( 1 ) =,π 1 ( 2 ),...,π m 2 ( m 1 ),π m 1 ( m ) = j}. Furthermore {π t ( t+1 ) t N} = f m =. Let χ be a (π,,j)-good bcharacter. We say that χ s a (π,,j)-good fnte bcharacter f m n Lemma 2.5 s fnte. Theorem 2.6. ([5]) Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. For t N, let π t := τχ t+1 τ χ t τ χ 2 π ( k = (resp. j) f k s odd (resp. even)), a t, a t : I K be maps, T (t) := T χ,π1,a1 1 T χ,πt,at t and T (t) := T χ,π 1,a 1 2 T χ,π t,a t t+1. Then there exsts a map b : I K such that T (m) (E k ) = b(k) T (m) (E k ), T (m) (F k ) = 1 b(k) T (m) (F k ) (k I). Moreover there exsts z K such that T (m 1) (E m ) = ze j, T (m 1) (F m ) = z 1 F j Strct Heckenberger s Lusztg somorphsms. Lemma 2.7. Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. Also b : I K be the map and z K n Theorem 2.6. Then the followng statements hold. (1) If Ω χ,π T (m) = T (m) Ω χ,πm, then b(k) {1, 1} for all k I. (2) If Ω χ,π T (m 1) = T (m 1) Ω χ,πm 1, then z {1, 1}. (2.13) Proof. (1) Let k I. We have F k = b(k) T 1 T (m) (F k ) = b(k) T 1 T (m) Ω χ,πm (E k L π(k) ) χ,π = b(k)ω T 1 T (m) (E k L π(k) ) = b(k) 2 Ω χ,π (E k L π(k) ) = b(k) 2 F k, (m) (m) whence b(k) 2 = 1, so b(k) {1, 1}. (m) (2) Ths can be proved smlarly to (1).. Lemma 2.8. Let a : I K be a map. Let I and χ be a (π,)-good bcharacter. Then Ω χ,π T χ,τχ π,a = T χ,τχ π,a Ω χ,τχ π f and only f (2.14) a() 2 = 1 and a(j) 2 = q N χ,π (N χ,π 1) 2 q Nχ,π j (N χ,π ) q!(n χ,π ;q,q q j )! Proof. The clam follows from Theorem 2.4 and (2.6) (j I \{}). Lemma 2.9. Let G be the K-algebra (wth 1) defned wth the generators X, Y, and the relatons [,X] = 2X, [,Y] = 2Y, [X,Y] =. (Namely G s somorphc to the unversal envelopng algebra of sl 2 (K).) Let k 0. Let Γ be the (k + 1)-dmensonal left G-module wth the K-bass {γ r r J 0,k } such that γ r := (k 2x)γ r, Yγ r := γ r+1, Xγ r := x(k r+1)γ r 1, where γ 1 := γ k+1 := 0.

6 6 N. JING, K.C. MISRA, AND H. YAMANE Let a K. Defne ξ End K (Γ) by ξ(v) := exp(ax)exp( a 1 Y)exp(aX) v (v Γ). Then ξ(y r γ 0 ) = ( 1)k r a 2r k r! (k r)! Y k r γ 0, ξ(x r γ k ) = ( 1)r a k 2r r! X k r γ k. (k r)! Proof. Let Γ, γ y (y J 0,1 ), ξ be Γ, γy, ξ respectvely for k = 1. Then ξ( γ 0 ) = ( a 1 ) γ 1 and ξ( γ 1 ) = a γ 0. Regard Γ k as the (k-fold tensor) G-module n a standard way. Let g : M M k k be the G-module monomorphsm g : M Γ such that g(γ 0 ) = γ 0 k. Then g(γ x ) = g(y x γ 0 ) = Y x g(γ 0 ) = r! {x J 1,k x=1} =x γ 1 γ 1. Note g(ξ(v)) = ξ k (g(v)) (v Γ). Then g(ξ(γ r )) = g(t(y r γ 0 )) = ξ k (g(y r γ 0 )) = ( a 1 ) k r a r r! (k r)! g(y k r γ 0 ) = g( ( 1)k r a 2r k r! (k r)! γ k r ). Thus we can see the clam. Lemma Let a 11 := a 22 := 2( K). Let a 12, a 21 K be such that (a 12,a 21 ) {(0,0),( 1, 1),( 2, 1),( 3, 1)}. Let m 0 be 2 (resp. 3, resp. 4, resp. 6) f a 12 s 0 (resp. 1, resp. 2, resp. 3). Let 2x 1 := 1, 2x := 2 (x N). Let G be a K-algebra (wth 1) satsfyng the followng condtons () and (). () There exst X, Y, G ( J 1,2 ) such that [ 1, 2 ] = 0, [,X j ] = a X j, [,Y j ] = a Y j, [X,Y j ] = δ, (adx ) 1 a j (X j ) = (ady ) 1 a j (Y j ) = 0 ( j ). () For R G and I {X,Y J 1,2 }, there exsts r N suchthat (adi) r (R) = 0. For J 1,2, let b K ( J 1,2 ), and defne the K-algebra automorphsm ξ by ξ (R) := exp(b adx )exp( b 1 ady )exp(b adx )(R) (R G). Then we have (2.15) ξ (X ) = b 2 Y, ξ (Y ) = b 2 X, ξ (X j ) = b a ( a (adx )! ) a (X j ), ξ (Y j ) = ( b)a ( a (ady )! ) a (Y j ) ( j), (2.16) ξ t ξ t+1 ξ t+m 2 (X t+m 1 ) = X t 1, ξ t ξ t+1 ξ t+m 2 (Y t+m 1 ) = Y t 1 (t ), and (2.17) ξ 1 ξ 2 ξ m = ξ 2 ξ 3 ξ m+1.

7 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 7 Proof. We can see (2.15) by Lemma 2.9. As for (2.16), for example, f a 12 = 3, by Lemma 2.9, we have ξ 1 ξ 2 ξ 1 ξ 2 ξ 1 (X 2 ) = ξ 1 ξ 2 ξ 1 ξ 2 ( b3 1 3! [X 1,[X 1,[X 1,X 2 ]]]) = b3 1 3! ξ 1 ξ 2 ξ 1 ξ 2 ([X 1,[X 1,[X 2,X 1 ]]]) = b3 1 3! ξ 1 ξ 2 ξ 1 ([b 2 [X 2,X 1 ],[b 2 [X 2,X 1 ],( 1)b 1 2 X 1]]) = b3 1 b2 3! ξ 1 ξ 2 ([( 1) b1 2! [X 1,[X 1,X 2 ]], 2! b 1 [X 1,X 2 ]]) = b3 1 b2 3! ξ 1 ξ 2 ([[X 1,[X 2,X 1 ]],[X 2,X 1 ]]) = b3 1 b2 3! ξ 1 ([[b 2 [X 2,X 1 ],( 1)b 1 2 X 1],( 1)b 1 2 X 1]) = b3 1 3! ξ 1 ([X 1,[X 1,[X 1,X 2 ]]]) = ( 1) b3 1 3! ( 1) 3! b 3 1X 2 = X 2. Now we show (2.17). Let ξ := ξ 1 ξ 2 ξ m 1. By (2.16), for R G, we see ξ ξ m (ξ ) 1 (R) = exp(b adξ (X m ))exp( b 1 adξ (Y m ))exp(b adξ (X m ))(R) = ξ 2 (R). Ths completes the proof. Defnton Let χ : V V K be a b-character, π : I V be a map such that π(i) s a -base of V and q := χ(π(),π(j)) for all,j I. Let A = [a ] I be a symmetrzable generalzed Cartan matrx. Let d N be such that d a = d j a j. (, j I). Let q K be such that q r 1 for all r N. Let χ : V V K be a bcharacter and q := χ(π(),π(j)) (, j I). Assume that q = q 2d ( I), q q j = q 2da (,j I), q := q 2 for all, j I. Also assume that for every k I, there exsts Θ(q kk 1) K such that Θ(q kk 1) 2 = q kk 1. Then we say that such χ s a (π,a)-admssble bcharacter. If A s the Cartan matrx of a fnte-dmensonal complex Le algebra (.e., A s a symmetrzable generalzed Cartan matrx of fnte-type), we call U(χ, π) a fnte-type multparameter quantum group. For a (π,a)-admssble bcharacter χ, U(χ,π) s presented by the generators gven by Defnton 2.1 () and the relatons composed of those of Defnton 2.1 () and E 1 a,,j = F 1 a,,j = 0 (,j I, j), whch s well-known and can be proved by a standard argument along wth Theorem 3.1 below. Lemma Let χ be a (π,a = [a ] I )-admssble bcharacter. (1) Then χ s (π,)-good b-character for every I and N χ,π = a for all, j I. (2) For I let q jk := χ(τ χ π(j),τχ π(k)) (j,k I). Then we have (2.18) m χ,π = q jj = q jj (j I), q jk q kj = q jk q kj (j,k I). In partcular, χ s (τ χ π,a)-admssble. (3) For, j I wth j, χ s (π,,j)-fnte f and only f a a j J 0,3. Moreover 2 f a a j = 0, 3 f a a j = 1, 4 f a a j = 2, 6 f a a j = 3.

8 8 N. JING, K.C. MISRA, AND H. YAMANE Proof. Clam(1) follows from (2.8). Clam (2) can be proved drectly. Clam (3) follows from Clams (1) and (2) and Lemma 2.5. Let χ be a (π,a = [a ] I )-admssble bcharacter. Let q jk be as n Defnton Defne the map : I K by { 1 (j = ), Let (j) = q a ( a ) q!θ(q 1) a T χ,τχ π := T χ,τχ π,. (j I \{}). We see drectly that satsfes (2.14). As for (2.10), lettng T := T χ,τχ π, we have T (K λ L µ ) = K λ L µ (λ,µ V ), T (E ) = F L π(), T (F ) = K π() E, T (Er,,j ) = (r)q +2r! qa T (Fr,,j ) = (r)q (j I \{}, r J 0, a ). We also have Θ(q 1) a +2r ( a r) q! q a 2r! q(a +2r)(a 1) E a r,,j, Θ(q 1) a +2r ( a r) q! F a r,,j (2.19) (T χ,π ) 1 = Γ χop,π T χop,τ χ π Γ χ,τχ π. For I, defne the K-algebra automorphsm ζ χ,π : U(χ,π) U(χ,π) by Then we have For I, let Note that and ζ χ,π (K λ L µ ) := K λ L µ (λ,µ V ), ζ χ,π (E j ) := 1 q q j E j, ζ χ,π (F j ) := q q j F j (j I). T χ,τχ π E Υ χop,τ χ π = ζ χ,π Υ χop,π T χop,τ χ π ( I). Ē := Θ(q 1), F := Θ(q 1), H := K π() L π(). q 1 F [Ē, F ] = δ H, H Ē j = q Ē j H +q 1 q q j 1 q 1 ĒjL π(). Let O be the Q-subalgebra of K generated by q ±1, 1 ( a ) q! for all,j I. Let U O (resp. UO 0, resp. U+ O, resp. U O ) be the O-subalgebra (wth 1) of U = U(χ,π) (resp. U 0, resp. U +, resp. U ) generated by K ±1 π(), L±1 π(), H, Ē, F (resp. K ±1 π(), L ±1 π(), H, resp. Ē, resp. F ) for all I. We can see U O = U O OUO 0 OU + O. We also see that the elements I K x() π() (K y() π()l π() ) Hz() (x() {0,1}, z() 0, y() ) form O-bass of U 0 O. Theorem Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. Assume that χ s (π,a)-admssble. Let b : I K and z K be as n Theorem 2.6. Assume that T χ,πt,at t (t N). Then we have (2.20) b(k) = 1 (k I) and z = 1. = T χ,πt t and T χ,π t,a t t+1 = T χ,π t t+1

9 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 9 Proof. We dvde the proof nto steps. Step 1. Assume that q s transcendental over Q and that q j = 1 for all, j I wth < j. Then O s the Q-subalgebra of K generated by q ±1 1, ( a j ) q! for all, j I wth j. So O s a prncpal ntegral doman. Consder the Q-algebra (U O ) 1 := U O /( q 1)U O. Let f : U O (U O ) 1 be the canoncal map. Note that for k I, we have f(l π(k) ) = f(k π(k) ), and we see that f(k π(k) ) s a central element of (U O ) 1. So we can consder the quotent Q-algebra (U O ) 1 /(f(k π(k) ) 1). By Lemmas 2.7, 2.8 and 2.10, we have (2.20). Step 2. Let U denote the U of Step 1, and let q denote q for U. Then q s transcendental over Q. Assume that that q j = 1 for all, j I wth < j. We use a specalzaton argument wth q q; ths q s the one for U of ths step. We can obtan (2.20) from Step 1 by consderng the O-subalgebra of U generatng by K ±1 π(t), L±1 π(t), E t, F t (t I) and usng Lemma 2.2. Step 3. General cases. Repeat the same arguments as n Step Drnfeld parng. Let U = U(χ,π) be the generalzed quantum group. We regard U = U(χ,π) as a Hopf algebra (U,,S,ε) wth (K λ ) = K λ K λ, (L λ ) = L λ L λ, (E ) = E 1 + K π() E, (F ) = F L π() + 1 F, S(K λ ) = K λ, S(L λ ) = L λ, S(E ) = K π() E, S(F ) = F L π(), ε(k λ ) = ε(l λ ) = 1, and ε(e ) = ε(e ) = 0. For, j I wth j and r 0, f E r,,j 0, we have r (r) q!(k;q,q r k q q j )! (E r,,j ) = E r,,j 1+ E k (k) q!(r k) q! K (r k)π()+π(j) E r k,,j. k=0 Let U +, = U +, (χ,π) := λ V U + K λ, and U, = U, (χ,π) := λ V U L λ. Then U = Span K (U, U +, ) = Span K (U +, U, ) and n a standard way (see [3]), we have a blnear form ϑ = ϑ χ,π : U +, U, K wth the followng propertes: (2.21) ϑ(k λ,l µ ) = χ(λ,µ),ϑ(e,f j ) = δ,ϑ(k λ,f j ) = ϑ(e,l λ ) = 0, ϑ(x + Y +,X ) = k ϑ(x+,(x ) (2) k )ϑ(y +,(X ) (1) k ), ϑ(x +,X Y ) = k + ϑ((x+ ) (1) k,x )ϑ((x + ) (2) + k,y ), + ϑ(s(x + ),X ) = ϑ(x +,S 1 (X )), ϑ(x +,1) = ε(x + ),ϑ(1,x ) = ε(x ), X X + = r +,r ϑ((x + ),(1) r +,S((X ),(1) r ))ϑ((x + ),(3) r +,(X ),(3) r ) (X + ),(2) r + (X ),(2) r, X + X = r +,r ϑ((x+ ),(3) r +,S((X ),(3) r ))ϑ((x + ),(1) r +,(X ),(1) r ) (X ),(2) r (X + ),(2) r + for λ, µ V,, j I, and X +, Y + U +,, X, Y U,, where (X + ) (x) k and + (X ) (x) k wth x J 1,2 (resp. (X + ),(y) r and (X ),(y) + r wth y J 1,3 ) are any elements of U +, and U, respectvely satsfyng (X ± ) = k (X ± ) (1) ± k (X ± ) (2) ± k, (resp. ± ((d U ) )(X ± ) = r (X ± ),(1) ± r (X ± ),(2) ± r (X ± ),(3) ± r ). ± We have ϑ χ,π (X + K λ,x L µ ) = ϑ χ,π (X +,X )χ(λ,µ) (X + U +, X U, λ,µ V ). It follows that ϑ χ,π U + U s non-degenerate. We have ϑ χ,π (X +,X ) = 0 for λ,µ V π,+ wth λ µ and X + U + λ, X U µ. 3. Kostant-Lusztg A-form In ths secton we establsh the Kostant-Lusztg A-forms for the fnte-type multparameter quantum group U = U(χ, π) (see Defntons 2.1 and 2.11) and construct nvarant bases for each factor of the trangular decomposton. Let A =

10 10 N. JING, K.C. MISRA, AND H. YAMANE [a ] I be a Cartan matrx assocated wth a fnte dmensonal complex smple Le algebra,.e., A s a symmetrzable generalzed Cartan matrx of fnte-type. We assume that χ s a (π, A)-admssble bcharacter (see Defnton 2.11). Recall the symbols q, q and Θ(q 1). Let W be the Weyl group assocated to the Cartan matrx A and generated by the smple reflectons s ( I) wth relatons s 2 = e ( I) and (s s j ) mχ,π = e, (e s the dentty element of W). Note that W s the fnte Weyl group Some standard notatons and results. Defne the map l : W 0 by l(e) := 0 and l(w) := mn{r N t I(t J 1,r ),w = s 1 s r }. In fact l s the length map of the Coxeter system (W,{s I}). It s well-known that l(ws ) l(w) = 1 for w W and I. Let W act on V by s π(j) := π(j) a π(j) (,j I). Use the conventon as follows Let s 1 s t (resp. τ χ t 1 τ χ 1 π) mean e (resp. π) f t = 0. We have s 1 s t 1 π( t ) = τ χ t 1 τ χ 1 π( t ) (t N, x I(x J 1,t )). For w = s k1...s kr W, f r = l(w), the expresson s k1...s kl(w) s called reduced. For w = s k1...s kl(w) W, let d χ,π T w := T χ,π1 k 1 T χ,π l(w) k l(w) (d χ,π T e := d U(χ,π) ), where π t := τ χ k t τ χ k 1 π (t J 1,l(w) ). By Theorem 2.13, d χ,π T w s ndependent of the choce of reduced expressons for w. It s well-known that there exsts a unque w W such that l(w) l(w ) for all w W; w s called the longest element. We also know that l(w ) = Rχ π,+ and (3.1) w W, l(w ) = l(w)+l(w 1 w ). Let n = (n 1,...,n l(w )) I l(w ) be such that s n1 s nl(w ) = w (reduced expresson of w ). For t J 1,l(w ), let β n;t := s n1 s nt 1 π(n t ). By (2.11) and Lemma 2.12, we have (see [10, 1.7]) R π,+ χ = {β n;t t J 1,l(w )}. Thus R π χ can be dentfed wth the root system of W. For t J 1,l(w ), let E n;t := d χ,π T sn1...s nt 1 (E nt ), F n;t := d χ,π T sn1...s nt 1 (F nt ), Ē n;t := d χ,π T sn1...s nt 1 (Ēn t ), Fn;t := d χ,π T sn1...s nt 1 ( F nt ), (E n;1 := E n1, F n;1 := F n1, Ē n;1 := Ēn 1, Fn;1 := F n1 ), that s, Ē n;t = E n;t Θ(q ntn t 1) = E n;t Θ(χ(β n;t,β n;t ) 1). Let n 0 I be such that s n0 w s nl(w ) = w. By Theorem 2.13, usng a standard argument (see [11, Proposton 8.20]), we have (3.2) E n;l(w ) = E n0, F n;l(w ) = F n0, Ē n;l(w ) = Ēn 0, Fn;l(w ) = F n0. The followng result can be proved by a standard argument (see [2], [9] for example). Theorem 3.1. Let k := l(w ), J := J 1,k and β t := s n1 s nt 1 π(n t ) (t J). (1) Let σ : J J be a becton. Then the elements E x1 n;σ(1) Ex k n;σ(k) (x t 0 (t J)))

11 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 11 form a K-bass of U +. (2) Let y, z J be such that y < z. Let X be a K-subalgebra of U generated by the elements E n;x (x J y+1,z 1 ). Then (3.3) E n;y E n;z χ(β y,β z )E n;z E n;y X. (3) We have k ϑ χ,π (E x n;k Ex1 k n;1,fy n;k Fy1 k n;1 ) = δ xt,y t (x t ) χ(βt,β t)!, where x t, y t 0 (t J) Type G 2. In ths subsecton we assume θ = 2 (so I = J 1,2 ), and A = [a ] I s the Cartan matrx of type G 2. So a 12 = 3 and a 21 = 1. Consder the generalzed quantum group U = U(χ,π). Let q be as n Defnton 2.1 and χ be a (π,a)-admssble bcharacter. Let q := q 11 and a := q 12. Then q 22 = q 3 and q 21 = q 3 a 1. Snce E 4,1,2 = E 2,2,1 = 0, we have Let Then we have E 4 1 E 2 (1+q)(1+q 2 )ae 3 1 E 2E 1 +q(1+q 2 )(1+q +q 2 )a 2 E 2 1 E 2E 2 1 q 3 (1+q)(1+q 2 )a 3 E 2 1E 2 E 2 1 +q 6 a 4 E 2 E 4 1 = 0, E 2 1 E 2 (1+q)(1 q +q 2 )ae 2 E 1 E 2 +q 3 a 2 E 2 2 E 1 = 0. t=1 K 1 ;= K π(1), K 2 ;= K π(2), E 12 := E 1,1,2, E 112 := E 2,1,2, E 1112 := E 3,1,2, E := E 112 E 12 aq 2 E 12 E 112. E 12 E 2 = aq 3 E 2 E 12, E 1112 E 2 = a 3 q 6 E 2 E a 2 q 3 (q 2 1)(q 1)E12 3, E 112 E 2 = a 2 q 3 E 2 E 112 +aq(q 2 1)E12, 2 E 1112 E 2 = a 3 q 3 E 2 E aq(q 2 q 1)E a 2 q 2 (q 3 1)E 12 E 112, E 1 E 2 = ae 2 E 1 +E 12, E E 12 = aq 3 E 12 E 11212, E 112 E 12 = aq 2 E 12 E 112 +E 11212, E 1112 E 12 = a 2 q 3 E 12 E aq(q3 1) q+1 E112 2, E 1 E 12 = aqe 12 E 1 +E 112, E 112 E = aq 3 E 112 E 11212, E 1112 E = a 3 q 6 E E a2 q 3 (q 3 1)(q 1) q+1 E112, 3 E 1 E = a 2 q 3 E E 1 + aq(q3 1) q+1 E112, 2 E 1112 E 112 = aq 3 E 112 E 1112, E 1 E 112 = aq 2 E 112 E 1 +E 1112, E 1 E 1112 = aq 3 E 1112 E 1. We have and (E 12 ) = E 12 1+(1 q 3 )E 1 K 2 E 2 +K 1 K 2 E 12, (E 112 ) = E (1 q 3 )(1 q 2 )E 3 1 K 2 E 2 +(1 q 2 )(1+q)E 1 K 1 K 2 E 12 +K 2 1K 2 E 112, (E 1112 ) = E (1 q 3 )(1 q 2 )(1 q 1 )E 3 1 K 2 E 2 +(q 2 1)(1 q 3 )E 2 1K 1 K 2 E 12, +q 1 (q 3 1)E 1 K 2 1K 2 E 112 +K 3 1K 2 E 1112, (E ) = E (q3 1) 2 q E E 1 K 2 E 2 + (q3 1)(q 2 q 1) aq E K 2 E 2 + q3 1 q E 112 K 1 K 2 E 12 + (q3 1) 2 (q 2 1)(q 1) aq E K2 1 E2 2 + (q3 1) 2 (q 2 1) q E K 1K 2 E 2 E 12 + (q3 1)(q 2 1) q E 3 1 K1 2K2 2 E2 12 +K1K E Let Ê 1 := E 1, Ê 2 := E 2, Ê 12 := q3 q 3 1 E 12, Ê 112 := q Ê 1112 := 6 (q 3 1)(q 2 1)(q 1) E 1112, Ê := q 5 (q 3 1)(q 2 1) E 112, q 9 (q 3 1) 2 (q 2 1)(q 1) E

12 12 N. JING, K.C. MISRA, AND H. YAMANE Then we have Ê 1112 Ê 2 = a 3 q 6 Ê 2 Ê a 2 q 3 (q 3 1)Ê3 12, Ê 112 Ê 2 = a 2 q 3 Ê 2 Ê 112 +a(q 3 1)Ê2 12, Ê 1112 Ê 2 = a 3 q 3 Ê 2 Ê aq 2 (q 2 q 1)(q 3 1)Ê a 2 (q 3 1)(q 2 +q +1)Ê12Ê112, Ê 1 Ê 2 = aê2ê1 +q 3 (q 3 1)Ê12, Ê 112 Ê 12 = aq 2 Ê 12 Ê 112 +q 1 (q 1)Ê11212, Ê 1112 E 12 = a 2 q 3 Ê 12 Ê a(q 3 1)Ê2 112, Ê 1 E 12 = aqê12ê1 +q 2 (q 2 1)Ê112, Ê 1112 Ê = a 3 q 6 Ê Ê a 2 q 3 (q 3 1)Ê3 112, Ê 1 Ê = a 2 q 3 Ê Ê 1 +a(q 3 1)Ê2 112, Ê 1 Ê 112 = aq 2 Ê 112 Ê 1 +q 1 (q 1)Ê1112. and (Ê12) = Ê12 1+Ê1K 2 Ê2 +K 1 K 2 Ê12, (Ê112) = Ê112 1+Ê3 1 K 2 Ê2 +(q +1)Ê1K 1 K 2 Ê12 +K 2 1 K 2 E 112, (Ê1112) = Ê Ê3 1K 2 Ê2 +(q 2 +q +1)Ê2 1K 1 K 2 Ê12, +(q 2 +q +1)Ê1K 2 1 K 2 Ê112 +K 3 1 K 2 Ê1112, (Ê11212) = Ê (q 2 +q +1)Ê112Ê1K 2 Ê2 +a 1 q 2 (q 2 q 1)Ê1112K 2 Ê2 +(q 2 +q +1)Ê112K 1 K 2 Ê12 +a 1 q 3 Ê 3 1K 2 1 Ê2 2 +(q 2 +q +1)Ê2 1 K 1K 2 Ê2Ê12 +(q 2 +q +1)Ê1K 2 1 K2 2 Ê2 12 +K 3 1K 2 2 Ê For a = (a 1,...,a 6 ) 6 0, let Then we have Q 1 (a) := Ea 1 2 Ea 2 12 ((3) 1 q!e11212)a 3((2) 1 q E112)a 4((3) 1 q!e1112)a 5E a 6 1 (a 1) q 3!(a 2) q!(a 3) q 3!(a 4) q!(a 5) q 3!(a 6) q!, Q 2 (a) := Êa1 2 Êa2 12Êa Êa4 112Êa5 1112Êa6 1. (3.4) ϑ χ,π (Q 1 (a),υ χop,π (Q 2 (b))) = δ a,b (a, b 6 0 ). By (3.4), {Q 1 (a) a 6 0 } and {Q 2(a) a 6 0 } are K-bases of U(χ,π). Let Á be the -subalgebra of K generated by q ±1 and a ±1,.e., Á = [q±1,a ±1 ]. For t J 1,2, let g t be the Á-submodules of U+, wth the Á-bases {Q t(a)k λ a 6 0, λ V }. Clearly g 2 s a Á-subalgebra of U wth (g 2) g 2 Á g 2. By (2.21) and (3.4), we see the followng. (3.5) As a Á-subalgebra of U, g 1 s generated by Ex (x) q! ( I(= J 1,2 ), x 0 ) and K λ (λ V ). g 1 s a Hopf Á-subalgebra of U. Then g 2 s also a Hopf Á-algebra. Let n := (1,2,1,2,1,2) I l(w ). Then we have (3.6) Ē n;1 = Ē1, q 3 12 Fn;1 = F 1 (= Υ χop,π (Ēn;1)), Ē n;2 = (3) q!θ(q 1) 3 Θ(q 3 1) E 1112, Fn;2 = q 11Υ 3 χop,π (Ēn;2), q Ē n;3 = 12 (2) q!θ(q 3 1)Θ(q 1) E 2 112, Fn;3 = q 11 4,π Υχop (Ēn;3), q Ē n;4 = 12 (3) q!θ(q 3 1) 2 Θ(q 1) E , Fn;4 = q 11 6,π Υχop (Ēn;4), q Ē n;5 = 12 Θ(q 1)Θ(q 3 1) E 12, Fn;5 = q 11Υ 3 χop,π (Ēn;5), Ē n;6 = Ē2, Fn;6 = F 2 (= Υ χop,π (Ēn;6)), where recall that q 2 = a. Let n := (2,1,2,1,2,1) I l(w ). By (2.19) and (3.2), we have (3.7) Ē n ;t = Γ χop,π (Ēn;7 t), Fn ;t = Γ χop,π ( F n;7 t ) (t J 1,6 ).

13 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 13 Let ḡ + be the Á-subalgebra of U generated by Ē x (x) q! ( I(= J 1,2 ), x 0 ) and K λ (λ V ). Let y 2t 1 := q, y 2t := q 3 for t J 1,3. Let y t := y 7 t for t J 1,6. By (3.3), (3.5), (3.6) and (3.7), we see the followng. (3.8) For a becton σ : J 1,6 J 1,6, the elements Ē x 1 x n;σ(1) (x 1) yσ(1)! Ē 6 n;σ(6) (x 6) yσ(6)! K Ē x 1 x n λ (resp. ;σ(1) (x 1) y! Ē 6 n ;σ(6) (x 6) y! K λ) σ(1) σ(6) (x t 0 (t J 1,6 ), λ V ) form a Á-base of ḡ+. ḡ + s a Hopf Á-subalgebra of U. Let ḡ be the Á-subalgebra of U generated by Fx (x) q! ( I(= J 1,2 ), x 0 ) and L λ (λ V ). By (3.6), (3.7) and (3.8), we see the followng. (3.9) For a becton σ : J 1,6 J 1,6, the elements F x 1 x n;σ(1) (x 1) yσ(1)! F 6 n;σ(6) (x 6) yσ(6)! L F x 1 x n λ (resp. ;σ(1) (x 1) y! F 6 n ;σ(6) (x 6) y! L λ) σ(1) σ(6) (x t 0 (t J 1,6 ), λ V ) form a Á-base of ḡ. ḡ s a Hopf Á-subalgebra of U General case. Let A be the -subalgebra of K generated by q ±1 for all, j I. n = (n 1,...,n l(w )) I l(w ) be as n Subsecton 3.1. Let π 0 := π and π t := τ χ n t τ χ n 1 π (t J 1,l(w )). For t J 1,κ and x 0, let Ē (x) n;t := Ē x n;t (x) χ(πt 1(n t),π t 1(n t))!, F(x) n;t := Fx n;t (x) χ(πt 1(n t),π t 1(n t))!. Let U + A (resp. U A ) be the A-subalgebra of U+ (resp. U ) generated by (resp. F x (x) q! ) wth I and x 0. Theorem 3.2. Let σ : J 1,l(w ) J 1,l(w ) be a becton. (1) The elements (3.10) Ē (x1) n;σ(1) Ē(x l(w )) n:σ(l(w )) wth x t 0 (t J 1,l(w )) form an A-base for U + A. (2) The elements (3.11) F(x 1) n;σ(1) F (x l(w )) n:σ(l(w )) wth x t 0 (t J 1,l(w )) form an A-base for U A. Ē x (x) q! Proof. We only prove (1), as (2) can be proved smlarly or obtaned from (1) va Chevalley somorphsm. If I = 1, the clam s clear. If I = 2 and A s of type G 2, the result s obtaned n (3.8) and (3.9). For other rank two types, the clam can be proved n a smlar and n fact easer way. Let us consder the hgher rank cases. Let be the free A-submodule of U + wth the free A-bass formed by the elements of (3.10) (for σ := d J1,l(w ), see Theorem 3.1 (1)). By an argument smlar to [11, Proposton 8.20] and by the clam for rank-two cases, we see that Ē(x) n;t U+ A, so U+ A. Now by (3.1), we have = U + A. Thus the clam follows from (3.3). For k, r 0 and x K wth (k+r) x! 0, let ( k (k+r)x! r := )x (k) x!(r) x!. For x K wth x b 1 for all b N and for X, Y U 0, l and p 0, let [ X,Y,l p ] x := p t=1 x l t+1 X Y x t 1.

14 14 N. JING, K.C. MISRA, AND H. YAMANE Then we have [ ] [ ] [ ] X,Y,l X,Y,l+1 X,Y,l = x p p l p+1 X, [ ] p 1 x [ ] x x X,Y,0 X,Y, l = ( [ ] ) p+l X,Y,0 l p p. x p+l x x x [ ] LetUA 0 bethea-subalgebrageneratedbyk Kπ(),L λl µ (λ, µ V )and π(),l p q ( I, l, p 0 ). By a standardargument, we havethe followngtwolemmas. Lemma 3.3. The elements [ ] K x π() (K Kπ(),L π()l π() ) y π(),0 z I form an A-base of U 0 A. q (x 0,1, y, z 0 ) Let U A be the A-subalgebra of U generated by U + A and U A. Lemma 3.4. We have U 0 A U A, and we have the A-module somorphsm gven by m A (X Y ) := XY. m A : U A A U 0 A A U + A U A Acknowledgments We thank the referee for careful readng and knd comments. The thrd author would lke to express hs heartfelt thanks to Professor Nahong Hu for valuable communcaton. References [1] N. Andruskewtsch, H.-J. Schneder, On the classfcaton of fnte-dmensonal ponted Hopf algebras, Ann. Math. 171 (2010), [2] I. Angono and H. Yamane, The R-matrx of quantum doubles of Nchols algebras of dagonal type, J. Math. Phys. 56 (2015), [3] V. G. Drnfel d, Quantum groups, Proceedngs of the Internatonal Congress of Mathematcans, Vol. 1, 2 (Berkeley, Calf., 1986), pp , Amer. Math. Soc., Provdence, RI, [4]. Fan and Y. L, Two-parameter quantum algebras, canoncal bases and categorfcatons, Int. Math. Res. Not. no. 16 (2015), [5] I. Heckenberger, Lusztg somorphsms for Drnfel d doubles of bosonzatons of Nchols algebras of dagonal type, J. Algebra, 323 (2010), [6] I. Heckenberger and H. Yamane, A generalzaton of Coxeter groups, root systems, and Matsumoto s theorem, Math (2008), [7] I. Heckenberger, Classfcaton of arthmetc root systems, Adv. Math. 220 (2009), [8] I. Heckenberger, The Weyl groupod of a Nchols algebra of dagonal type, Invent. Math. 164 (2006), [9] I. Heckenberger and H. Yamane, Drnfel d doubles and Shapovalov determnants, Revsta de la Unon Matematca Argentna vol (2010), [10] J. E. Humphreys, Reflecton groups and Coxeter groups, Cambrdge Stud. Adv. Math, 29, Cmabrdge Unv. Press, [11] J. C. Jantzen, Lectures on quantum groups, Graduate Studes of Mathematcs, Vol. 6, Amer. Math. Soc., Provdence, RI, [12] J. C. Jantzen, Representatons of Algebrac Groups, Second Edton, Mathematcal Surveys and Monographs, Vol. 107, Amercan Mathematcal Socety [13] M. Jmbo, A q-dfference analogue of U(g) and the Yang-Baxter equaton, Lett. Math. Phys. 10 (1985), [14] K. Jeong, S.-J. Kang, M. Kashwara, Crystal bases for quantum generalzed Kac-Moody algebras, Proc. London Math. Soc. 90 (2005), [15] M. Kashwara, On crystal bases of the q-analogue of unversal envelopng algebras, Duke Math. J. 63 (1991), [16] V. Kharchenko, A quantum analogue of the Poncaré-Brkhoff-Wtt theorem, Algebra Logc 38 (1999), [17] G. Lusztg, Quantum groups at roots of 1, Geom. Dedcata, 35 (1990),

15 KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 15 [18] G. Lusztg, Canoncal bases arsng from quantzed envelopng algebras, J. Amer. Math. Soc. 3 (1990), Department of Mathematcs, North Carolna State Unversty, Ralegh, NC , USA E-mal address: jng@ncsu.edu Department of Mathematcs, North Carolna State Unversty, Ralegh, NC , USA E-mal address: msra@ncsu.edu Department of Mathematcs, Faculty of Scence, Unversty of Toyama, Gofuku, Toyama , Japan E-mal address: hroyuk@sc.u-toyama.ac.jp

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

arxiv:q-alg/ v1 21 Jul 1997

arxiv:q-alg/ v1 21 Jul 1997 NBI-HE-97-3 July 997 Explct Decompostons of Weyl Reflectons n Affne Le Algebras arxv:q-alg/970706v Jul 997 Jørgen Rasmussen The Nels Bohr Insttute, Blegdamsvej 7, DK-00 Copenhagen Ø, Denmark Abstract In

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF 100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα