Στατιστική ΜΕΡΟΣ Β. για Ηλεκτρολόγους Μηχανικούς. ηµήτρης Κουγιουµτζής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στατιστική ΜΕΡΟΣ Β. για Ηλεκτρολόγους Μηχανικούς. ηµήτρης Κουγιουµτζής http://www.users.auth.gr/dkugiu/teach/electricengineer/"

Transcript

1 Στατιστική για Ηλεκτρολόγους Μηχανικούς ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής E mail: Απρίλιος 2010

2 2 Στο Μέρος Α ασχοληθήκαµε µε την τυχαία µεταβλητή (τ.µ.) X, µελετήσαµε τη συνάρτηση πυκνότητας f X (x) και τη συνάρτηση κατανοµής F X (x) καθώς και κύριες παραµέτρους της κατανοµής, όπως τη µέση (προσδοκώµενη) τιµή E(X) µ και τη διασπορά (διακύµανση) Var(X) σ 2. Η µελέτη µιας τ.µ. µε τη ϐοήθεια της πιθανοθεωρίας προϋποθέτει ότι γνωρίζουµε (ή υποθέτουµε) την κατανοµή της τ.µ. και τις παραµέτρους της. Οταν εξετάζουµε ένα τυχαίο ϕαινόµενο, π.χ. το όριο ηλεκτρικού ϱεύµατος που καίγεται µια ασφάλεια συγκερκιµένου τύπου, δεν γνωρίζουµε από πριν ποιές τιµές ηλεκτρικού ϱεύ- µατος είναι πιο πιθανές, δηλαδή την κατανοµή πιθανότητας του ορίου για την ασφάλεια. Για να µελετήσουµε τέτοια προβλήµατα πρώτα συλλέγουµε δεδοµένα. Στατιστική (statistics) είναι η επιστήµη ή τέχνη του να µαθαίνουµε από τα δεδοµένα. Η στατιστική συνίσταται στη συλλογή δεδοµένων, στην περιγραφή τους και κυρίως στην ανάλυση τους που οδηγεί και στην απόκτηση συµπερασµάτων. Η συλλογή των δεδοµένων αναφέρεται κι ως δειγµατοληψία (sampling) κι αποτελεί ξεχωριστό πεδίο της στατιστικής που δεν ϑα µας απασχολήσει εδώ. Η περιγραφή των δεδοµένων και η παρουσίαση συνοπτικών στοιχείων και γραφηµάτων αναφέρεται ως περιγραφική στατιστική (descriptive statistics). Η ανάλυση στατιστικών δεδοµένων και η ερµηνεία των αποτελεσµάτων αναφέρεται ως στατιστική συµπερασµατολογία (statistical inference) και αποτελεί την ϐάση της στατιστικής και γι αυτό συχνά αναφέρεται απλά και ως στατιστική. Στο Μέρος Β ϑα ασχοληθούµε µε κάποια κύρια ϑέµατα της στατιστικής. Στο Κεφάλαιο 1 ϑα παρουσιάσουµε συνοπτικά κύριες τεχνικές της περιγραφικής στατιστικής. Στο Κεφάλαιο 2 ϑα µελετήσουµε την εκτίµηση κυρίων παραµέτρων κατανοµής µιας τ.µ. ενός πληθυσµού και στο Κεφάλαιο 3 ϑα µελετήσουµε τη συσχέτιση δύο τ.µ. καθώς και την εξάρτηση (παλινδρόµηση) µιας τ.µ. από µια άλλη. Παραθέτονται κάποιοι ϐασικοί ορισµοί για την στατιστική ανάλυση: δεδοµένα (data): ένα σύνολο τιµών µιας τ.µ. που έχουµε στη διάθεση µας, π.χ. µετρήσεις της τάσης διάσπασης κάποιου ηλεκτρικού κυκλώµατος (η τ.µ. εδώ είναι η τάση διάσπασης του κυκλώµατος). πληθυσµός (population): µια οµάδα ή µια κατηγορία στην οποία αναφέρεται η τ.µ., π.χ. γενικά τα ηλεκτρικά κυκλώµατα ή κάποιος τύπος ηλεκτρικών κυκλωµάτων. δείγµα (sample): ένα υποσύνολο του πληθυσµού που µελετάµε, π.χ. 25 κυκλώµατα που χρησιµοποιήσαµε για να κάνουµε µετρήσεις της τάσης διάσπασης. παράµετρος (parameter): ένα µέγεθος που συνοψίζει µε κάποιο τρόπο τις τιµές της τ.µ. στον πληθυσµό, π.χ. η µέση τιµή τάσης διάσπασης κυκλώµατος. στατιστική (statistic): ένα µέγεθος που συνοψίζει µε κάποιο τρόπο τις τιµές της τ.µ. στο δείγµα, π.χ. ο µέσος όρος τάσης διάσπασης από τα 25 ηλεκτρικά κυκλώµατα που µετρήσαµε. Οι παράµετροι πληθυσµού είναι σταθερές αλλά άγνωστες ενώ οι στατιστικές δείγµατος είναι γνωστές αλλά µεταβλητές. Θα ασχοληθούµε µόνο µε τις πιο γνωστές από την πιθανοθεωρία παραµέτρους κατανοµής µιας τ.µ., δηλαδή τη µέση τιµή µ, τη διασπορά σ 2 και την αναλογία p.

3 Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σ αυτό το κεφάλαιο ϑα δούµε πρώτα τρόπους να παρουσιάσουµε τα δεδοµένα µε στατιστικούς πίνακες και διαγράµµατα και µετά να συνοψίσουµε τα δεδοµένα υπολογίζοντας συνοπτικά µέτρα. 1.1 Περιγραφή Στατιστικών εδοµένων Οι στατιστικοί πίνακες και γραφικές παραστάσεις αποτελούν χρήσιµα µέσα για να παρουσιάσουµε τα δεδοµένα καθαρά, σύντοµα και µε σαφήνεια. Επίσης µπορούν να αποκαλύψουν σηµαντικά χαρακτηριστικά των δεδοµένων, όπως το εύρος τους, τη συµµετρικότητα τους ή την ύπαρξη ακραίων τιµών. Πίνακας συχνοτήτων Τα δεδοµένα ενός δείγµατος για µια τ.µ. X που παίρνει τιµές σ ένα σχετικά µικρό σύνολο διακεκριµένων τιµών (κατηγορίες ή αριθµητικές τιµές) µπορούν εύκολα να παρουσιαστούν σ ένα πίνακα συχνοτήτων (frequency table). Ο πίνακας συχνοτήτων παρουσιάζει για κάθε τιµή x i της X τη συχνότητα εµφάνισής της f i, δηλαδή πόσες ϕορές εµ- ϕανίζεται η κάθε διακεκριµένη τιµή στο δείγµα. Εύκολα µπορούµε επίσης να υπολογίσουµε και τη σχετική συχνότητα (relative frequency) εµφάνισης ή αλλιώς το ποσοστό (percent) p i που ορίζεται από το λόγο της συχνότητας εµφάνισης f i µιας τιµής x i προς το σύνολο των παρατηρήσεων n του δείγµατος p i = f i n. (1.1) Ορίζεται επίσης η αθροιστική συχνότητα (cumulative frequency) F i µιας τιµής x i ως το άθροισµα των συχνοτήτων όλων των τιµών που είναι µικρότερες ή ίσες της x i, F i = i f j όπου x j x i για j i. j=1 Με τον ίδιο τρόπο ορίζεται και η αθροιστική σχετική συχνότητα P i P i = i p j όπου x j x i για j i. j=1 3

4 4 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ο πίνακας της σχετικής συχνότητας αντιστοιχεί στην εµπειρική ή δειγµατική συνάρτηση µάζας πιθανότητας της διακριτής τ.µ. X, δηλαδή στην εκτίµηση της f X (x) ϐασισµένη στο δείγµα. Οµοια ο πίνακας της αθροιστικής σχετικής συχνότητας µας δίνει µια εκτίµηση της αθροιστικής συνάρτησης κατανοµής F X (x) από το δείγµα. Ραβδόγραµµα Τα δεδοµένα του πίνακα συχνοτήτων εύκολα µπορούν να παρασταθούν γραφικά σ ένα ϱαβδόγραµµα (bar chart), όπου η κάθε ϱάβδος παρουσιάζει τη συχνότητα (ή τη σχετική συχνότητα ή την αθροιστική συχνότητα, ή ακόµα την αθροιστική σχετική συχνότητα) για κάθε τιµή x i. Το ϱαβδόγραµµα σχετικής συχνότητας είναι το γράφηµα της εµπειρικής ή δειγµατικής συνάρτησης µάζας πιθανότητας (δηλαδή της εκτίµησης της f X (x) από το δείγµα). Αντίστοιχα το ϱαβδόγραµµα της αθροιστικής σχετικής συχνότητας απεικονίζει τη δειγµατική αθροιστική συνάρτηση κατανοµής. Η ίδια πληροφορία µπορεί να δοθεί και µε άλλου είδους γραφήµατα, όπως µ ένα κυκλικό διάγραµµα ή διάγραµµα πίτας (pie chart) όπου το κάθε κοµµάτι της επιφάνειας του κύκλου ( πίτα ) παρουσιάζει τη συχνότητα της αντίστοιχης τιµής. Παράδειγµα 1.1 Μια εταιρεία τροφοδοσίας ηλεκτρικών προϊόντων πουλάει ένα προϊόν στους πελάτες της σε παρτίδες των 5 λίτρων. Η εταιρεία ϑέλει να µελετήσει την ποσότητα του προϊόντος σε κάθε παραγγελία. Από τα αρχεία της εταιρείας ϐρέθηκαν 120 πρόσφατες παραγγελίες αυτού του χηµικού προϊόντος και ο αριθµός των παρτίδων σε κάθε παραγγελία δίνεται στον Πίνακα Πίνακας 1.1: Αριθµός παρτίδων σε δείγµα 120 παραγγελιών ενός προϊόντος. Η τ.µ. X είναι ο αριθµός των παρτίδων του προϊόντος ανά παραγγελία. Τα δεδοµένα του Πίνακα 1.1 είναι διακριτά αριθµητικά (ως αριθµοί από το 1 ως το ανώτατο αριθµό παρτίδων). Με κατάλληλη επεξεργασία ϑα µπορούσαµε να οργανώσουµε τα δεδοµένα σε διατακτικά κατηγορικά, δηλαδή ως κατηγορίες µεγέθους παραγγελίας µε ϐάση τον αριθµό των παρτίδων, µικρού µεγέθους για 1 ή 2 παρτίδες, µεσαίου µεγέθους για 3 ή 4 παρτίδες και µεγάλου µεγέθους για περισσότερες από 4 παρτίδες. Με ϐάση τον Πίνακα 1.1 δεν είναι εύκολο να µελετήσουµε την συχνότητα εµφάνισης των διαφόρων αριθµών παρτίδων. Ποιος αριθµός παρτίδων εµφανίζεται συχνότερα; Είναι περισσότερες παραγγελίες των 2 παρτίδων ή των 3 παρτίδων; Για να απαντήσουµε σε τέτοια ερωτήµατα µ- πορούµε να µετρήσουµε πόσες ϕορές εµφανίζεται ο κάθε αριθµός παρτίδων και να ϕτιάξουµε έτσι τον πίνακα συχνοτήτων. Αυτούς τους απλούς υπολογισµούς µπορούµε εύκολα να τους κάνουµε

5 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 5 x i f i p i F i P i Άθροισµα Πίνακας 1.2: Πίνακας συχνοτήτων για τον αριθµό παρτίδων σε 120 παραγγελίες του Πίνακα 1.1 που περιλαµβάνει τη συχνότητα f i, τη σχετική συχνότητα p i, τη αθροιστική συχνότητα F i και τη σχετική αθροιστική συχνότητα P i ). µόνοι µας αλλά όταν το δείγµα είναι µεγάλο ϑα χρειαστεί να χρησιµοποιήσουµε κάποιο υπολογιστικό πρόγραµµα (όπως το στατιστικό πακέτο SPSS). Ο Πίνακας 1.2 παρουσιάζει τις τιµές της X (αριθµός παρτίδων x i για i = 1,...,6) στην πρώτη στήλη, τη συχνότητα f i της κάθε τιµής x i στη δεύτερη στήλη, τη σχετική συχνότητα (ποσοστό) p i στην τρίτη στήλη, την αθροιστική συχνότητα F i στην τέταρτη στήλη και τη σχετική αθροιστική συχνότητα P i στην πέµπτη στήλη. Στο Σχήµα 1.1 παρουσιάζεται το ϱαβδόγραµµα που προκύπτει από τις συχνότητες εµφάνισης του κάθε αριθµού παρτίδων. Από τον πίνακα συχνοτήτων και το ϱαβδόγραµµα είναι ϕανερό πως 40 ραβδoγραµµα παρτιδων συχνoτητα αριθµoς παρτιδων Σχήµα 1.1: Ραβδόγραµµα του αριθµού παρτίδων σε 120 παραγγελίες του Πίνακα 1.1. οι περισσότερες παραγγελίες στο δείγµα µας είναι 2 παρτίδων, λιγότερες είναι 1 παρτίδας ή 3 παρτίδων και η συχνότητα ϕθείνει καθώς αυξάνει ο αριθµός παρτίδων, δηλαδή για παραγγελίες 4, 5 και 6 παρτίδων. Οµαδοποίηση Οταν τα δεδοµένα είναι αριθµητικά και είτε ο αριθµός των διακεκριµένων τιµών που παίρνει η τ.µ. X είναι µεγάλος, ή η X είναι συνεχής (δηλαδή παίρνει τιµές σ ένα

6 6 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ διάστηµα τιµών), είναι προφανές ότι οι πίνακες και τα γραφήµατα συχνοτήτων των τιµών δεν προσφέρονται για την απεικόνιση των δεδοµένων. Σε τέτοιες περιπτώσεις πρώτα χωρίζουµε τα δεδοµένα σε k οµάδες (groups), ή κλάσεις διαστηµάτων, και µετά παρουσιάζουµε σε πίνακα ή σε γράφηµα τη συχνότητα της κάθε οµάδας, δηλαδή τον αριθµό των παρατηρήσεων που ανήκουν σε κάθε οµάδα. Το εύρος τιµών r i της κάθε i οµάδας είναι συνήθως το ίδιο (r i = r). εν υπάρχει συγκεκριµένος τρόπος να το καθορίσουµε και το διαλέγουµε ανάλογα µε την κλίµακα τιµών για την οποία µας ενδιαφέρει να δούµε διαφορές. Γενικά ϕροντίζουµε να είναι τέτοιο ώστε να µην προκύπτουν πολλές οµάδες µε αποτέλεσµα να έχουµε µικρές συχνότητες γιατί τότε δε µπορούµε να διακρίνουµε κάποιο σχηµατισµό στα δεδοµένα. Από την άλλη δε ϑα πρέπει οι οµάδες να είναι πολύ λίγες γιατί τότε δε ϑα µπορούµε να διακρίνουµε διαφορές παρά µόνο για µεγάλες κλίµακες τιµών. Για το χωρισµό των δεδοµένων σε οµάδες ϐρίσκουµε πρώτα τη µικρότερη (ελάχιστη) τιµή x min και µεγαλύτερη (µέγιστη) τιµή x max και υπολογίζουµε το εύρος των δεδοµένων R = x max x min. ιαιρώντας το R µε τον αριθµό των οµάδων k που επιλέγουµε έχουµε το εύρος τιµών r της κάθε οµάδας το οποίο συνήθως στρογγυλοποιούµε για να έχουµε εύχρηστα νούµερα. Η πρώτη οµάδα έχει σαν κάτω άκρο του διαστήµατος κάποιον κατάλληλα στρογγυλοποιηµένο αριθµό µικρότερου ή ίσου του x min, τα διαστήµατα των οµάδων είναι ισοµήκη και το διάστηµα της τελευταίας οµάδας περιλαµβάνει το x max. Για τα διαστήµατα διαλέγουµε συµβατικά να είναι κλειστά από αριστερά (να περιέχουν την ακραία µικρότερη τιµή) κι ανοιχτά από δεξιά (να µην περιέχουν την ακραία µεγαλύτερη τιµή). Ιστόγραµµα Εχοντας οµαδοποιήσει τα αριθµητικά δεδοµένα µπορούµε να κάνουµε τον πίνακα και τα γραφήµατα συχνοτήτων όπως και πριν. Ειδικότερα για το ϱαβδόγραµµα για την κάθε ϱάβδο παίρνουµε το κέντρο του διαστήµατος που αντιστοιχεί σε κάθε οµάδα. Επίσης δεν υπάρχει κενό διάστηµα µεταξύ των ϱάβδων και το γράφηµα αυτό λέγεται ιστόγραµµα (histogram). Στον κάθετο άξονα του ιστογράµµατος µπορεί να είναι η συχνότητα f i, η σχετική συχνότητα (ποσοστό) p i, η αθροιστική συχνότητα F i, ή ακόµα η σχετική αθροιστική συχνότητα P i για την κάθε i οµάδα. Σε πλήρη αντιστοιχία µε το ϱαβδόγραµµα σχετικής συχνότητας το ιστόγραµµα σχετικής συχνότητας (ή απλά το ιστόγραµµα συχνότητας) δίνει µια εκτίµηση του γραφήµατος της συνάρτησης πυκνότητας πιθανότητας f X (x) της συνεχούς τ.µ. X, ϐασισµένη στο δείγµα και στην επιλεγµένη οµαδοποίηση των παρατηρήσεων. Το ιστόγραµµα είναι χρήσιµο για να κρίνουµε αν µπορούµε να δεχθούµε ότι η τ.µ. X, όπως την παρατηρήσαµε από το δείγµα, ακολουθεί κάποια γνωστή κατανοµή. Εδώ κυρίως ενδιαφερόµαστε για την κανονική κατανοµή γιατί τότε µπορούµε να χρησιµοποιήσουµε µια ολόκληρη µεθοδολογία εκτιµητικής που ϐασίζεται στην κανονική κατανοµή της X. Για µικρά δείγµατα (µε λιγότερες από 30 παρατηρήσεις) δεν περιµένουµε το ιστόγραµµα να δίνει το σχήµα καµπάνας της κανονικής κατανοµής (ακόµα και για δεδοµένα που προέρχονται από κανονική κατανοµή είναι δυνατόν να παρατηρήσουµε σηµαντικές αποκλίσεις). Συνήθως δεχόµαστε ότι η τ.µ. X ακολουθεί κανονική κατανοµή όταν το ιστόγραµµα ϕαίνεται να διατηρεί κάποια σχετική συµµετρία µε τις υψηλότερες συχνότητες να παρουσιάζονται στα κεντρικά διαστήµατα τιµών. Υπάρχουν κι άλλα γραφήµατα που απεικονίζουν την εµπειρική κατανοµή της τ.µ. X µε διαφορετικό τρόπο. Αναφέρουµε ενδεικτικά χωρίς να τα περιγράψουµε το ϕυλλογράφηµα

7 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 7 (stem and leaf plot) και το σηµειογράφηµα (dotplot). Παράδειγµα 1.2 Στον Πίνακα 1.3 δίνονται οι χρόνοι ζωής 25 µπαταριών αυτοκινήτου µιας εταιρίας Α (σε έτη µε το τους µήνες τροποποιηµένους σε δεκαδικά της µονάδας του έτους) που διαλέχτηκαν τυχαία (και αντίστοιχα για 20 µπαταρίες αυτοκινήτων από µια άλλη εταιρία Β που ϑα µελετήσουµε αργότερα). Α/Α εταιρία Α εταιρία Β Σύνολο Πίνακας 1.3: εδοµένα χρόνου ζωής µπαταριών αυτοκινήτου δύο εταιριών Α και Β. Ονοµάζουµε X την τυχαία µεταβλητή του χρόνου Ϲωής της µπαταρίας από την εταιρία Α. Ο µικρότερος χρόνος Ϲωής είναι x min = 4.5, ο µεγαλύτερος χρόνος Ϲωής είναι x max = 7.0 και το εύρος των δεδοµένων του δείγµατος είναι R = x max x min = = 2.5. ιαλέγουµε να χωρίσουµε τα δεδοµένα σε 10 οµάδες (k = 10) κι άρα η κάθε οµάδα καλύπτει εύρος τιµών r = R k = = 0.25,

8 8 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ αρχίζοντας από την τιµή 4.5. Στη συνέχεια µπορούµε να υπολογίσουµε τον πίνακα συχνοτήτων µετρώντας τον αριθµό των δεδοµένων σε κάθε οµάδα. Στον Πίνακα 1.4 δίνεται ο πίνακας συχνοτήτων, που περιλαµβάνει τη συχνότητα, τη σχετική συχνότητα, την αθροιστική συχνότητα και την σχετική αθροιστική συχνότητα. Παρατηρούµε ότι οι ιάστηµα τιµών f i p i F i P i Άθροισµα Πίνακας 1.4: Πίνακας συχνοτήτων για τα δεδοµένα του χρόνου Ϲωής µπαταρίας της εταιρίας Α που περιλαµβάνει τη συχνότητα f i, τη σχετική συχνότητα p i, την αθροιστική συχνότητα F i και τη σχετική αθροιστική συχνότητα P i ). χρόνοι Ϲωής µπαταρίας στο δείγµα των 25 µπαταρίων συγκεντρώνονται σε ένα κεντρικό διάστηµα τιµών (περίπου οι µισές παρατηρήσεις εµφανίζονται στις τρεις οµάδες που καλύπτουν το διάστηµα [5.25, 6.0]). Μπορούµε να σχηµατίσουµε καλύτερη εντύπωση για την κατανοµή της τυχαίας µεταβλητής X της Ϲωής της µπαταρίας από το ιστόγραµµα συχνοτήτων, που παρουσιάζεται στο Σχήµα 1.2. Πράγµατι από το ιστόγραµµα ϕαίνεται ότι οι παρατηρήσεις συγκεντρώνονται σ ένα κεντρικό 6 Iστoγραµµα ζωης µπαταριας εταιριας A 5 συχνoτητα ευρoς Σχήµα 1.2: Ιστόγραµµα των δεδοµένων χρόνου Ϲωής µπαταριών της εταιρίας Α του Πίνακα 1.3. διάστηµα τιµών κι απλώνονται µε κάποια συµµετρία γύρω από αυτό. Η εικόνα που δίνει το

9 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 9 ιστόγραµµα είναι συνεπής µε την γραφική παράσταση κανονικής κατανοµής (σχήµα καµπάνας ) και µας επιτρέπει να δεχτούµε ότι η κατανοµή του χρόνου Ϲωής µπαταρίας από την εταιρία Α είναι κανονική. 1.2 Περιγραφικά Μέτρα Στατιστικών εδοµένων Ο πίνακας συχνοτήτων και το ϱαβδόγραµµα ή ιστόγραµµα δίνουν µια συνοπτική παρουσίαση των δεδοµένων και µας επιτρέπουν να µελετήσουµε ποιοτικά την κατανοµή της τυχαίας µεταβλητής που παρατηρήσαµε. Στη συνέχεια ϑα ορίσουµε ποσοτικά µεγέθη που περιγράφουν περιληπτικά τα ϐασικά χαρακτηριστικά της κατανοµής της τ.µ. X και λέγονται συνοπτικά ή περιγραφικά µέτρα (summarizing or descriptive statistics). Κάθε τέτοιο µέτρο υπολογίζεται από τις παρατηρήσεις του δείγµατος κι όπως ϑα δούµε στα επόµενα κεφάλαια αποτελεί εκτίµηση κάποιας παραµέτρου της κατανοµής της τ.µ. που µελετάµε. Θα ασχοληθούµε µε δύο τύπους περιγραφικών µέτρων: τα µέτρα ϑέσης (measures of location) που προσδιορίζουν χαρακτηριστικές ϑέσεις µέσα στο εύρος των δεδοµένων και τα µέτρα µεταβλητότητας (variability measures) που δίνουν περιληπτικά τη διασκόρπιση και µεταβλητότητα των δεδοµένων Μέτρα ϑέσης Ως µέτρα ϑέσης εννοούµε κυρίως τα µέτρα κεντρικής τάσης που προσδιορίζουν ένα κεντρικό σηµείο γύρω από το οποίο τείνουν να συγκεντρώνονται τα δεδοµένα. Τα κυριότερα µέτρα κεντρικής τάσης είναι: η δειγµατική µέση τιµή (sample mean value) ή αριθµητικός µέσος (arithmetic mean), ή µέσος όρος (average), η δειγµατική διάµεσος (sample median), η δειγµατική επικρατούσα τιµή (sample mode). Μέση τιµή Η δειγµατική µέση τιµή είναι το πιο γνωστό και χρήσιµο µέτρο του κέντρου των δεδοµένων. Εστω x 1, x 2,...,x n, οι τιµές των παρατηρήσεων του δείγµατος για µια τ.µ. X που µελετάµε. Η δειγµατική µέση τιµή συµβολίζεται x κι ορίζεται ως x = x 1 + x x n n = 1 n n x i. (1.2) Η µέση τιµή είναι το κέντρο ισορροπίας των δεδοµένων. Για να καταλάβουµε τη ϕυσική της σηµασία ας ϕανταστούµε µία αβαρή σανίδα πάνω στην οποία σκορπίζουµε ένα αριθµό n ίδιων ϐαριδιών. Το σηµείο στήριξης της σανίδας (ώστε να ισορροπεί σε οριζόντια ϑέση) είναι η µέση τιµή της ϑέσης των ϐαριδίων πάνω στη σανίδα, όπως ϕαίνεται και στο Σχήµα 1.3.

10 10 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ µεση τιµη Σχήµα 1.3: Σχηµατική παρουσίαση της µέσης τιµής. ιάµεσος Η δειγµατική διάµεσος είναι ένα άλλο µέτρο του κέντρου των δεδοµένων και ορίζεται ως η κεντρική τιµή όταν διατάξουµε τα δεδοµένα σε αύξουσα σειρά. Θα τη συµβολίζουµε ως x. Αν ο αριθµός n των δεδοµένων είναι περιττός τότε η διάµεσος είναι η τιµή στη ϑέση (n + 1)/2, ενώ αν το n είναι άρτιος τότε είναι το ηµιάθροισµα των τιµών στις ϑέσεις n/2 και n/2 + 1, δηλαδή { x = x (n+1)/2 n = 2k + 1 x n/2 + x n/2+1 2 n = 2k. Για παράδειγµα σε δείγµα τριών τιµών η διάµεσος είναι η δεύτερη µικρότερη τιµή και σε δείγµα τεσσάρων τιµών η διάµεσος είναι ο µέσος όρος της δεύτερης και τρίτης µικρότερης τιµής. (1.3) Επικρατούσα τιµή Η δειγµατική επικρατούσα τιµή χρησιµοποιείται επίσης για να δηλώσει την κεντρική τάση των δεδοµένων κι ορίζεται ως η τιµή που εµφανίζεται µε τη µεγαλύτερη συχνότητα. Αν υπάρχουν πάνω από µία τέτοιες τιµές, τότε όλες αυτές ϑεωρούνται επικρατούσες τιµές. Είναι ϕανερό πως η επικρατούσα τιµή δεν έχει νόηµα όταν το δείγµα δεν αποτελείται από διακεκριµένες επαναλαµβονόµενες τιµές. Η δειγµατική µέση τιµή είναι το πιο σηµαντικό από τα τρία µέτρα κεντρικής τάσης και ϑα µας απασχολήσει ιδιαίτερα καθώς ϑα τη χρησιµοποιήσουµε στη στατιστική συµπερασµατολογία (στα επόµενα κεφάλαια) για να ϐγάλουµε συµπεράσµατα για τη µέση τιµή µ του πληθυσµού. Για τον υπολογισµό της µέσης τιµής χρησιµοποιούνται όλες οι τιµές του δείγµατος, ενώ για τη διάµεσο µόνο η τάξη τους. Γι αυτό και η µέση τιµή επηρεάζεται από µακρινές τιµές αλλά η διάµεσος όχι. Οταν η κατανοµή των αριθµητικών δεδοµένων είναι µονοκόρυφη και συµµετρική, τότε και τα τρία µέτρα κεντρικής τάσης συµπίπτουν. Η ύπαρξη µακρινών παρατηρήσεων στο δείγµα δυσκολεύει τη στατιστική περιγραφή κι ανάλυση. Γι αυτό πριν προχωρήσουµε ϑα πρέπει να αποφασίσουµε αν ϑα συµπεριλάβουµε τη µακρινή παρατήρηση (αν πιστεύουµε ότι είναι σωστή) ή αν ϑα την αγνοήσουµε (αν έχουµε λόγους να πιστεύουµε ότι δεν είναι ακριβής) Μέτρα µεταβλητότητας Εκτός από την κεντρική τάση µας ενδιαφέρει επίσης και η µεταβλητότητα ή διασπορά των παρατηρήσεων. Οταν τα δεδοµένα είναι συγκεντρωµένα γύρω από µια κεντρική τιµή, δηλαδή η διασπορά των δεδοµένων είναι µικρή, τότε η κεντρική τιµή αντιπροσωπεύει ικανοποιητικά τα δεδοµένα. Από την άλλη, όταν τα δεδοµένα είναι πολύ σκορπισµένα τα µέτρα κεντρικής

11 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 11 τιµής δε δίνουν καλή περιληπτική περιγραφή των δεδοµένων. Επίσης, διαφορετικά δείγµατα από τον ίδιο πληθυσµό µπορεί να έχουν το ίδιο µέτρο κεντρικής τάσης αλλά να διαφέρουν κατά κάποιο σηµαντικό τρόπο ως προς τη διασπορά των παρατηρήσεων. Χρησιµοποιώντας το παράδειγµα µε τα ϐαρίδια και τη σανίδα ϐλέπουµε στο Σχήµα 1.4 πώς δύο δείγµατα που έχουν την ίδια µέση τιµή µπορεί να διαφέρουν σηµαντικά και κατά χαρακτηριστικό τρόπο ως προς τη διασπορά τους Σχήµα 1.4: Σχηµατική παρουσίαση δύο δειγµάτων ίσου πλήθους µε ίδια µέση τιµή και διαφορετική µεταβλητότητα. Τα κυριότερα µέτρα διασποράς είναι: το δειγµατικό εύρος (sample range) R, η δειγµατική διακύµανση ή δειγµατική διασπορά (sample variance) s 2 και η δειγµατική τυπική απόκλιση (standard deviation) s. τα εκατοστιαία σηµεία (percentiles) και το ενδοτεταρτοµοριακό εύρος (interquartile range). Εύρος Οπως αναφέρθηκε παραπάνω το εύρος των δεδοµένων R = x max x min είναι η διαφορά της ελάχιστης από τη µέγιστη τιµή του δείγµατος. Το εύρος υπολογίζεται εύκολα αλλά δεν είναι ανθεκτικό µέτρο µεταβλητότητας. Εξαρτάται µόνο από τις δύο ακραίες παρατηρήσεις x min και x max και αγνοεί τις υπόλοιπες παρατηρήσεις. Γι αυτό µπορεί να αλλάζει σηµαντικά από δείγµα σε δείγµα (ίδιου πλήθους κι από τον ίδιο πληθυσµό). Γενικά το εύρος αυξάνει όταν µεγαλώνει το δείγµα καθώς αναµένεται να συµπεριληφθούν πιο ακραίες τιµές. ιασπορά Η διασπορά ή διακύµανση µετράει τη µεταβλητότητα των παρατηρήσεων γύρω από τη µέση τιµή. Αν ορίσουµε την απόκλιση µιας παρατήρησης x i από τη µέση τιµή ως x i x, είναι ϕανερό πως το άθροισµα όλων αυτών των αποκλίσεων είναι 0 γιατί χρησιµοποιώντας τον ορισµό της δειγµατικής µέσης τιµής (1.2) έχουµε n (x i x) = n x i n x = n x n x = 0. Η δειγµατική µέση τιµή x έχει οριστεί έτσι ώστε οι ϑετικές αποκλίσεις για τιµές µεγαλύτερες του x να είναι αθροιστικά ίδιες µε τις αρνητικές αποκλίσεις για τιµές µικρότερες του x. Για να µετρήσουµε λοιπόν τη µεταβλητότητα των παρατηρήσεων γύρω από τη µέση τιµή διαλέγουµε να αθροίσουµε όχι τις ίδιες τις αποκλίσεις αλλά τα τετράγωνα των αποκλίσεων. Επίσης για να

12 12 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ πάρουµε ένα µέτρο της µέσης απόκλισης που δεν εξαρτάται από το πλήθος των παρατηρήσεων ϑα πρέπει να διαιρέσουµε µε το πλήθος n των παρατηρήσεων. Οµως για τεχνικούς λόγους που ϑα εξηγήσουµε παρακάτω διαιρούµε µε n 1 αντί για n και η δειγµατική διασπορά s 2 ορίζεται ως s 2 = 1 n (x i x) 2. (1.4) n 1 Αναπτύσσοντας τα τετράγωνα της (1.4) έχουµε τον ισοδύναµο τύπο ( n ) s 2 = 1 x 2 i n x 2, (1.5) n 1 που είναι πιό εύχρηστος και χρησιµοποιείται στους υπολογισµούς. Η διασπορά s 2 προκύπτει από τα τετράγωνα των παρατηρήσεων και συχνά είναι δύσκολο να την ερµηνεύσουµε ως πραγµατικό ϕυσικό µέγεθος. Γι αυτό ορίζουµε τη δειγµατική τυπική απόκλιση s, που είναι απλά η ϑετική ϱίζα της δειγµατικής διασποράς s 2. Η τυπική απόκλιση s µετριέται µε τη µονάδα µέτρησης της τ.µ. X κι εκφράζει (όπως δηλώνει η ονοµασία της) την τυπική απόκλιση των δεδοµένων από τη δειγµατική µέση τιµή, δηλαδή µέχρι πόσο περίπου περιµένουµε µια τυπική τιµή της X να απέχει από τη µέση τιµή. Σηµείωση: Χρήση του n 1 αντί του n Οπως η δειγµατική µέση τιµή εκτιµά τη µέση τιµή του πληθυσµού µ, έτσι και η δειγµατική διασπορά s 2 εκτιµά τη διασπορά του πληθυσµού σ 2. Αν γνωρίζαµε τη µ τότε ϑα τη χρησιµοποιούσαµε στον τύπο για τον υπολογισµό του s 2, αλλά συνήθως η µ είναι άγνωστη. Οι παρατηρήσεις x i, τείνουν να είναι πιο κοντά στη x παρά στη µ κι άρα οι υπολογισµοί µε ϐάση τις αποκλίσεις x i x δίνουν µικρότερες τιµές απ ότι αν χρησιµοποιούσαµε τις αποκλίσεις x i µ. Για να αντισταθµίσουµε αυτήν την τάση για υποεκτίµηση της διασποράς του πληθυσµού σ 2 διαιρούµε µε n 1 αντί µε n. Μία άλλη πιο τεχνική εξήγηση ϐασίζεται στους ϐαθµούς ελευθερίας (degrees of freedom). Οι n ελεύ- ϑερες παρατηρήσεις αποτελούν τους n ϐαθµούς ελευθερίας. Για τον υπολογισµό της x σχηµατίζουµε το µέσο όρο διαιρώντας το άθροισµα των παρατηρήσεων µε τους ϐαθµούς ελευθερίας n αφού δεν έχουµε καµιά συνθήκη για τις n παρατηρήσεις που χρησιµοποιούµε. Για τον υπολογισµό της s 2 όµως έχουµε της συνθήκη n (x i x) = 0, δηλαδή αν ξέρουµε n 1 από τις αποκλίσεις µπορούµε να ϐρούµε αυτήν που αποµένει. Άρα για τον υπολογισµό της s 2 οι ϐαθµοί ελευθερίας είναι n 1 και γι αυτό διαιρούµε µε n 1. Εκατοστιαία σηµεία ενδοτεταρτοµοριακό εύρος ϑηκόγραµµα Η διάµεσος χωρίζει τα δεδοµένα στα δύο. Μπορούµε να ορίσουµε άλλα σηµεία χωρισµού του διατεταγµένου συνόλου τιµών που παίρνουµε από το δείγµα. Τέτοια σηµεία είναι τα εκατοστιαία σηµεία. Μια παρατήρηση καλείται το p-εκατοστιαίο σηµείο (p percentile) όταν ποσοστό παρατηρήσεων το πολύ p% είναι µικρότερες απ αυτήν την παρατήρηση (0 p < 1). Η διάµεσος είναι το 50-εκατοστιαίο σηµείο. Αλλά χαρακτηριστικά εκατοστιαία σηµεία είναι αυτά που ορίζουν τέταρτα ή τεταρτοµόρια (quartiles). Το 25-εκατοστιαίο σηµείο είναι το πρώτο ή κατώτερο τεταρτοµόριο (first or lower quartile) και το συµβολίζουµε Q 1, ενώ το 75-εκατοστιαίο σηµείο είναι το τρίτο ή ανώτερο τεταρτοµόριο (third or upper quartile) και το συµβολίζουµε Q 3. Το πρώτο και τρίτο τεταρτοµόριο ορίζονται όπως η διάµεσος αλλά περιορίζοντας το σύνολο των δεδοµένων στα αντίστοιχα υποσύνολα (κατώτερο ή ανώτερο µισό). Ειδικότερα, έχοντας πρώτα διατάξει τις παρατηρήσεις σε αύξουσα σειρά, αν το σύνολο των παρατηρήσεων n είναι άρτιος

13 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 13 αριθµός τότε το κατώτερο υποσύνολο περιέχει τις παρατηρήσεις από 1 ως n/2 και το ανώτερο από n/2+1 ως n, ενώ αν το n είναι περιττός το κατώτερο υποσύνολο περιέχει τις παρατηρήσεις από 1 ως (n + 1)/2 και το ανώτερο από (n + 1)/2 ως n (δες Σχήµα 1.5). n=2k x 1 x n/2 x n/2+1 x n 1 n/2 n/2+1 n n=2k+1 x 1 x (n+1)/2 x n 1 (n+1)/2 n Σχήµα 1.5: Σχηµατική παρουσίαση των δύο υποσυνόλων του δείγµατος που σχηµατίζονται για άρτιο και περιττό πλήθος παρατηρήσεων. Το πρώτο και τρίτο τεταρτοµόριο υπολογίζονται ως οι διάµεσοι του πρώτου και δεύτερου υποσυνόλου αντίστοιχα. Η διαφορά I = Q 3 Q 1 λέγεται ενδοτεταρτοµοριακό εύρος (interquartile range) και δίνει το εύρος που καλύπτουν τα µισά από τα δεδοµένα που είναι πιο κοντά στην κεντρική τιµή (διάµεσο). Το I είναι ένα άλλο µέτρο διασποράς των δεδοµένων (πιο ανθεκτικό από το εύρος R) που δεν ορίζεται ως προς τη δειγµατική µέση τιµή κι άρα δεν επηρεάζεται απ αυτήν. Η διάµεσος x, το πρώτο και τρίτο τεταρτοµόριο Q 1 και Q 3 αντίστοιχα, καθώς και η ελάχιστη και µέγιστη τιµή των δεδοµένων x min και x max, αποτελούν τη σύνοψη των 5 αριθµών (five number summary). Γραφικά η παρουσίαση της σύνοψης των 5 αριθµών γίνεται µε το ϑηκόγραµµα (box plot) σε οριζόντια ή κάθετη ϑέση όπως δείχνει το Σχήµα 1.6. x min Q 1 ~ x Q 3 x max Σχήµα 1.6: Σχηµατική παρουσίαση οριζόντιου ϑηκογράµµατος. Σηµείωση: Θηκόγραµµα στον υπολογιστή Το ϑηκόγραµµα που παράγει κάποιο στατιστικό πρόγραµµα, όπως το SPSS, µπορεί να διακόπτει τις γραµµές που ενώνουν τα άκρα του κουτιού µε την ελάχιστη και µέγιστη τιµή (που λέγονται µύστακες (whiskers)) σε κάποια άλλα σηµεία και να παρουσιάζει µε ειδικά σύµβολα τις υπόλοιπες µακρινές τιµές. Για το σκοπό αυτό χρησιµοποιείται κάποιο κριτήριο για να χαρακτηριστεί µια µακρινή τιµή x i σαν ύποπτη ακραία τιµή (outlier), ή ακραία τιµή (extreme). Το κριτήριο είναι η απόσταση της τιµής από τα

14 14 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ άκρα του κουτιού (δηλαδή από το Q 1 ή Q 3 ). Τυπικά αν η απόσταση αυτή είναι µεγαλύτερη από 1.5I (όπου τελειώνει ο µύστακας) τότε η τιµή χαρακτηρίζεται ύποπτη ακραία, ενώ αν είναι µεγαλύτερη από 3I χαρακτηρίζεται ακραία. Θηκόγραµµα και κανονική κατανοµή Το ϑηκόγραµµα, όπως και το ιστόγραµµα, µας επιτρέπει να κρίνουµε αν µπορούµε να δεχτούµε ότι η κατανοµή της συνεχούς τυχαίας µεταβλητής που παρατηρήσαµε είναι κανονική. Για να κάνουµε αυτήν την παραδοχή ϑα πρέπει: η διάµεσος να µην αποκλίνει σηµαντικά προς το πρώτο ή το τρίτο τεταρτοµόριο, δηλαδή η γραµµή που αντιστοιχεί στη διάµεσο να µην πλησιάζει σε κάποιο από τα δύο άκρα του κουτιού (γιατί αλλιώς αυτό ϑα σήµαινε πως η κατανοµή δεν είναι συµµετρική και δείχνει λοξότητα), το εύρος των τιµών στα δύο ακραία τεταρτοµόρια να µη διαφέρει σηµαντικά, δηλαδή τα µήκη των δύο µυστάκων να είναι συγκρίσιµα (για τη διατήρηση της συµµετρίας). να µην υπάρχουν ακραίες τιµές, δηλαδή να µην υπάρχουν σηµεία µακριά από τους δύο µύστακες (η ύπαρξη ακραίων σηµείων δηλώνει πως οι ουρές της κατανοµής είναι παχιές που δε συµφωνεί µε την κανονική κατανοµή). Είναι σηµαντικό να αναλογιστούµε ότι µε λίγα δεδοµένα δεν είναι δυνατόν να τηρούνται αυστηρά οι παραπάνω προϋποθέσεις για το ϑηκόγραµµα ακόµα κι αν τα δεδοµένα προέρχονται πράγµατι από κανονική κατανοµή. Αν όµως το ϑηκόγραµµα (όπως και το ιστόγραµµα, ή οποιοδήποτε άλλο γράφηµα της κατανοµής των δεδοµένων) δίνει ενδείξεις σηµαντικής απόκλισης από συµµετρική κατανοµή τότε δεν ϑα πρέπει να ϑεωρήσουµε πως η κατανοµή είναι κανονική στην στατιστική ανάλυση που ϑα κάνουµε στη συνέχεια. Παράδειγµα 1.3 Θέλουµε να εκτιµήσουµε την περιεκτικότητα σε ϱαδιενέργεια του χάλυβα που παράγεται από ένα εργοστάσιο Α. Γι αυτό έγιναν µετρήσεις της ϱαδιενέργειας (σε Bq/g) σε 10 δοκίµια από το εργοστάσιο Α. Τα αποτελέσµατα δίνονται στον Πίνακα 1.5. Α/Α εργοστάσιο Α εργοστάσιο Β Σύνολο Πίνακας 1.5: εδοµένα περιεκτικότητας ϱαδιενέργειας (σε µονάδα µέτρησης Bq/g) σε δοκίµια από χάλυβα κατασκευασµένα από δύο εργοστάσια Α και Β.

15 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 15 Θα ασχοληθούµε µε τις παρατηρήσεις της περιεκτικότητας ϱαδιενέργειας στο χάλυβα από το εργοστάσιο Α κι ας ονοµάσουµε αυτήν την τυχαία µεταβλητή X. Η δειγµατική µέση τιµή υπολογίζεται από το άθροισµα των 10 παρατηρήσεων που δίνονται στη δεύτερη στήλη του Πίνακα 1.5 ως x = x i = = Η δειγµατική διάµεσος εύκολα µπορεί να ϐρεθεί µια κι οι παρατηρήσεις δίνονται σε αύξουσα σειρά. Αφού το n είναι άρτιο η διάµεσος δίνεται ως x = x n/2 + x n/2+1 2 = x 5 + x 6 2 = = Παρατηρούµε ότι η δειγµατική µέση τιµή δίνει µεγαλύτερη τιµή στην εκτίµηση της κεντρικής τάσης των δεδοµένων από τη δειγµατική διάµεσο. Αυτό συµβαίνει γιατί η µέση τιµή επηρεάζεται από την ακραία τιµή της δεκάτης παρατήρησης που είναι πολύ µεγαλύτερη από όλες τις άλλες. Θα πρέπει να γνωρίζουµε αν αυτή η ακραία τιµή είναι πραγµατική ή οφείλεται σε κάποιο σφάλµα της παρατήρησης (σφάλµα του µηχανήµατος µέτρησης, σφάλµα στην καταγραφή κτλ). Η µικρότερη περιεκτικότητα ϱαδιενέργειας στο δείγµα είναι x min = 0.40 Bq/g κι η µεγαλύτερη είναι x max = 2.10 Bq/g. Αρα το εύρος των δεδοµένων είναι R = 1.70 Bq/g, που είναι µεγάλο εξαιτίας της ακραίας τιµής που συµπεριλάβαµε στο δείγµα. Για να ϐρούµε τη διασπορά s 2 της περιεκτικότητας της ϱαδιενέργειας στο χάλυβα στο δείγµα µας υπολογίζουµε πρώτα το άθροισµα των τετραγώνων των παρατηρήσεων 10 x 2 i = = 7.44 κι αντικαθιστώντας το στον τύπο της δειγµατικής διασποράς (1.5) ϐρίσκουµε s 2 = 1 9 ( 10 ) x 2 i 10 x2 = 1 ( ) = Η δειγµατική τυπική απόκλιση είναι s = s 2 = = 0.493, δηλαδή η αντιπροσωπευτική τυπική απόκλιση από τη µέση περιεκτικότητα ϱαδιενέργειας είναι περίπου 0.5 Bq/g, που είναι πολύ µεγάλη (όση περίπου και η διάµεσος). Η σύνοψη των 5 αριθµών δίνεται στο Σχήµα 1.7 όπου παρουσιάζεται σχηµατικά και η εύρεση του πρώτου και τρίτου τεταρτοµορίου. Από το πρώτο και τρίτο τεταρτοµόριο υπολογίζουµε το ενδοτεταρτοµοριακό εύρος, I = Q 3 Q 1 = = 0.16 Bq/g. Εχοντας ϐρεί τη σύνοψη των 5 αριθµών µπορούµε εύκολα να παραστήσουµε το ϑηκόγραµµα. Στο Σχήµα 1.8 δίνεται το ϑηκόγραµµα σε κατακόρυφη ϑέση. Παρατηρούµε ότι ο άνω µύστακας δεν προεκτείνεται ως τη µέγιστη τιµή των δεδοµένων που είναι Αυτή η τιµή δηλώνεται ως ακραία τιµή µε ιδιαίτερο σύµβολο, αφού η απόσταση του αντίστοιχου σηµείου από το πάνω µέρος του κουτιού, Q 3 = 0.67, είναι µεγαλύτερη από 3I = = 0.48.

16 16 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ x min =0.40 x ~ =0.57 x max = Q 1 =0.51 Q 3 =0.67 Σχήµα 1.7: Σχηµατική παρουσίαση της σύνοψης των 5 αριθµών µαζί µε τις 10 παρατηρήσεις της περιεκτικότητας ϱαδιενέργειας. Θηκoγραµµα περιεκτικoτητας ραδιενεργειας Σχήµα 1.8: Θηκόγραµµα των 10 παρατηρήσεων περιεκτικότητας ϱαδιενέργειας σε χάλυβα του εργοστασίου Α. Παράδειγµα 1.4 Θεωρούµε πως η ακραία τιµή στο προηγούµενο παράδειγµα οφείλεται πράγ- µατι σε κάποιο σφάλµα της µέτρησης και την απαλείφουµε. Για το νέο δείγµα των 9 παρατηρήσεων υπολογίζουµε τα µέτρα ϑέσης και µεταβλητότητας. Η µέση τιµή είναι και η διάµεσος (το n είναι περιττό) x = x i = = x = x (n+1)/2 = x 5 = Βλέπουµε λοιπόν ότι µετά την απαλοιφή της ακραίας τιµής η δειγµατική µέση τιµή και η διάµεσος δίνουν περίπου την ίδια εκτίµηση της κεντρικής τάσης των δεδοµένων, που είναι ένδειξη συµµετρίας της κατανοµής. Για τα άλλα µέτρα έχουµε:

17 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 17 ιασπορά Τυπική απόκλιση s 2 = 1 ( ) = s = = 0.10 Ελάχιστη τιµή x min = 0.40 Μέγιστη τιµή x max = 0.75 Εύρος R = = 0.35 Πρώτο τεταρτοµόριο (διάµεσος των {x 1,..., x 5 }) Q 1 = x 3 = 0.51 Τρίτο τεταρτοµόριο (διάµεσος των {x 5,..., x 9 }) Q 3 = x 7 = 0.63 Ενδοτεταρτοµοριακό εύρος I = = 0.12 Το αντίστοιχο ϑηκόγραµµα δίνεται στο Σχήµα 1.9. Από τα µέτρα ϑέσης και µεταβλητότητας Θηκoγραµµα περιεκτικoτητας ραδιενεργειας Σχήµα 1.9: Θηκόγραµµα των 9 παρατηρήσεων περιεκτικότητας ϱαδιενέργειας σε χάλυβα του εργοστασίου Α. καθώς κι από το ϑηκόγραµµα παρατηρούµε ότι µε την απαλοιφή της ακραίας τιµής η κατανοµή της περιεκτικότητας ϱαδιενέργειας στο χάλυβα του εργοστασίου Α ϕαίνεται να είναι συµµετρική και µπορούµε να κάνουµε τώρα την παραδοχή ότι η κατανοµή είναι κανονική µε ϐάση το δείγµα. Παράδειγµα 1.5 Στον Πίνακα 1.5 παρουσιάζονται επίσης οι µετρήσεις της περιεκτικότητας ϱαδιενέργειας σε 8 δοκίµια χάλυβα που κατασκευάστηκαν από ένα άλλο εργοστάσιο Β. Θέλουµε να συγκρίνουµε την περιεκτικότητα ϱαδιενέργειας στο χάλυβα από τις δύο µονάδες παραγωγής µε ϐάση τα δείγµατα των 9 και 8 παρατηρήσεων που έχουµε από το εργοστάσιο Α και από το εργοστάσιο Β αντίστοιχα. Εστω X 1 η τ.µ. της περιεκτικότητας ϱαδιενέργειας στο χάλυβα για το εργοστάσιο Α και X 2 η αντίστοιχη τ.µ. για το εργοστάσιο Β. Στο προηγούµενο παράδειγµα υπολογίσαµε τα µέτρα ϑέσης και µεταβλητότητας για τη X 1. Κάνουµε το ίδιο για τη X 2. Τα συγκεντρωτικά αποτελέσµατα δίνονται στον Πίνακα 1.6. Επίσης στο Σχήµα 1.10 δίνεται το συνδυασµένο ϑηκόγραµµα για το δείγµα περιεκτικότητας ϱαδιενέργειας σε χάλυβα κι από τα δύο εργοστάσια. Από τα µέτρα ϑέσης (µέση τιµή και διάµεσο) ϕαίνεται ότι η κεντρική τάση της περιεκτικότητας ϱαδιενέργειας είναι µεγαλύτερη για το χάλυβα του εργοστασίου Α. Από τα µέτρα µεταβλητότητας (τυπική απόκλιση, εύρος δεδοµένων και ενδοτεταρτοµοριακό εύρος) ϕαίνεται πως η περιεκτικότητα ϱαδιενέργειας µεταβάλλεται λιγότερο στο χάλυβα του εργοστασίου Α.

18 18 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Μέτρο X 1 X 2 Μέση τιµή x 1 = x 2 = 0.33 ιάµεσος x 1 = 0.55 x 2 = 0.30 ιασπορά Τυπική απόκλιση s 2 1 = s 1 = 0.10 s 2 2 = s 2 = 0.18 Ελάχιστη τιµή x 1,min = 0.40 x 2,min = 0.11 Μέγιστη τιµή x 1,max = 0.75 x 1,max = 0.65 Εύρος R 1 = 0.35 R 2 = 0.54 Πρώτο τεταρτοµόριο Q 1,1 = 0.51 Q 2,1 = Τρίτο τεταρτοµόριο Q 1,3 = 0.63 Q 2,3 = Ενδοτεταρτοµοριακό εύρος I 1 = 0.12 I 2 = Πίνακας 1.6: Μέτρα ϑέσης και µεταβλητότητας για τα δεδοµένα περιεκτικότητας ϱαδιενέργειας σε 9 και 8 δοκίµια χάλυβα κατασκευασµένα από τα εργοστάσια Α και Β στη στήλη 2 και 3 αντίστοιχα. Θηκoγραµµα περιεκτικoτητας ραδιενεργειας, A και B X_1 X_2 Σχήµα 1.10: Θηκόγραµµα των 9 παρατηρήσεων περιεκτικότητας ϱαδιενέργειας σε χάλυβα του εργοστασίου Α και των 8 παρατηρήσεων περιεκτικότητας ϱαδιενέργειας σε χάλυβα του εργοστασίου Β.

19 Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, που ϑα δούµε παρακάτω, υπολογίζονται από τα στατιστικά δεδοµένα που έχουµε συλλέξει και χρησιµοποιούνται για την εκτίµηση των σχετικών παραµέτρων πληθυσµού (µ και σ 2 αντίστοιχα). Τα στατιστικά δεδοµένα πρέπει να προέρχονται από τυχαίο κι αντιπροσωπευτικό δείγµα του πληθυσµού. Για παράδειγµα, αν ϑέλουµε να µελετήσουµε το όριο της έντασης ηλεκτρικού ϱεύµατος που καίγονται ασφάλειες 40 αµπέρ ϑα πρέπει να διαλέξουµε στην τύχη ασφάλειες του ίδιου τύπου και να µετρήσουµε σε ποια ένταση του ϱεύµατος καίγεται η κάθε µια από αυτές. Από τις µετρήσεις του δείγµατος µπορούµε να υπολογίσουµε τη σηµειακή εκτίµηση (point estimation) και την εκτίµηση διαστήµατος (interval estimation) της παραµέτρου µιας τ.µ Σηµειακή Εκτίµηση Η σηµειακή εκτίµηση είναι µια τιµή, που υπολογίζεται µε ϐάση τα δεδοµένα και αντιπροσωπεύει την πραγµατική τιµή της σχετικής παραµέτρου του πληθυσµού. Για παράδειγµα, ο µέσος όρος των 25 τιµών τάσης διάσπασης που µετρήθηκαν σε δείγµα 25 ηλεκτρικών κυκλωµάτων αποτελεί µια σηµειακή εκτίµηση της µέσης τάσης διάσπασης κυκλώµατος. Εστω X µια τ.µ. µε συνάρτηση κατανοµής F X (x; θ) που εξαρτάται από την παράµετρο θ την οποία ϑέλουµε να εκτιµήσουµε. Εστω ακόµα ότι έχουµε ανεξάρτητες µεταξύ τους παρατηρήσεις {x 1,..., x n } της X από ένα δείγµα µεγέθους n. Τότε η σηµειακή εκτίµηση της θ δίνεται από τη συνάρτηση g(x 1,...,x n ) των τιµών του δείγµατος που λέγεται εκτιµήτρια συνάρτηση. Η εκτιµήτρια (estimator) της θ από το δείγµα είναι ˆθ = g(x 1,...,x n ). Επειδή οι παρατηρήσεις {x 1,...,x n } αλλάζουν κάθε ϕορά που µελετάµε διαφορετικό δείγ- µα µεγέθους n, µπορούµε να υποθέσουµε ότι οι παρατηρήσεις {x 1,...,x n } είναι τιµές των τ.µ. {X 1,...,X n }, που είναι ανεξάρτητες µεταξύ τους κι ακολουθούν την ίδια κατανοµή F(x; θ). Η παράµετρος ˆθ είναι συνάρτηση αυτών των τ.µ.. Για ευκολία ϑα χρησιµοποιούµε το συµβολισ- µό {x 1,...,x n } και ϑεωρητικά (εννοώντας τις τ.µ. {X 1,...,X n }) και πρακτικά (εννοώντας τις παρατηρούµενες αριθµητικές τιµές αυτών των τ.µ.). Θα αναφερόµαστε στις {x 1,..., x n } ως τυχαίο δείγµα. Είναι ϕανερό ότι για διαφορετικά τυχαία δείγµατα η εκτιµήτρια συνάρτηση της παραµέτρου ˆθ παίρνει διαφορετικές τιµές, δηλαδή η ˆθ είναι η ίδια τ.µ. µε κάποια κατανοµή κι έχει µέση τιµή µˆθ E(ˆθ) και διασπορά σ 2ˆθ Var(ˆθ). 19

20 20 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ύο σηµαντικές παράµετροι µιας τ.µ. X που ϑέλουµε να εκτιµήσουµε είναι η µέση τιµή µ κι η διασπορά σ 2. Εκτίµηση µέσης τιµής Είναι ϕυσικό σαν εκτιµήτρια της µ να ορίσουµε τον αριθµητικό µέσο όρο των n παρατηρήσεων, που λέγεται και δειγµατική µέση τιµή x = 1 n n x i. (2.1) Εκτίµηση διασποράς Οπως για τη µέση τιµή έτσι και για τη διασπορά σ 2 η εκτιµήτρια είναι η δειγµατική διασπορά που ορίζεται µε δύο τρόπους, έχουµε δηλαδή τις δύο εκτιµήτριες της σ 2 s 2 = 1 n (x i x) 2 (2.2) n 1 s 2 = 1 n n (x i x) 2. (2.3) Οι εκτιµήτριες s 2 και s 2 διαφέρουν µόνο ως προς το συντελεστή του αθροίσµατος ( n 1 και 1 n αντίστοιχα). Για µεγάλο n οι δύο εκτιµήτριες συγκλίνουν στην ίδια τιµή. Αναπτύσσοντας τα τετράγωνα της (2.2) έχουµε ( s 2 = 1 n n ) (x 2 i 2x i x + x 2 ) = 1 n x 2 i 2 x x i + n x 2 n 1 n 1 και χρησιµοποιώντας τον ορισµό της x από την (2.1) παίρνουµε τον ισοδύναµο τύπο (όµοια για τη (2.3)) ( n ) s 2 = 1 x 2 i n x 2. (2.4) n 1 Ο τύπος (2.4) είναι πιο εύχρηστος για τον υπολογισµό της s Κριτήρια καλών εκτιµητριών Παραπάνω ορίσαµε κάπως αυθαίρετα εκτιµήτριες της µέσης τιµής µ και της διασποράς σ 2 χωρίς να γνωρίζουµε αν είναι καλές εκτιµήτριες ή όχι. Γενικά όταν ορίζουµε µια εκτιµήτρια ˆθ κάποιας παραµέτρου θ ϑέλουµε να ελέγξουµε αν είναι κατάλληλη και γι αυτό ϑέτουµε κάποια κριτήρια ή ιδιότητες που πρέπει να πληρεί µια καλή εκτιµήτρια. Παρακάτω περιγράφονται ορισµένες επιθυµητές ιδιότητες µιας εκτιµήτριας ˆθ. Αµεροληψία Η ˆθ είναι αµερόληπτη (unbiased) αν η µέση τιµή της είναι ίση µε την παράµετρο θ, δηλαδή E(ˆθ) = θ. Αλλιώς λέγεται µεροληπτική µε µεροληψία b(ˆθ) = E(ˆθ) θ. Αµεροληψία µέσης τιµής Η δειγµατική µέση τιµή x που ορίστηκε στη (2.1) είναι αµερόληπτη εκτιµήτρια της µέσης τιµής µ µιας τ.µ. X ενός πληθυσµού.

21 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ 21 Εχουµε θ µ και ˆθ x και ϑέλουµε να δείξουµε ότι E( x) = µ. ( ) 1 n E( x) = E x i = 1 n E(x i ) = 1 n µ = µ. n n n Αµεροληψία διασποράς Για την εκτίµηση της διασποράς σ 2 µιας τ.µ. X του πληθυσµού ισχύουν οι παρακάτω δύο προτάσεις: 1. Η δειγµατική διασπορά s 2 που ορίστηκε στη (2.2) είναι αµερόληπτη εκτιµήτρια της σ 2, E(s 2 ) = σ Η δειγµατική διασπορά s 2 που ορίστηκε στη (2.3) είναι µεροληπτική εκτιµήτρια της σ 2 µε µεροληψία b( s 2 ) = σ2 n. Αποδεικνύουµε πρώτα την πρόταση (1). Υπενθυµίζουµε ότι για µια τ.µ. X µε µέση τιµή µ και διασπορά σ 2 ισχύουν σ 2 = E(X 2 ) µ 2 και E(X 2 ) = σ 2 + µ 2. (2.5) Επίσης επειδή οι {x 1,...,x n } είναι ανεξάρτητες κι έχουν την ίδια διασπορά σ 2 µε τη X ισχύει ( n ) n Var x i = Var(x i ) = nσ 2 και άρα η διασπορά της δειγµατικής µέσης τιµής x είναι ( ) ( σ 2 x Var( x) = Var 1 n n ) x i = 1 n n 2 Var x i = 1 n 2nσ2 = σ2 n. (2.6) Χρησιµοποιώντας την παραπάνω ταυτότητα για τη διασπορά καθώς κι ότι µ x E( x) = µ έχουµε από την (2.5) E( x 2 ) = σ 2 x + µ 2 x = σ2 n + µ2. Στη συνέχεια υπολογίζουµε τη µέση τιµή της s 2 που δίνεται από την (2.4): ( n ) ( n E(s 2 1 ) = E(x 2 i n 1 ) ne( x2 ) = 1 ( ) ) σ (σ 2 + µ 2 2 ) n n 1 n + µ2 = 1 n 1 (nσ2 + nµ 2 σ 2 nµ 2 ) = σ 2 κι αποδεικνύεται η αµεροληψία της εκτιµήτριας s 2. Για την πρόταση (2), από παραπάνω προκύπτει (διαιρώντας µε n αντί του n 1) ότι E( s 2 ) = n 1 n σ2 κι άρα η αµεροληψία είναι b( s 2 ) = E( s 2 ) σ 2 = n 1 n σ2 σ 2 = σ2 n.

22 22 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Συνέπεια Η ιδιότητα αυτή ορίζει πως όσο αυξάνει το µέγεθος n του δείγµατος τόσο µεγαλώνει η πιθανότητα η εκτίµηση να είναι κοντά στην πραγµατική τιµή της παραµέτρου, όπου το κοντά δίνεται από κάποια απόσταση ǫ. ηλαδή η ˆθ είναι συνεπής (consistent) αν P( θ ˆθ ǫ) 1 όταν n, όπου ǫ είναι αυθαίρετα µικρός ϑετικός αριθµός. Οταν µια εκτιµήτρια είναι συνεπής τότε µε την αύξηση του δείγµατος οι τιµές της ϑα συγκλίνουν στην πραγµατική τιµή της παραµέτρου. Η εκτιµήτρια x της µέσης τιµής µ µιας τ.µ. X είναι συνεπής. Αν όµως αντί της δειγµατικής µέσης τιµής διαλέξουµε σαν εκτιµήτρια της µ τον αριθµητικό µέσο της µικρότερης και µεγαλύτερης τιµής του δείγµατος x d = x min + x max, 2 τότε µπορεί να δειχθεί ότι η εκτιµήτρια x d δεν είναι συνεπής εκτιµήτρια της µ. Αποτελεσµατικότητα Η αποτελεσµατικότητα αναφέρεται στη διασπορά της εκτιµήτριας και δίνεται συγκριτικά. Μια εκτιµήτρια ˆθ 1 της θ είναι πιο αποτελεσµατική (effective) από µια άλλη εκτιµήτρια ˆθ 2 αν έχει µικρότερη διασπορά, σ 2ˆθ1 < σ 2ˆθ2. Για παράδειγµα, η δειγµατική µέση τιµή x και η x d είναι δύο εκτιµήτριες της µέσης τιµής µ κι έχουν διασπορές σ 2 x και σ2 x d αντίστοιχα. Μπορεί να δειχθεί ότι σ 2 x < σ2 x d κι άρα η εκτιµήτρια x είναι πιό αποτελεσµατική από τη x d. Επάρκεια Μια εκτιµήτρια της παραµέτρου θ είναι επαρκής (adequate) όταν χρησιµοποιεί όλη την πληροφορία από το δείγµα που σχετίζεται µε τη θ. Η δειγµατική µέση τιµή x, εκτιµήτρια της µέσης τιµής µ µιας τ.µ. X, είναι επαρκής γιατί χρησιµοποιεί όλες τις παρατηρήσεις που µετρήθηκαν στο δείγµα, ενώ η x d δεν είναι επαρκής γιατί χρησιµοποιεί µόνο δύο τιµές των παρατηρήσεων του δείγµατος (x min και x max ). Παρατηρήσεις Οι εκτιµήτριες x για την παράµετρο µ και s 2 για την παράµετρο σ 2, που ορίσαµε αυθαίρετα, πληρούν όλες τις τέσσερις ιδιότητες και είναι καλές εκτιµήτριες. Οταν ϑέλουµε να ϐρούµε εκτιµήτρια για µια παράµετρο, µας ενδιαφέρει κυρίως να είναι αµερόληπτη και να έχει µικρή διασπορά για να εξασφαλίσουµε ότι οι τιµές της εκτιµήτριας συγκεντρώνονται στην πραγµατική τιµή της παραµέτρου. Γι αυτό ορίζουµε την αµερόληπτη εκτιµήτρια ελάχιστης διασποράς (minimum variance ubiased estimator), δηλαδή αυτή που απ όλες τις αµερόληπτες εκτιµήτριες έχει την µικρότερη διασπορά. Στον ορισµό των εκτιµητριών x και s 2 δεν κάναµε κάποια υπόθεση για την κατανοµή της τ.µ. X κι άρα µπορούµε να τις χρησιµοποιήσουµε για οποιαδήποτε τ.µ. X που παρατηρούµε. Στη συνέχεια ϑα υποθέσουµε πως η κατανοµή της X είναι γνωστή (ως προς τη γενική µορφή της) αλλά δεν είναι γνωστή κάποια παράµετρο θ της κατανοµής και ϑα δούµε πως µπορούµε γενικά να υπολογίσουµε την εκτιµήτρια της θ Μέθοδος υπολογισµού της σηµειακής εκτίµησης Υποθέτουµε ότι η τ.µ. X έχει κάποια γνωστή κατανοµή, δηλαδή γνωρίζουµε τη γενική µορφή της αθροιστικής συνάρτησης κατανοµής F(x; θ) και της f(x; θ), που είναι η συνάρτηση

23 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ 23 πυκνότητας πιθανότητας αν η X είναι συνεχής και η συνάρτηση µάζας πιθανότητας αν η X είναι διακριτή. Η παράµετρος θ της κατανοµής είναι άγνωστη και ϑέλουµε να την εκτιµήσουµε από το τυχαίο δείγµα {x 1,...,x n }. Θα ϑεωρήσουµε επίσης τη γενική περίπτωση να έχουµε περισσότερες από µία άγνωστες παραµέτρους. Μέθοδος των Ροπών Για συνήθεις κατανοµές, µια παράµετρος θ της κατανοµής F(x; θ) σχετίζεται µε τις δύο κύριες παραµέτρους µ και σ 2. Για παράδειγµα, για την κανονική κατανοµή η µέση τιµή µ και η διασπορά σ 2 αποτελούν και τις (µοναδικές) παραµέτρους της. Για την οµοιόµορφη κατανοµή σε διάστηµα [a, b], η σχέση των παραµέτρων της κατανοµής a και b µε τη µέση τιµή µ και τη διασπορά σ 2 δίνεται ως µ = a+b και σ 2 = (b a) Γενικά όταν υπάρχει κάποια σχέση που µας επιτρέπει να υπολογίσουµε την παράµετρο θ (ή τις παραµέτρους θ 1, θ 2 ) από τις µ και σ 2, τότε υπολογίζουµε πρώτα τις εκτιµήσεις x και s 2 και µετά υπολογίζουµε τη θ (ή τις θ 1, θ 2 ) από την σχέση, όπου αντικαθιστούµε τις µ και σ 2 µε τις εκτιµήσεις x και s 2 αντίστοιχα. Αυτή είναι η µέθοδος των ϱοπών (method of moments). Η ονοµασία προκύπτει από τη χρήση των ϱοπών στην εκτίµηση των παραµέτρων: τη µέση τιµή µ που είναι η πρώτη ϱοπή και τη διασπορά σ 2 που είναι η δεύτερη κεντρική ϱοπή. Αν οι δύο αυτές ϱοπές δεν επαρκούν, δηλαδή έχουµε να εκτιµήσουµε περισσότερες από δύο παραµέτρους ή οι σχέσεις δε δίνουν µοναδικότητα λύσης για τις παραµέτρους, χρησιµοποιούµε και ϱοπές µεγαλύτερου ϐαθµού, αλλά δε ϑα ασχοληθούµε µε τέτοια προβλήµατα. Παράδειγµα 2.1 Μια εταιρεία Α παράγει ασφάλειες των 40 αµπέρ και ϑέλουµε να µελετήσουµε κατά πόσο πράγµατι καίγονται οι ασφάλειες σε ένταση ϱεύµατος 40 αµπέρ όπως είναι η ένδειξη τους. Στον Πίνακα 2.1 δίνονται οι µετρήσεις έντασης του ηλεκτρικού ϱεύµατος στις οποίες κάηκαν 25 ασφάλειες που δοκιµάσαµε (ο πίνακας περιέχει και ίδιου τύπου δεδοµένα γι ασφάλειες από άλλη εταιρεία που ϑα µελετήσουµε αργότερα). Στον Πίνακα 2.1 δίνεται επίσης το άθροισµα των τιµών, τα τετράγωνα των τιµών καθώς και το άθροισµα των τετραγώνων των τιµών. Για το όριο έντασης ηλεκτρικού ϱεύµατος ασφάλειας 40 αµπέρ της εταιρείας Α η δειγµατική µέση τιµή είναι σύµφωνα µε τη σχέση (2.1) x = x i = = Η δειγµατική διασπορά είναι σύµφωνα µε τη σχέση (2.4) s 2 = 1 24 ( 25 ) x 2 i 25 x2 = 1 24 ( ) = Με ϐάση αυτό το δείγµα η εκτίµηση της µέση τιµής µ είναι x = αµπέρ και της διασποράς σ 2 είναι s 2 = (αµπέρ) 2. Αν η τ.µ. X (το όριο έντασης ηλεκτρικού ϱεύµατος ασφάλειας 40 αµπέρ) ακολουθεί κανονική κατανοµή N(µ, σ 2 ), τότε είναι ϕανερό πως αυτές οι εκτιµήσεις περιγράφουν πλήρως την κανονική κατανοµή της X µε ϐάση αυτό το δείγµα. Αν η τ.µ. X ακολουθεί οµοιόµορφη κατανοµή σε κάποιο διάστηµα [a, b], τότε µπορούµε να εκτιµήσουµε τις παραµέτρους a και b από τις σχέσεις µ = a+b και σ 2 = (b a)2. Αντικαθιστούµε τις 2 12 µ και σ 2 µε τις εκτιµήσεις x και s 2 και λύνουµε το παρακάτω σύστηµα εξισώσεων x = a+b 2 s 2 = (b a)2 12 â = x 3s ˆb = x + 3s â = ˆb =

24 24 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Α/Α (i) x 1i (αµπέρ) x 2 1i x 2i (αµπέρ) x 2 2i Σύνολο Πίνακας 2.1: εδοµένα ορίου έντασης ηλεκτρικού ϱεύµατος για ασφάλειες 40 αµπέρ από δύο εταιρείες: x 1i είναι για την εταιρεία Α και x 2i για την εταιρεία Β. Στις στήλες 3 και 5 δίνονται και τα τετράγωνα των x 1i και x 2i και στην τελευταία σειρά δίνεται το σύνολο για κάθε στήλη. Μέθοδος της Μεγίστης Πιθανοφάνειας Η µέθοδος αυτή δίνει την εκτίµηση που έχει τη µέγιστη πιθανοφάνεια, δηλαδή δίνει την τιµή της παραµέτρου η οποία, µεταξύ όλων των δυνατών τιµών της παραµέτρου, είναι η πιο πιθανή µε ϐάση το τυχαίο δείγµα. Η συνάρτηση πυκνότητας πιθανότητας για κάποια τιµή X = x i που εξαρτάται από κάποια παράµετρο θ παίρνει την τιµή f(x i ; θ) (αν η X είναι διακριτή τότε αυτή η τιµή εκφράζει την πιθανότητα P(X = x i ) ). Επειδή {x 1,...,x n } είναι ανεξάρτητες, η πιθανότητα να τις παρατηρήσουµε ταυτόχρονα σ ένα τυχαίο δείγµα µεγέθους n δίνεται από τη συνάρτηση πιθανοφάνειας (likelihood function) ως προς θ L(x 1,..., x n ; θ) = f(x 1 ; θ) f(x n ; θ). Στα προβλήµατα εκτίµησης, ϑεωρούµε τα {x 1,..., x n } δεδοµένα και ενδιαφερόµαστε για τη

25 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ 25 θ. Άν λοιπόν L(x 1,...,x n ; θ 1 ) > L(x 1,...,x n ; θ 2 ) τότε η θ 1 είναι πιο αληθοφανής από τη θ 2 γιατί δίνει µεγαλύτερη πιθανότητα στα παρατηρούµενα {x 1,...,x n }. Θέλουµε λοιπόν να ϐρούµε την πιο αληθοφανή τιµή της θ, δηλαδή την τιµή ˆθ που µεγιστοποιεί τη L(x 1,...,x n ; θ) ή καλύτερα, για ευκολότερους υπολογισµούς, τη log L(x 1,...,x n ; θ). Άρα η εκτιµήτρια µεγίστης πι- ϑανοφάνειας (maximum likelihood estimator) ˆθ ϐρίσκεται µηδενίζοντας την παράγωγο της log L ως προς θ log L(x 1,...,x n ; θ) = 0. (2.7) θ Άν ϑέλουµε να εκτιµήσουµε δύο ή περισσότερες παραµέτρους θ 1,..., θ m, η συνάρτηση πιθανοφάνειας είναι L(x 1,...,x n ; θ 1,...,θ m ) και οι εκτιµήτριες ˆθ 1,..., ˆθ m ϐρίσκονται λύνοντας το σύστηµα των m εξισώσεων log L(x 1,...,x n ; θ 1,..., θ m ) θ j = 0 για j = 1,...,m. (2.8) Παράδειγµα 2.2 Εχουµε ένα τυχαίο δείγµα {x 1,...,x n } από κανονική κατανοµή N(µ, σ 2 ) και ϑέλουµε να εκτιµήσουµε τη µέση τιµή µ ϑεωρώντας τη σ 2 γνωστή. Η συνάρτηση πυκνότητας πιθανότητας της κανονικής κατανοµής είναι f X (x; µ) f(x) = 1 2πσ e (x µ)2 2σ 2. Η συνάρτηση πιθανοφάνειας (για την οποία µόνο η παράµετρος µ είναι άγνωστη) είναι L(x 1,...,x n ; µ) = = ( ) ( ) ( ) 1 e (x 1 µ)2 1 2σ 2 e (x 2 µ)2 1 2σ 2 e (xn µ)2 2σ 2 2πσ 2πσ 2πσ ( ) [ ] n/2 1 exp 1 n (x 2πσ 2 2σ 2 i µ) 2, όπου exp(x) e x. Ο λογάριθµος της συνάρτησης πιθανοφάνειας είναι log L(x 1,...,x n ; µ) = n 2 log 2π n 2 log(σ2 ) 1 2σ 2 n (x i µ) 2. Η εκτιµήτρια µεγίστης πιθανοφάνειας ˆµ ϐρίσκεται µηδενίζοντας την παράγωγο της log L (σχέση (2.7) ) log L = 0 1 n (x µ σ 2 i µ) = 0 (2.9) που δίνει τη λύση ˆµ = 1 n n x i = x, δηλαδή είναι ίδια µε την εκτιµήτρια x της µέσης τιµής µ που ορίσαµε για οποιαδήποτε κατανοµή της τ.µ. X.

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j όπου x j x i για j i. P i =

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j όπου x j x i για j i. P i = Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σ αυτό το κεφάλαιο ϑα δούµε πρώτα τρόπους να παρουσιάσουµε τα δεδοµένα µε στατιστικούς πίνακες και διαγράµµατα και µετά να συνοψίσουµε τα δεδοµένα υπολογίζοντας συνοπτικά

Διαβάστε περισσότερα

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j. P i = p j.

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j. P i = p j. Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σ αυτό το κεφάλαιο ϑα δούµε πρώτα τρόπους να παρουσιάσουµε τα δεδοµένα µε στατιστικούς πίνακες και διαγράµµατα και µετά να συνοψίσουµε τα δεδοµένα υπολογίζοντας συνοπτικά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ .Φουσκάκης- Περιγραφική Στατιστική ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Οι µεταβλητές µιας στατιστικής έρευνας αποτελούνται συνήθως από ένα µεγάλο πλήθος στοιχείων που αφορούν τον πληθυσµό που µας ενδιαφέρει. Για να

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ Εισαγωγή Στο κεφάλαιο 4 υπολογίζονται τα κυριότερα στατιστικά µέτρα θέσης και µεταβλητότητας, κατασκευάζονται ιστογράµµατα συχνοτήτων και θηκογράµµατα για

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Μέθοδος Newton-Raphson

Μέθοδος Newton-Raphson Κεφάλαιο 14 Μέθοδος Newton-Raphson Θα συζητήσουµε υπολογισµό της εκτιµήτριας µεγίστης πιθανοφάνειας µε τη µέ- ϑοδο Newton-Raphson. Αν και υπάρχουν περιπτώσεις για τις οποίες η λύση µπορεί να υπολογιστεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση

Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση Στο προηγούµενο κεϕάλαιο µελετήσαµε τη διάδοση του σϕάλµατος από µια τυχαία µεταβλητή X σε µια τ.µ. Y που δίνεται ως συνάρτηση της X. Σε αυτό το κεϕάλαιο ϑα διερευνήσουµε

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Εισαγωγή. Αντικείμενο της Στατιστικής

Εισαγωγή. Αντικείμενο της Στατιστικής Εισαγωγή Οι κυνικοί λένε σαρκαστικά πως μπορείς να αποδείξεις οτιδήποτε με τη Στατιστική. Άλλοι πάλι υποστηρίζουν πως δεν μπορείς να κάνεις τίποτα με τη Στατιστική. Κάποιοι θυμίζουν ότι η Στατιστική είναι

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΒΛΗΤΗ Ποσοτική Ποιοτική ιακριτή ή ασυνεχής (dscrete qutttve vrble (Πεπερασµένο πλήθος πιθανών τιµών Άπειρο αλλά αριθµήσιµο πλήθος πιθανών τιµών Συνεχής (cotuous qutttve

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Βασίλης Γατσινάρης ωρεάν υποστηρικτικό υλικό 1 Περί συναρτήσεων Έστω η ορισµένη στο διάστηµα D συνάρτηση f Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D Α Να αναφέρετε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Χρήστος Κατσάνος και Νικόλαος Αβούρης Πανεπιστήµιο Πατρών Σκοπός Το παρόν κεφάλαιο, συµπληρωµατικό του κυρίως υλικού του βιβλίου, περιλαµβάνει

Διαβάστε περισσότερα