2. Στοιχεία Πολυδιάστατων Κατανοµών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. Στοιχεία Πολυδιάστατων Κατανοµών"

Transcript

1 Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε µία πιθανότητα που αφορά συγχρόνως δύο ή περισσότερες τµ που προέρχονται από το ίδιο στοχαστικό πείραµα µε δχ Ω Για την καλύτερη αντιµετώπιση τέτοιων προβληµάτων γενικεύουµε την έννοια της κατανοµής µιας τµ και ορίζουµε την από κοινού συνάρτηση κατανοµής δύο τµ ως εξής: F R Χ Υ {ω Ω: Χω και Υω } Η κατανοµή της τµ Χ µπορεί να εξαχθεί από την από κοινού κατανοµή των Χ Υ ως εξής: F lm lm F F και αντίστοιχα F F R R ιακριτές διδιάστατες κατανοµές Στην περίπτωση που οι τµ ΧΥ είναι διακριτές A B τότε µπορούµε να ορίσουµε την από κοινού συνάρτηση πιθανότητας των ΧΥ ως εξής: A B Αν πχ Α Β { } τότε F {} Η συνάρτηση πιθανότητας της τµ Χ µπορεί να εξαχθεί από την από κοινού συνάρτηση πιθανότητας των ΧΥ από την σχέση: B B B και όµοια A Συνεχείς διδιάστατες κατανοµές Θα λέµε ότι η από κοινού κατανοµή δύο τµ ΧΥ είναι συνεχής αν υπάρχει συνάρτηση ΧΥ έτσι ώστε F u v dv du Η συνάρτηση ΧΥ θα καλείται από κοινού συνάρτηση πυκνότητας πιθανότητας των ΧΥ Η συνάρτηση πυκνότητας πιθανότητας της Χ προκύπτει από την από κοινού σππ ως εξής: d d d F F u v dv du v dv d d d d ισχύει γενικά ότι g u du g και όµοια u du d Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 4

2 Μέση τιµή συνάρτησης δύο ή περισσότερων τµ Αν ΧΥ είναι δύο τµ και Ζ g τότε αποδεικνύεται ότι η µέση τιµή της Ζ δίνεται από την σχέση Z g g αν ΧΥ είναι διακριτές τµ A B A B Z g g d d αν ΧΥ είναι συνεχείς τµ Ιδιαίτερα αν g ΧΥ τότε για συνεχείς τµ ισχύει ότι Z d d d d d d d d d d d d και το ίδιο ισχύει και για διακριτές τµ Άρα γενικότερα χρησιµοποιώντας και την γνωστή ιδιότητα a a θα ισχύει ότι για διακριτές και συνεχείς τµ a b a b a b R Από κοινού κατανοµές µπορούν γενικότερα να ορισθούν για τµ Οι τεχνικές λεπτοµέρειες είναι ανάλογες µε αυτές που είδαµε παραπάνω για Ιδιαίτερα η παραπάνω σχέση µπορεί να γενικευτεί για τµ Συγκεκριµένα αν Χ Χ Χ είναι τµ τότε αποδεικνύεται ότι a a a a για οποιεσδήποτε σταθερές α α α a a a a Παράδειγµα Ας θεωρήσουµε το τυχαίο πείραµα της ρίψης δύο κύβων Αν Χ είναι το αποτέλεσµα της πρώτης ρίψης και Χ το αποτέλεσµα της δεύτερης ρίψης τότε η από κοινού συνάρτηση πιθανότητας των Χ Χ θα είναι 3 Αν πχ τώρα Ζ Χ Χ είναι το άθροισµα των δύο ρίψεων τότε Z Επίσης η από κοινού σπ των Χ Ζ θα είναι Z z Z z z z για z και Z z διαφορετικά 3 Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 5

3 Παράδειγµα Έστω Χ ο αριθµός των επιτυχιών σε ανεξάρτητες δοκιµές η κάθε µία από τις οποίες είναι «επιτυχία» µε πιθανότητα και «αποτυχία» µε πιθανότητα q Είναι γνωστό ότι η τµ Χ ακολουθεί διωνυµική κατανοµή µε µέση τιµή Ας δούµε πως µπορούµε εναλλακτικά να βρούµε την µέση τιµή της Χ χωρίς να χρειαστεί να υπολογίσουµε την κατανοµή της Έστω Χ Χ Χ οι τυχαίες µεταβλητές οι οποίες αντιπροσωπεύουν τα αποτελέσµατα των πειραµάτων Ειδικότερα θα είναι ή ανάλογα µε το αν το -πείραµα είναι επιτυχία ή όχι Προφανώς θα ισχύει ότι και εποµένως επειδή q θα είναι όπως ήταν αναµενόµενο Άσκηση Μία γραµµατέας τοποθετεί στην τύχη διαφορετικά γράµµατα σε φακέλους µε διαφορετικές διευθύνσεις Κάθε γράµµα ταιριάζει µόνο σε έναν φάκελο Ποιο είναι το αναµενό- µενο µέσο πλήθος των γραµµάτων που θα πάνε στο σωστό παραλήπτη; Λύση Θεωρούµε τις τµ Χ Χ Χ έτσι ώστε Χ ή ανάλογα µε το αν το -γράµµα τοποθετηθεί στο σωστό φάκελο ή όχι Το πλήθος των γραµµάτων που θα πάνε στο σωστό παραλήπτη θα είναι ίσο µε Παρατηρούµε ότι η πιθανότητα το -γράµµα να τοποθετηθεί στο σωστό φάκελο να διαλέξει στην τύχη η γραµµατέας το σωστό φάκελο για το -γράµµα είναι ίση µε / γιατί µόνο ένας φάκελος από τους ταιριάζει στο -γράµµα ο κάθε φάκελος έχει την ίδια πιθανότητα επιλογής Εποµένως και άρα τελικά Εποµένως όσα και αν είναι τα γράµµατα κατά µέσο όρο θα τοποθετηθεί σε σωστό φάκελο Ανεξάρτητες τυχαίες µεταβλητές Υπενθυµίζεται ότι δύο ενδεχόµενα A Α καλούνται ανεξάρτητα αν ισχύει ότι A I A A A Θα λέµε ότι δύο τµ είναι στοχαστικά ανεξάρτητες όταν µπορεί να θεωρηθεί ότι προέρχονται από ανεξάρτητα µεταξύ τους πειράµατα Αυστηρότερα δύο τµ Χ Υ : Ω R θα καλούνται στοχαστικά ανεξάρτητες όταν τα ενδεχόµενα [Χ Β ] και [Υ Β ] είναι ανεξάρτητα για κάθε δύο υ- ποσύνολα Β Β του R ηλαδή ισχύει ότι Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς

4 Αποδεικνύεται ότι αρκεί να ισχύει B B B για κάθε Β Β B για κάθε δηλαδή F F F για κάθε Αν οι ΧΥ είναι διακριτές τότε είναι ανεξάρτητες αν και µόνο αν για κάθε Το ίδιο ισχύει και για συνεχείς τµ αυτή τη φορά θεωρώντας συναρτήσεις πυκνότητας πιθανότητας αντί για συναρτήσεις πιθανότητας Παρατηρούµε ότι αν Χ Υ είναι ανεξάρτητες τότε B B B B B B B για κάθε Β Β B B Σύµφωνα µε την παραπάνω σχέση η πιθανότητα να ισχύει Χ Β δεν αλλάζει εάν γνωρίζουµε ότι Υ Β και αντίστροφα Εποµένως διαισθητικά µπορούµε να πούµε ότι δύο τµ είναι ανεξάρτητες εάν οποιαδήποτε γνώση για την τιµή της µίας τµ δεν αλλάζει την κατανοµή της άλλης τµ δηλ την πιθανότητα της άλλης να πάρει κάποια συγκεκριµένη τιµή Άσκηση Ας θεωρήσουµε το τυχαίο πείραµα της ρίψης δύο κύβων Αν Χ Χ είναι τα αποτελέσµατα των δύο ρίψεων να εξετάσετε αν οι Χ Χ είναι ανεξάρτητες Αν Ζ Χ Χ είναι το ά- θροισµα των δύο ρίψεων είναι οι τµ Χ Ζ ανεξάρτητες; Λύση Από παραπάνω παράδειγµα γνωρίζουµε ότι η από κοινού συνάρτηση κατανοµής των Χ Χ θα είναι Και επειδή 3 και επαληθεύουµε ότι για κάθε και άρα οι Χ Χ είναι ανεξάρτητες Αντίθετα οι τµ Ζ Χ δεν είναι ανεξάρτητες διότι πχ και Z Z και Z Z µε συνέπεια να ισχύει ότι Z Z 3 3 Παραδείγµατα ανεξάρτητων τµ: - το ύψος δύο φοιτητών που εκλέγονται τυχαία από την αίθουσα - ο χρόνος ζωής δύο διαφορετικών λαµπτήρων κα - οι τιµές ενός προϊόντος σε δύο διαφορετικά εµπορικά καταστήµατα κοκ Παραδείγµατα εξαρτηµένων τµ: - Το ύψος Χ και το βάρος Υ ενός τυχαία επιλεγµένου ανθρώπου Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 7

5 - Αν Χ είναι η τιµή ενός προϊόντος µία συγκεκριµένη ηµέρα και Υ η τιµή του ίδιου προϊόντος στο ίδιο κατάστηµα µία ηµέρα του επόµενου µήνα τότε οι τµ Χ Υ µπορούν να θεωρηθούν ε- ξαρτηµένες ιότι αν πχ γνωρίζουµε ότι η Χ είναι αρκετά υψηλή τότε συνήθως αυξάνεται και η πιθανότητα να είναι και η Υ υψηλή - Σε ένα δοχείο έχουµε αριθµηµένες σφαίρες από έως και εκλέγουµε στην τύχη δύο σφαίρες χωρίς επανάθεση Αν Χ Υ είναι οι αριθµοί των δύο αυτών σφαιρών τότε πχ και άρα οι Χ Υ είναι εξαρτηµένες κοκ / Για ανεξάρτητες τµ ισχύει η επόµενη χρήσιµη πρόταση Πρόταση Αν Χ Υ είναι ανεξάρτητες τµ τότε για κάθε συναρτήσεις h g ισχύει ότι h g g h Απόδειξη Θα το αποδείξουµε για την περίπτωση που οι Χ Υ είναι συνεχείς Θα είναι h g h g d d h g g d h d g h d d Η απόδειξη για διακριτές τµ είναι παρόµοια χρησιµοποιώντας αθροίσµατα αντί ολοκληρώµατα Η έννοια της ανεξαρτησίας µπορεί να γενικευτεί και για περισσότερες από δύο τµ Συγκεκριµένα οι τµ Χ Χ Χ θα καλούνται ανεξάρτητες αν προέρχονται από ανεξάρτητα πειράµατα Πιο αυστηρά θα καλούνται ανεξάρτητες αν ισχύει ότι B B B B B B για κάθε Β Β Β Αν τµ είναι ανεξάρτητες τότε είναι και ανά δύο ανεξάρτητες το αντίστροφο δεν ισχύει Συνδιακύµανση τυχαίων µεταβλητών Ως συνδιακύµανση Covarace δύο τµ Χ Υ ορίζουµε την ποσότητα Cov [ ] Παρατηρούµε ότι Cov Είναι ενδιαφέρον το γεγονός ότι Cov Επίσης για αb R ισχύει ότι Cov a b ab a b abcov Από την Πρόταση προκύπτει ότι αν ΧΥ είναι ανεξάρτητες τότε Cov Το αντίστροφο δεν ισχύει πάντα δηλαδή αν Cov δεν έπεται πάντα ότι οι ΧΥ είναι ανεξάρτητες τµ Για παράδειγµα ας εξετάσουµε την ειδική περίπτωση που οι τµ ΧΥ παίρνουν τις Τότε Cov Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 8

6 Από αυτήν την σχέση µπορούµε να διαπιστώσουµε ότι αν Υ > Cov > > > ηλαδή η συνδιακύµανση αυτών των τµ είναι θετική αν η πραγµατοποίηση του ενδεχοµένου Υ κάνει πιο πιθανή την πραγµατοποίηση του ενδεχοµένου Χ Γενικότερα για οποιεσδήποτε τµ Χ Υ µπορεί να δειχθεί ότι µία θετική τιµή της Cov αποτελεί ένδειξη για το ότι οι τµ Χ Υ παρουσιάζουν «παρόµοια συµπεριφορά» Με άλλα λόγια - Αν Cov > : Γνωρίζοντας ότι η τµ Υ πήρε µια «µεγάλη» τιµή τότε συνήθως αυξάνεται η πιθανότητα να πάρει και η Χ «µεγάλη» τιµή και αντίστροφα Ενώ γνωρίζοντας η τµ Υ πήρε µια «µικρή» τιµή τότε συνήθως αυξάνεται η πιθανότητα να πάρει και η Χ «µικρή» τιµή και αντίστροφα Όταν Cov > λέµε ότι η Χ και η Υ είναι θετικά συσχετισµένες Στην αντίθετη περίπτωση µία αρνητική τιµή της Cov αποτελεί ένδειξη για το ότι οι τµ Χ Υ παρουσιάζουν «αντίθετη συµπεριφορά» Με άλλα λόγια - Αν Cov < : Γνωρίζοντας ότι η τµ Υ πήρε µια «µεγάλη» τιµή τότε συνήθως αυξάνεται η πιθανότητα να πάρει η Χ µια «µικρή» τιµή και αντίστροφα Ενώ γνωρίζοντας η τµ Υ πήρε µια «µικρή» τιµή τότε συνήθως αυξάνεται η πιθανότητα να πάρει η Χ µια «µεγάλη» τιµή και αντίστροφα Όταν Cov < λέµε ότι η Χ και η Υ είναι αρνητικά συσχετισµένες Για παράδειγµα αν Χ είναι η τιµή ενός προϊόντος τον ένα µήνα και Υ η τιµή του τον επόµενο µήνα τότε περιµένουµε ότι Cov > Αντίθετα αν Χ Υ είναι οι αριθµοί των δύο σφαιρών που επιλέγουµε χωρίς επανάθεση τότε CovΧΥ < βλ παραδείγµατα εξαρτηµένων τµ παραπάνω Μία πολύ χρήσιµη έκφραση για την διασπορά ενός αθροίσµατος τµ ΧΥ µπορεί να εξαχθεί χρησιµοποιώντας τη συνδιακύµανση των Χ Υ Συγκεκριµένα θα είναι: Cov Εποµένως αν Χ Υ είναι ανεξάρτητες τότε Σε αυτό το σηµείο µπορούµε να παρατηρήσουµε ότι η διακύµανση του αθροίσµατος δύο θετικά συσχετισµένων τµ είναι Cov > δηλαδή µεγαλύτερη από την διασπορά του αθροίσµατος των Χ Υ στην περίπτωση που αυτές ήταν ανεξάρτητες Αυτό συνάδει µε τις παρατηρήσεις που έγιναν παραπάνω αναφορικά µε την θετική εξάρτηση τµ Πράγµατι αν CovΧ Υ > τότε οι Χ Υ θα έχουν «παρόµοια συµπεριφορά» και εποµένως το ά- θροισµά τους ΧΥ θα λαµβάνει πιο ακραίες τιµές περισσότερο αποµακρυσµένες από την ΕΧΥ σε σχέση µε την περίπτωση που οι Χ Υ ήταν ανεξάρτητες αυτό συµβαίνει διότι στην περίπτωση που CovΧ Υ > οι δύο τµ συνήθως λαµβάνουν «µεγάλες» και «µικρές» τιµές ταυτόχρονα Παρόµοια σχόλια µπορούν να γίνουν και για την περίπτωση αρνητικά συσχετισµένων τµ Γενικότερα για τµ µπορεί να αποδειχθεί ότι Cov ενώ αν Χ Χ Χ είναι ανεξάρτητες τµ Υπογραµµίζεται ότι παρόµοια σχέση ισχύει και για την µέση τιµή η µέση τιµή αθροίσµατος είναι Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 9

7 ίση µε το άθροισµα των µέσων τιµών Για την µέση τιµή όµως το αποτέλεσµα αυτό ισχύει πάντοτε είτε είναι εξαρτηµένες οι Χ είτε όχι Αρκετά χρήσιµη είναι η επόµενη πρόταση που αφορά ανεξάρτητες τµ που ακολουθούν κανονική κατανοµή Πρόταση Αν ΧΥ είναι ανεξάρτητες τµ που ακολουθούν κανονική κατανοµή τότε και η τµ ΧΥ ακολουθεί κανονική κατανοµή Γενικότερα αν Χ Χ Χ είναι ανεξάρτητες τµ που ακολουθούν κανονική κατανοµή τότε η τµ Χ Χ Χ ακολουθεί και αυτή κανονική κατανοµή Αποµένει τώρα να βρούµε τις παραµέτρους της κανονικής τµ ΧΥ γνωρίζοντας τις παραµέτρους των Χ Υ Έστω λοιπόν ότι Χ ~ Nµ σ Υ ~ Nµ σ τότε µ µ Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς σ σ η δεύτερη ισότητα ισχύει διότι οι ΧΥ είναι ανεξάρτητες και εποµένως Cov Άρα ~ Nµ µ σ σ Γενικότερα ισχύει η επόµενη πρόταση η οποία αποτελεί απλή συνέπεια των Προτάσεων και Πρόταση 3 Αν Χ~Nµ σ Υ~Nµ σ ανεξάρτητες τµ και α b R τότε a b~ N αµ bµ a σ b σ Γενικότερα αν Χ Χ Χ ανεξάρτητες κανονικές τµ ~ Nµ σ τότε a ~ N a µ Απόδειξη Σύµφωνα µε την Πρόταση οι τµ αχ και bυ αb R ακολουθούν και αυτές κανονική κατανοµή Συνεπώς από την Πρόταση η τµ Ζ αχbυ ακολουθεί κανονική κατανοµή µε a σ a b a b aµ bµ Επίσης εφόσον οι ΧΥ είναι ανεξάρτητες το ίδιο θα ισχύει και για τις αχ b και εποµένως a b a b a σ b a σ b από όπου προκύπτει το πρώτο αποτέλεσµα για δύο τµ Με τον ίδιο τρόπο αποδεικνύεται και το δεύτερο γενικότερο αποτέλεσµα που αφορά τυχαίες µεταβλητές Άσκηση 3 Το µέγιστο ασφαλές βάρος που µπορεί να µεταφέρει ένας ανελκυστήρας προσωπικού είναι kgr Αν το βάρος των ατόµων που τον χρησιµοποιούν ακολουθεί κανονική κατανοµή N8449 α να βρεθεί η πιθανότητα ώστε το συνολικό βάρος 5 τυχαία επιλεγµένων α- τόµων που χρησιµοποιούν ταυτόχρονα τον ανελκυστήρα να είναι µικρότερο από το µέγιστο α- σφαλές βάρος β Να βρεθεί το πλήθος των ατόµων που επιτρέπεται να τον χρησιµοποιούν ταυτόχρονα ώστε η πιθανότητα το συνολικό βάρος τους να είναι µικρότερο από το µέγιστο ασφαλές βάρος να είναι τουλάχιστο 99% Λύση Έστω Χ Χ Χ 5 το βάρος των 5 ατόµων Από την εκφώνηση είναι γνωστό ότι ~ N8449 ενώ οι Χ Χ Χ 5 είναι µεταξύ τους ανεξάρτητες τµ Εποµένως αν W 5 είναι το συνολικό βάρος των 5 ατόµων τότε σύµφωνα µε την Πρόταση 3 η W ακολουθεί κανονική κατανοµή µε

8 και 5 5 W W Άρα W ~ N5 N35 και συνεπώς η τµ W ~ N 35 Ζητείται η πιθανότητα W W < < Φ Φ 85 Φ β Έστω ότι το ζητούµενο πλήθος των ατόµων είναι ίσο µε Θα πρέπει το συνολικό βάρος τους < Kg 99% ή ισοδύναµα < 99 Όµοια µε το α θα ισχύει ότι και συνεπώς η τµ ~ N 84 Z ~ N 7 Εποµένως το να είναι τέτοιο ώστε να ισχύει ότι N < 99 < Φ Φ Θέτοντας τελικά θα πρέπει και συνεπώς το θα πρέπει να βρίσκεται µεταξύ των ριζών του παραπάνω πολυωνύµου 3± ± και επειδή > θα πρέπει να είναι < 4 78 ή ισοδύναµα < 84 Άρα τελικά θα πρέπει Άσκηση 4 συνέχεια του παραδείγµατος Έστω και πάλι ο αριθµός Χ των επιτυχιών σε ανεξάρτητες δοκιµές η κάθε µία από τις οποίες είναι «επιτυχία» µε πιθανότητα και «αποτυχία» µε πιθανότητα q Η τµ Χ ακολουθεί διωνυµική κατανοµή µε µέση τιµή και διασπορά Όµοια µε το παράδειγµα ας δούµε πως µπορούµε εναλλακτικά να βρούµε τη διασπορά της Χ χωρίς να χρειαστεί να υπολογίσουµε την κατανοµή της Έστω και πάλι οι τµ Χ Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς

9 Boutskas M 3 Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς Χ Χ έτσι ώστε ή ανάλογα µε το αν το -πείραµα είναι επιτυχία ή όχι Προφανώς θα ι- σχύει ότι και Οι τµ Χ Χ Χ είναι ανεξάρτητες µεταξύ τους αφού προέρχονται από ανεξάρτητα πειράµατα Συνεπώς όπως ήταν αναµενόµενο Παρατηρούµε ότι κάτι ανάλογο δεν µπορεί εύκολα να εφαρµοστεί και στην περίπτωση της Άσκησης εν µπορούµε δηλαδή εκεί άµεσα να υπολογίσουµε την διασπορά της Χ από τις διασπορές των Χ διότι οι Χ που απαρτίζουν το άθροισµα δεν είναι ανεξάρτητες Σε αυτή την περίπτωση χρειάζεται να υπολογίσουµε και τις συνδιακυµάνσεις µεταξύ των Χ Αλλά ας δούµε α- ναλυτικότερα το πρόβληµα Άσκηση 5 Μία γραµµατέας τοποθετεί στην τύχη διαφορετικά γράµµατα σε φακέλους µε διαφορετικές διευθύνσεις Κάθε γράµµα ταιριάζει µόνο σε έναν φάκελο Αν Χ εκφράζει πλήθος των γραµµάτων που θα πάνε στο σωστό παραλήπτη ποια η διασπορά της τµ Χ; Λύση Θεωρούµε και πάλι τις τµ Χ Χ Χ έτσι ώστε Χ ή ανάλογα µε το αν το -γράµµα τοποθετηθεί στο σωστό φάκελο ή όχι Θα είναι Η διασπορά της τµ µπορεί να υπολογιστεί από την σχέση Cov και εποµένως θα πρέπει να υπολογίσουµε τα Cov Γνωρίζουµε από την λύση της άσκησης ότι ΕΧ / Επίσης Χρησιµοποιώντας τον τύπο g g Z B A θα έχουµε ότι Άρα Cov και τελικά Cov Εποµένως όσα και αν είναι τα γράµµατα η διασπορά του πλήθους των σωστά τοποθετηµένων φακέλων θα είναι

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ Όπως έχει αποδειχθεί (βλέπε π.χ. Ε. Ξεκαλάκη και Ι. Πανάρετο 993) οι αναµενόµενες τιµές E( ) και E( m ) παρέχουν σηµαντικές πληροφορίες σχετικά µε την κατανοµή µιας πραγµατικής

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4 ΚΕΦΑΛΑΙΟ ΙΙ. Η έννοια της τυχαίας µεταβλητής Συχνά αυτό το οποίο παρατηρούµε σε ένα πείραµα τύχης δεν είναι το όποιο αποτέλεσµα ω Ω αλλά µια µαθηµατική ποσότητα Χ εξαρτώµενη από το αποτέλεσµα ω Ω. Ας εξετάσουµε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

Βασικές έννοιες θεωρίας πιθανοτήτων

Βασικές έννοιες θεωρίας πιθανοτήτων Βασικές έννοιες θεωρίας πιθανοτήτων Ορισµός πιθανότητας Έστω Ω το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος Συµβολίζουµε µε ω τα στοιχεία του Ω Ονοµάζουµε ενδεχόµενο (evet ένα υποσύνολο του Ω Για

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

Σηµειώσεις στη Θεωρία Πιθανοτήτων

Σηµειώσεις στη Θεωρία Πιθανοτήτων Σηµειώσεις στη Θεωρία Πιθανοτήτων Μέρος Α. Τι είναι οι Πιθανότητες. Είναι συνηθισµένο να ορίζουµε λοιπόν µαθηµατικές διαδικασίες, τις οποίες ονοµάζουµε µοντέλα ή πρότυπα, ώστε να περιγράψουν φαινόµενα

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ Έστω ότι έχουµε δοχεία αριθµηµένα από το ως και σφαίρες αριθµηµένες από ως. Οι σφαίρες τοποθετούνται τυχαία στα δοχεία ανά µία. Εάν µία σφαίρα και το δοχείο

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.kouras@fm.aga.gr Τηλ: 7035468 Κίνηση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016 HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Σύνθετο Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.» 1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Η εργασία αυτή αποτελείται από δύο µέρη. Στο πρώτο µέρος ορίζεται η έννοια των θετικών

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 19 Οκτωβρίου 2009 ΑΞΙΩΜΑΤΙΚΗ ΘΕΜΕΛΙΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Εστω Ω δειγµατικός χώρος στοχαστικού (τυχαίου) πειράµατος (ή ϕαινοµένου).

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος Εισαγωγή Αριθμητικά δεδομένα αντιστοιχούν σε πραγματοποιήσεις τυχαίων

Διαβάστε περισσότερα

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα