Journal of Differential Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Journal of Differential Equations"

Transcript

1 J. Differential Equations 47 9) 6 76 Contents lists available at ScienceDirect Journal of Differential Equations Global well-posedness for the generalized D Ginzburg Landau equation Zhaohui Huo a,b,, Yueling Jia c a Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 119, PR China b Department of Mathematics, City University of Hong Kong, Hong Kong, PR China c Institute of Applied Physics and Computational Mathematics, PO Box 89, Beijing 188, PR China article info abstract Article history: Received 9 October 8 Availableonline7April9 MSC: 35K15 35K55 35Q55 Keywords: Generalized D Ginzburg Landau equation Local well-posedness Global well-posedness [k; Z]-multiplier method The local well-posedness for the generalized two-dimensional D) Ginzburg Landau equation is obtained for initial data in H s R ) s > 1/). The global result is also obtained in H s R )s > 1/) under some conditions. The results on local and global wellposedness are sharp except the endpoint s = 1/. We mainly use the Tao s [k; Z]-multiplier method to obtain the trilinear and multilinear estimates. 9 Elsevier Inc. All rights reserved. 1. Introduction The aim in this work is to study the Cauchy problem of the generalized two-dimensional D) Ginzburg Landau equation: u t α + βi)u + u γ u) + u λ ū) + α 1 + β 1 i) u 4 u =, x, t) R R +, 1.1) ux, ) = u x) H s R ), 1.) * Corresponding author at: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 119, PR China. addresses: zhhuo@amss.ac.cn Z. Huo), jiayueling@iapcm.ac.cn Y. Jia). -396/$ see front matter 9 Elsevier Inc. All rights reserved. doi:1.116/j.jde

2 Z. Huo, Y. Jia / J. Differential Equations 47 9) where ūx, t) is the complex conjugate of ux, t), β,β 1 are real numbers, α >, α 1 > ; γ = γ 1, γ ) and λ = λ 1,λ ) are complex vectors. The generalized Ginzburg Landau GGL) equation arises as the envelope equation for a weakly subcritical bifurcation to counter-propagating waves. It is also of importance in the theory of interaction behavior, including complete interpenetration as well as partial annihilation, for collision between localized solutions corresponding to a single particle and to a two particle state. For details of the physical backgrounds of the GGL equation, one can refer to [1,5,6]. If γ = λ =, then Eq. 1.1) becomes the Ginzburg Landau GL) equation u t α + βi)u + α 1 + β 1 i) u 4 u =, x, t) R R ) It is an important model in the description of spatial pattern formation and of the onset of instabilities in non-equilibrium fluid dynamical systems, as well as in the theory of phase transitions and superconductivity [4]. For the well-posedness of D GL equation 1.3), Bu [3] showed that the Cauchy problem 1.3) 5 α 1 and 1.) is locally well-posed in H 3 if α >, α 1, and globally well-posed in H 3 if β 1 or ββ 1 >. In fact, the condition α 1 is redundant for local result, which is killed in this paper without any penalty. One can find it in this paper. For 1D and D GGL equation 1.1), there are several papers [7,8,1,13,14] related to the wellposedness of the Cauchy problem 1.1) and 1.). Notice that these papers mainly consider the global well-posedness in energy space H 1 or H. Moreover, these authors treated Eqs. 1.1) and 1.3) as parabolic equations, used the time space L p L r estimates method [13,14] or semigroup method [1] to obtain the local results. Recently, Molinet and Ribaud [11] used the Bourgain s space with dissipation to consider the KdV Burgers equation u t + u xxx u xx + uu x =, x, t) R R ) They showed that it is globally well-posed in H s with s > 1. Enlightened by some ideas in [11], we will use this method to consider Eq. 1.1) in both 1D and D cases. In fact, for 1D GGL equation, we showed that the Cauchy problem 1.1) and 1.) is locally well-posed in H s with s >, and globally well-posed in H s with s > under some conditions in [9]. In this paper, we consider the Cauchy problem 1.1) and 1.) in two-dimensional case. We will prove that if α >, then it is locally well-posed in H s with s > 1/. Furthermore, it is globally wellposed in H s with s > 1/ under some conditions. The space H 1/ is critical one for Eq. 1.1). Therefore, our results on local and global well-posedness are sharp except the endpoint s = 1/ Definitions and notations The Cauchy problem 1.1) and 1.) is rewritten as the integral equivalent formulation t ux, t) = S α t)u S α t t ) u γ u) + u λ ū) + α 1 + β 1 i) u 4 u ) t ) dt, 1.5) where S α t) = Fx 1 e itβ ξ e t α ξ F x is the semigroup associated to the linear GGL equation. For s, b R, we define the Bourgain s spaces with dissipation for 1.1) endowed with the norms u Y s,b = ξ s i τ ξ ) + ξ bûξ, τ ) L, 1.6) ξ R L τ R u Y s,b = ξ s i τ + ξ ) + ξ bûξ, τ ) L. 1.7) ξ R L τ R

3 6 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 The norm standard spaces X s,b and X s,b for the Schrödinger equation are defined [] u Xs,b = ξ s τ ξ bûξ, τ ) L, 1.8) ξ R L τ R u X s,b = ξ s τ + ξ bûξ, τ ) L. 1.9) ξ R L τ R Denote ûξ, τ ) = Fux, t) by the Fourier transform in t and x of u and F ) u by the Fourier transform in the ) variable. Notice that ū Y s,b = u Y s,b. The spaces Y s,b and Y s,b turn out to be very useful to consider the well-posedness of the dispersive equation with dissipative term, such as Eqs. 1.1), 1.4), etc. Define A B by using the statement: A C 1 B and B C 1 A for some constant C 1 >, and define A B through the statement: A 1 B for some large enough constant C C >. We use A B to denote the statement that A CB for some large constant C. Let ψ C R) with ψ = 1 on [ 1, 1 ] and supp ψ [ 1, 1], ψ is positive and even. Define ψ δ ) = ψδ 1 )) for some non-zero δ R. 1.. Main method and results Considering the local well-posedness of the Cauchy problem 1.1) and 1.), we would apply a fixed point argument to the following truncation version of 1.5) t ux, t) = ψt)s α t)u ψt) S α t t ) u γ u) + u λ ū) + α 1 + β 1 i) u 4 u ) t ) dt, 1.1) for any u, ū with compact support in [ T, T ] in the integral of right side. Indeed, if u solves 1.1) then u is a solution of 1.5) on [, T ] with T < 1. Therefore, following some ideas in [11], we mainly prove the trilinear, multilinear estimates as follows, which will be obtained in Section 3, u γ u) Y C u 3 s, 1/+δ Y s,1/, 1.11) u λ ū) Y C u 3 s, 1/+δ Y s,1/, 1.1) u 4 u Y C u 5 s, 1/+δ Y s,1/. 1.13) And from linear estimates obtained in Section, we can obtain the local result. Then the global wellposedness will be obtained by some a priori estimates obtained in Section 4 and regularity of solution given in Lemma.3. Denote Z T = C[, T ]; H s ) Y T s,1/, the main results of the paper are listed as below. Theorem 1.1. Let u H s R ) with s > 1/. Then there exists a constant T >, such that the Cauchy problem 1.1) and 1.) admits a unique local solution ux, t) Z T. Moreover, given t, T ), themapu ut) is smooth from H s to Z T and u belongs to C, T ); H + ). Theorem 1.. Let u H s R )s > 1/). Assume A := 1 γ + λ ) 4αα 1 >. Moreover, if one of the following conditions holds 1) ββ 1 > ; 1.14)

4 Z. Huo, Y. Jia / J. Differential Equations 47 9) { β ) ββ 1, min α A, β } 1 5 < α 1 A ; 1.15) αα1 3) ββ 1, ββ 1 γ + ) λ ) 5 < β α1 + β 1 α ) 1 γ + ) λ ), 1.16) αα 1 then for any T >, Cauchyproblem1.1) and 1.) admits a unique solution ux, t) Z T. Moreover, given t, T ), themapu ut) is smooth from H s to Z T and u belongs to C, + ); H + ). Remark. In fact, similarly with the proofs of Theorems 1.1 and 1., we can also prove that the Cauchy problem of 3D GGL equation 1.1) is locally well-posed in H s s > 1), and globally well-posed in H s s > 1) under some conditions.. Linear estimates In this section, we give some linear estimates for Eqs. 1.1) similarly with the dissipative KdV equation 1.4). In fact, in the proofs of the following lemmas, we only make computations with respect tothetimevariablet or the Fourier transform in t, which are similar with those of Propositions.1.4 in [11]. Here, we omit the details. Lemma.1. Let s R and α.then ψt)s α t)u Y s,1/ C u H s..1) Lemma.. Let s R, <δ 1 and α.then ψt) Lemma.3. Let s R, α >,and <δ 1. Then for f Y s, 1/+δ, t S α t t ) f t ) dt Y s,1/ C f Y s, 1/+δ..) t Moreover, if { f n } is a sequence and f n in Y s, 1/+δ as n,then t S α t t ) f t ) dt C R +, H s+δ)..3) S α t t ) f n t ) dt L R +,H s+δ ), as n..4) 3. Trilinear, multilinear estimates and local well-posedness In this section, the trilinear and multilinear estimates are obtained by using Tao s [k; Z]-multiplier method. Then, we can obtain the local well-posedness for the Cauchy problem 1.1) and 1.) by the linear estimates in Section and the trilinear and multilinear estimates. In fact, Theorem 1.1 can be proved by Lemmas.1.3 and Corollary 3.6. We firstly list some useful notations and properties for multilinear expressions [15]. Let Z be any abelian additive group with an invariant measure dξ. For any integer k, we denote Γ k Z) by the hyperplane Γ k Z) = { ξ 1,...,ξ k ) Z k : ξ 1 + +ξ k = },

5 64 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 which is endowed with the measure Γ k Z) f = Z k 1 f ξ 1,...,ξ k 1, ξ 1 ξ k 1 )dξ 1...dξ k 1, and define a [k; Z]-multiplier to be any function m : Γ k Z) C. Ifm is a [k; Z]-multiplier, we define m [k;z] to be the best constant, such that the inequality Γ k Z) k k mξ) f j ξ j ) m [k;z] f j L Z) j=1 holds for all test functions f j defined on Z. It is clear that m [k;z] determines a norm on m, fortest functions at least. We are interested in obtaining the good boundedness on the norm. We will also define m [k;z] in situations when m is defined on all of Z k by restricting to Γ k Z). We give some properties of m [k;z],especiallyforthecasek = 3. This corresponds to the bilinear X s,b estimates of Schrödinger equation Y s,b estimates of GGL equation) since multilinear estimates can be reduced to some bilinear estimates we can find it later). Let j=1 ξ 1 + ξ + ξ 3 =, τ 1 + τ + τ 3 =, 3.1) σ j = τ j + h j ξ j ), h j ξ j ) =± ξ j, j = 1,, 3. 3.) Then we will study the problem of obtaining m ξ1, τ 1 ), ξ, τ ), ξ 3, τ 3 ) ) [3,R 1, 3.3) R] where mξ 1, τ 1 ), ξ, τ ), ξ 3, τ 3 )) is some [k; Z]-multiplier in Γ 3 R R). From 3.1) and 3.), it follows that σ 1 + σ + σ 3 = hξ 1,ξ,ξ 3 ). 3.4) By symmetry, there are only two possibilities for the h j :the+++) case h 1 ξ) = h ξ) = h 3 ξ) = ξ ; 3.5) and the ++ ) case h 1 ξ) = h ξ) = ξ, h 3 ξ) = ξ. 3.6) Of the two cases, the +++) case is substantially easier, because the resonance function hξ 1,ξ,ξ 3 ) := ξ 1 + ξ + ξ 3 3.7) does not vanish except at the origin. The ++ ) case is more delicate, because the resonance function hξ 1,ξ,ξ 3 ) := ξ 1 + ξ ξ 3 3.8)

6 Z. Huo, Y. Jia / J. Differential Equations 47 9) vanishes when ξ 1 and ξ are orthogonal. Notice that for ξ 1, ξ, ξ 3 R, the resonance identity is given by hξ1,ξ,ξ 3 ) = ξ1 + ξ ξ 3 = ξ1 ξ ξ 1 ξ π/ ξ 1,ξ ). In particular, we may assume hξ1,ξ,ξ 3 ) ξ 1 ξ, 3.9) and that ξ 1,ξ ) = π ) + hξ1 O,ξ,ξ 3 ). 3.1) ξ 1 ξ By dyadic decomposition of ξ j, σ j and hξ 1,ξ,ξ 3 ), we assume that ξ j N j, σ j L j and hξ 1,ξ,ξ 3 ) H. WhereN j, L j and H are presumed to be dyadic, i.e. these variables range over numbers of form k k Z). It is convenient to define N max N med N min to be the maximum, median, and minimum of N 1, N, N 3. Similarly, define L max L med L min whenever L 1, L, L 3 >. Without loss of generality, we can assume N max 1, L min ) We adopt the following summation conventions. Any summation of the form L max is a sum over the three dyadic variables L 1, L, L 3 1. Therefore, denote for abbreviation, for instance, L max H := L 1,L,L 3 1:L max H Similarly, any summation of form N max sum over three dyadic variables N 1, N, N 3 > : N max N med N := N 1,N,N 3 >:N max N med N By dyadic decomposition of ξ j, σ j,aswellashξ 1,ξ,ξ 3 ), we estimate the following expression to replace 3.3) m N 1, L 1 ), N, L ), N 3, L 3 )) X N1,N,N 3 ;H;L 1,L,L 3[3,R 1, 3.1) N max 1 H L 1,L,L 3 1 R].. where X N1,N,N 3 ;H;L 1,L,L 3 is the multiplier 3 X N1,N,N 3 ;H;L 1,L,L 3 ξ, τ ) := χ hξ) H χ ξ j N j χ σ j L j, 3.13) j=1 m ξ 1, τ 1 ), ξ, τ ), ξ 3, τ 3 ) ) = mn 1 L 1, N L, N 3 L 3 ) if ξ j N j and σ j L j. 3.14) From the identities 3.1) and 3.4), X N1,N,N 3 ;H;L 1,L,L 3 vanishes unless N max N med ; 3.15)

7 66 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 and L max maxh, L med ). 3.16) By the comparison principle and Schur s test [15], it suffices to prove, for N max 1, that N max N med N L 1,L,L 3 1 m N 1, L 1 ), N, L ), N 3, L 3 ) ) X N1,N,N 3 ;L max ;L 1,L,L 3 [3,R R] 1, 3.17) or m N1, L 1 ), N, L ), N 3, L 3 ) ) X N1,N,N 3 ;H;L 1,L,L 3 [3,R R] ) N max N med N L max L med H L max Therefore, we only need to estimate X N1,N,N 3 ;H;L 1,L,L 3 [3,R R]. 3.19) Then we have the following lemma about the boundedness of 3.19). Lemma 3.1. See [15].) Let H, N 1, N, N 3, L 1, L, L 3 > obey 3.15), 3.16). For the +++) case, let the dispersion relations be given by 3.5), thenh Nmax. It follows that 3.19) L 1/ min N 1/ max N 1/ min minn maxn min, L med ) 1/. 3.) For the ++ ) case, let the dispersion relations be given by 3.6), thenh N 1 N. It follows that: The ++) case).ifn 1 N N 3,then3.19) vanishes unless H N 1,inwhichcaseonehas The + ) coherence).ifwehave then we have Similarly with the roles of 1 and reversed. In other cases, we have 3.19) L 1/ min N 1/ max N 1/ min minn maxn min, L med ) 1/. 3.1) N 1 N 3 N, H L L 1, L 3, N, 3.) 3.19) L 1/ min N 1/ max N H, 1/ min min 3.19) L 1/ min N 1/ max N 1/ min minh, L med) 1/ min 1, ) 1/ H N L med. 3.3) min H N min ) 1/. 3.4) Lemma 3. Comparison principle). See [15].) If m and M are [k; Z]-multipliers and satisfy mξ) Mξ) for all ξ Γ k Z),then m [k;z] M [k;z].also,ifmisa[k; Z]-multiplier, and a 1,...,a k are functions from ZtoR,then k mξ) k a j ξ j ) m [k;z] a j L. 3.5) j=1 [k;z] j=1

8 Z. Huo, Y. Jia / J. Differential Equations 47 9) Lemma 3.3 Composition and T T ). See [15].) If k 1, k 1 and m 1,m are functions on Z k 1 and Z k respectively, then m1 ξ 1,...,ξ k1 )m ξ k1 +1,...,ξ k1 +k ) [k1 +k ;Z] m1 ξ 1,...,ξ k1 ) m [k1 ξ +1;Z] 1,...,ξ k ) [k +1;Z]. 3.6) As a special case, for all functions m : Z k R,wehavetheTT identity mξ1,...,ξ k )m ξ k+1,..., ξ k ) [k;z] = mξ1,...,ξ k ) [k+1;z]. 3.7) Using these lemmas above, we will prove the main theorems in this section. We firstly give some notations about the following multilinear estimates. Define σ j = τ j ξ j, σ j = τ j + ξ j, j = 1,,...,k, 3.8) ξ 1 + ξ + +ξ k =, τ 1 + τ + +τ k =. 3.9) Denote ξ j, τ j by variables different from ξ 1,ξ,...,ξ k ; τ 1, τ,...,τ k respectively. Also define σ j = τ j ξ j or τ j + ξ j. σ max = { max σ j1,..., σ jk1 ; σ l1,..., σ lk ; σ n1,..., σ nk3 }, 3.3) σ med = { med σ j1,..., σ jk1 ; σ l1,..., σ lk ; σ n1,..., σ nk3 }, 3.31) ξ max = { max ξ j1,..., ξ jk1 ; ξ l1,..., ξ lk }, 3.3) ξ med = { med ξ j1,..., ξ jk1 ; ξ l1,..., ξ lk }. 3.33) For convenience, by the dyadic decomposition of ξ j, σ j, σ j, ξ j and σ j, we assume that ξ j N j, σ j L j, σ j L j ; ξ j Ñ j and σ j L j.definen max N med N min to be the maximum, median, and minimum of {N j1, N j,...,n jk1 ; Ñ l1, Ñ l,...,ñ lk }. Similarly, define L max L med L min to be the maximum, median, and minimum of {L j1, L j,..., L jk1 ; Ll1, Ll,..., Llk }. Notice that indices above j 1,..., j k1 ; l 1,...,l k and n 1,...,n k3 are different in the following different cases. Theorem 3.4 Trilinear estimates). Let s > 1/ and <δ 1.Then u1 )u ū 3 Y s, 1/+δ C u 1 Y s,1/ u Y s,1/ u 3 Y s,1/, 3.34) u 1 u ū 3 Y s, 1/+δ C u 1 Y s,1/ u Y s,1/ u 3 Y s,1/. 3.35) Remark. In the following proof and that of Theorem 3.5, the claims 3.17) and 3.18) can be obtained similarly. For simplicity, we sometimes prove them without distinguishing. That is, we sometimes define L 1,L,L 3 1 := L 1,L,L 3 1:L max H or. 3.36) L max L med H L max

9 68 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 Proof of Theorem 3.4. First, we prove 3.34). 3.35) can be obtained similarly. By duality and the Plancherel identity, it suffices to show m ξ1, τ 1 ),...,ξ 4, τ 4 ) ) [4,R R] K := ξ 1,ξ,ξ 3,ξ 4 ) iσ 1 + ξ 1 1/ iσ + ξ 1/ i σ 3 + ξ 3 1/ i σ 4 + ξ 4 1/ δ 1, [4,R R] 3.37) where K ξ 1,ξ,ξ 3,ξ 4 ) = ξ 1 ξ 4 s ξ 1 s ξ s ξ 3 s, 3.38) ξ 1 + ξ + ξ 3 + ξ 4 =, τ 1 + τ + τ 3 + τ 4 =. 3.39) Without loss of generality, we can assume ξ 1 ξ max ξ med, where ξ max = max{ ξ 1, ξ, ξ 3, ξ 4 }; otherwise, we can obtain the result similarly. We separately consider three cases A) ξ 1 ξ, B) ξ 1 ξ 3, C) ξ 1 ξ ) First, we consider Case A). It follows that m ξ 1, τ 1 ),...,ξ 4, τ 4 ) ) ξ 1 iσ + ξ 1/ iσ 1 + ξ 1 1/ ξ s iσ + ξ 1/4 i σ 4 + ξ 4 1/ δ ξ s ξ 3 s i σ 4 + ξ 4 1/ δ i σ 3 + ξ 3 1/ ξ 3 s i σ 3 + ξ 3 1/ iσ 1 + ξ 1 1/4 := m a 1 ξ, τ ), ξ 4, τ 4 ) ) m a ξ1, τ 1 ), ξ 3, τ 3 ) ). 3.41) By Lemmas 3. and 3.3, it suffices to show m ξ1, τ 1 ),...,ξ 4, τ 4 ) ) [4,R R] ma 1 ξ, τ ), ξ 4, τ 4 ) ) [3,R ma ξ1, τ R] 1 ), ξ 3, τ 3 ) ) [3,R R] ) Then we will prove the two following inequalities separately ma 1 ξ, τ ), ξ 4, τ 4 ) ) [3,R 1, R] 3.43) ma ξ1, τ 1 ), ξ 3, τ 3 ) ) [3,R 1. R] 3.44) Situation A-I. For m a 1 ξ, τ ), ξ 4, τ 4 )), wechoosetwovariables ξ 3 and τ 3 such that ξ +ξ 4 + ξ 3 = and τ + τ 4 + τ 3 =. Let σ 3 = τ 3 ξ 3 or τ 3 + ξ 3 in different cases. It is the ++ ) case. Then σ + σ 4 + σ 3 = hξ,ξ 4, ξ 3 ) ξ max, where ξ max = max{ ξ, ξ 4, ξ 3 }. We can separately consider the following four cases:

10 Z. Huo, Y. Jia / J. Differential Equations 47 9) Case 1): ξ ξ 4 ξ 3, Case ): ξ ξ 4 ξ 3, Case 3): ξ ξ 3 ξ 4, Case 4): ξ 4 ξ 3 ξ. Case A-I-1. Assume that N N 4 Ñ 3 N max N min N. Weapply3.4)toboundtheleftside of 3.43) by N max N med N L,L 4, L3 1 N max N med N L,L 4, L3 1 N s L 1/ min N 1/ N 1/ min{h, L med } 1/ min{1, H/N } 1/ L + N 1/4 L 4 + N 1/ δ N s L δ min min{h, L med} 1/ min{1, H/N } 1/ L med + N 1/4 ε L ε. min Lε 3.45) med If L med H, thenfors δ + 1/ + 5ε with any small ε >, it follows that N max N med N L,L 4, L3 1 N s L δ min L1/ med min{1, H/N } 1/ L med + N 1/4 ε L ε min Lε med L δ min L1/4+ε med N s L ε N max N med N L,L 4, L3 1 min Lε med N s δ 1/ 5ε N ε L ε N max N med N L,L 4, L3 1 min Lε med ) If L med H, thenfors δ + 1/ + 5ε, it follows that N s L δ min H1/ min{1, H/N } 1/ L N max N med N med + N 1/4 ε L ε L,L 4, L3 1 min Lε med L δ min H1/4+ε N s L ε N max N med N L,L 4, L3 1 min Lε med N s δ 1/ 5ε N ε L ε N max N med N L,L 4, L3 1 min Lε med ) Case A-I-. Assume N N max N N 4 Ñ 3 N min. Subcase A-I--1. If H L3 L, L 4, N,thenforsδ + 1/ + 5ε, we use 3.3) to bound the min left side of 3.43) by N max N med N L,L 4, L3 1 N max N med N L,L 4, L3 1 N s L 1/ min min{h, H L N med } 1/ min L + N 1/4 L 4 + N 1/ δ N s L δ min min{h, H N min L med } 1/ L med + N 1/4 ε L ε min Lε med

11 7 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 N s L δ min H1/ L N max N med N med + N 1/4 ε L ε L 1,L, L3 1 min Lε med L δ min H1/ N s+1/ 4ε L ε N max N med N L,L 4, L3 1 min Lε med L δ min H1/ N s 1/ 5ε δ N δ+1 N ε L ε N max N med N L,L 4, L3 1 min Lε med ) Subcase A-I--. For other cases, we can obtain the result similarly with Case A-I-1. Case A-I-3. Assume that N N max N Ñ 3 N 4 N min.let σ 3 = τ 3 ξ 3. Then it holds that hξ,ξ 4, ξ 3 ) ξ max. If L max L med H N,thenfors δ + 1/ + 5ε, we use 3.1) to bound the left side of 3.43) by N max N med N L max L med H N s L 1/ min N 1/ N 1/ min min{nn min, L med } 1/ L + N 1/4 L 4 + N min 1/ δ N s N min L N max N med N L max L med H med + N 1/4 ε δ L ε min Lε med ) If L max H N, we can obtain the result similarly as above. Case A-I-4. Assume that N N max N 4 Ñ 3 N N min.let σ 3 = τ 3 + ξ 3. Then one knows that hξ,ξ 4, ξ 3 ) ξ max. We can obtain the result similarly with Case A-I-3. Situation A-II. For m a ξ 1, τ 1 ), ξ 3, τ 3 )), wechoosetwovariables ξ and τ such that ξ 1 + ξ 3 + ξ = and τ 1 + τ 3 + τ =. Let σ = τ ξ or τ + ξ in different cases. It is the ++ ) case. Then σ 1 + σ 3 + σ = hξ 1,ξ 3, ξ ) ξ max, where ξ max = max{ ξ 1, ξ 3, ξ }. We can separately consider four cases: Case 1): ξ 1 ξ 3 ξ, Case ): ξ 1 ξ 3 ξ, Case 3): ξ 3 ξ ξ 1, Case 4): ξ 1 ξ ξ 3. Case A-II-1. If N 1 N 3 Ñ N max N min N, similarly with Case A-I-1, we prove that 3.44) holds for s 1/ + 5ε. Case A-II-. If N N max N 1 N 3 Ñ N min, similarly with Case A-I-, we prove that 3.44) holds for s 1/ + 5ε. Case A-II-3. Assume that N N max N 3 Ñ N 1 N min. Let σ = τ + ξ, it holds that hξ 1,ξ 3, ξ ) ξ max. If L max H N,fors1/ + 5ε, we use 3.1) to bound the left side of 3.44) by N max N med N L 1,L 3, L 1 N s L 1/ min N 1/ N 1/ min min{nn min, L med } 1/ L 1 + N min 1/4 L 3 + N 1/ L 1/4 min N min N s L 3 + N 1/ ε L ε N max N med N L 1,L 3, L 1 med Lε min

12 Z. Huo, Y. Jia / J. Differential Equations 47 9) N ε L ε N max N med N L 1,L 3, L 1 med Lε min ) If L max L med H, then similarly as above, we can obtain the result for s 1/ + 5ε. Case A-II-4. Assume that N N max N 1 Ñ N 3 N min. Let σ = τ ξ, it holds that hξ 1,ξ 3, ξ ) ξ max.thenfors1/ + 5ε, we can obtain the result similarly as above. Next, we consider Case B). It follows that m ξ 1, τ 1 ),...,ξ 4, τ 4 ) ) ξ 1 i σ 3 + ξ 3 1/ iσ 1 + ξ 1 1/ ξ s ξ 3 s i σ 4 + ξ 4 1/ δ iσ + ξ 1/ ξ s iσ + ξ 1/ iσ 1 + ξ 1 1/4 ξ 3 s i σ 3 + ξ 3 1/4 i σ 4 + ξ 4 1/ δ := m b 1 ξ1, τ 1 ), ξ, τ ) ) m b ξ3, τ 3 ), ξ 4, τ 4 ) ). 3.51) Situation B-I. For m b 1 ξ 1, τ 1 ), ξ, τ )), we choose two variables ξ and τ such that ξ 1 +ξ + ξ = and τ 1 +τ + τ =. Let σ = τ 3 ξ,itisthe+++) case. Then σ 1 +σ + σ = hξ 1,ξ, ξ ) ξ max, where ξ max = max{ ξ 1, ξ, ξ }. Similarly with Case A-I-3, we can obtain the result for s 1/ + 5ε. Situation B-II. For m b ξ 3, τ 3 ), ξ 4, τ 4 )), wetaketwovariables ξ 5 and τ 5 such that ξ 3 +ξ 4 + ξ 5 = and τ 3 + τ 4 + τ 5 =. Let σ 5 = τ 5 + ξ 5,itisthe+++) case. Then σ 3 + σ 4 + σ 5 = hξ 3,ξ 4, ξ 5 ) ξ max, where ξ max = max{ ξ 3, ξ 4, ξ 5 }. Similarly with Case A-I-3, we can obtain the result for s δ + 1/ + 5ε. Finally, we consider Case C). It follows that m ξ 1, τ 1 ),...,ξ 4, τ 4 ) ) ξ 1 i σ 4 + ξ 4 1/ δ iσ 1 + ξ 1 1/ ξ s ξ 3 s i σ 3 + ξ 3 1/ iσ + ξ 1/ ξ s iσ + ξ 1/ iσ 1 + ξ 1 1/4 ξ 3 s i σ 3 + ξ 3 1/3 i σ 4 + ξ 4 1/4 δ := m b 1 ξ1, τ 1 ), ξ, τ ) ) m b ξ3, τ 3 ), ξ 4, τ 4 ) ). 3.5) SimilarlywithCaseB),wecanobtaintheresultsfors δ + 1/ + 5ε. This completes the proof of Theorem 3.4. Theorem 3.5 Multilinear estimate). Let s > 1/ and <δ 1.Then u 1 u u 3 ū 4 ū 5 Y s, 1/+δ C u 1 Y s,1/ u Y s,1/ u 3 Y s,1/ u 4 Y s,1/ u 5 Y s,1/. 3.53) Proof. Similarly with the proof of Theorem 3.4, by duality and the Plancherel identity, it suffices to prove m ξ1, τ 1 ),...,ξ 6, τ 6 ) ) [6,R R] i = σ 4 + ξ 4 1/ i σ 5 + ξ 5 1/ i σ 6 + ξ 6 1/+δ iσ 1 + ξ 1 1/ iσ + ξ 1/ iσ 3 + ξ 3 1/ K ξ 1,ξ,ξ 3,ξ 4,ξ 5,ξ 6 ) 1, [6,R R] 3.54) where

13 7 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 K ξ 1,ξ,ξ 3,ξ 4,ξ 5,ξ 6 ) = ξ 6 s ξ 1 s ξ s ξ 3 s ξ 4 s ξ 5 s, 3.55) ξ 1 + ξ + ξ 3 + ξ 4 + ξ 5 + ξ 6 =, τ 1 + τ + τ 3 + τ 4 + τ 5 + τ 6 =. 3.56) By symmetry, we separately consider two cases D) ξ 6 ξ 1 =max { ξ 1, ξ, ξ 3, ξ 4, ξ 5 }, E) ξ 6 ξ 4 =max { ξ 1, ξ, ξ 3, ξ 4, ξ 5 }. In fact, the proofs of the cases ξ 6 ξ and ξ 6 ξ 3 are similar with that of Case D). The proof of the case ξ 6 ξ 5 is similar with that of Case E). First, we consider Case D). It follows that and K ξ 1,ξ,ξ 3,ξ 4,ξ 5,ξ 6 ) 1 ξ s ξ 3 s ξ 4 s ξ 5 s, 3.57) m ξ 1, τ 1 ),...,ξ 6, τ 6 ) ) i σ 4 + ξ 4 1/ i σ 5 + ξ 5 1/ i σ 6 + ξ 6 1/+δ iσ 1 + ξ 1 1/ iσ + ξ 1/ iσ 3 + ξ 3 1/ 1 ξ s ξ 3 s ξ 4 s ξ 5 s By Lemmas 3. and 3.3, it suffices to prove i σ 4 + ξ 4 1/ ξ s ξ 4 s i σ 5 + ξ 5 1/ i σ 6 + ξ 6 1/+δ iσ 1 + ξ 1 1/ iσ + ξ 1/ iσ 3 + ξ 3 1/ ξ 3 s ξ 5 s := m d 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) m d ξ3, τ 3 ), ξ 5, τ 5 ), ξ 6, τ 6 ) ). 3.58) m ξ1, τ 1 ),...,ξ 6, τ 6 ) ) [6,R R] md 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) [4,R md ξ3, τ R] 3 ), ξ 5, τ 5 ), ξ 6, τ 6 ) ) [4,R R] ) Situation D-I. We first prove md 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) [4,R ) R] We choose two variables ξ 3 and τ 3 such that ξ 1 + ξ + ξ 3 + ξ 4 = and τ 1 + τ + τ 3 + τ 4 =. Let σ 3 = τ 3 + ξ 3, it follows that σ 1 + σ + σ 3 + σ 4 = hξ 1,ξ, ξ 3,ξ 4 ) ξ max, where ξ max = max{ ξ 1, ξ, ξ 3, ξ 4 }. Moreover, we have σ max σ med hξ1,ξ, ξ 3,ξ 4 ), 3.61) or σ max hξ1,ξ, ξ 3,ξ 4 ), 3.6) where σ max = max{ σ 1, σ, σ 3, σ 4 }. Without loss of generality, we can assume σ max σ med ξ max ξ med, 3.63)

14 Z. Huo, Y. Jia / J. Differential Equations 47 9) or σ max ξ max ξ med. 3.64) First, we consider the case: σ max σ med ξ max. Case D-I-1. If σ 1 = σ max or σ med, then it follows that m d 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/ iσ + ξ 1/ i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/4 iσ + ξ 1/ i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 ξ s iσ 1 + ξ 1 1/4 iσ + ξ 1/ ξ 4 s i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 := m d 11 ξ1, τ 1 ), ξ, τ ) ) m d 1 ξ 3, τ 3 ), ξ 4, τ 4 ) ). 3.65) Then we can obtain 3.6) similarly with Case B) in the proof of Theorem 3.4 for s 1/ + 5ε. Case D-I-. If σ = σ max or σ med, then it follows that m d 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/ iσ + ξ 1/ i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/ iσ + ξ 1/4 i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 ξ s iσ 1 + ξ 1 1/ iσ + ξ 1/4 ξ 4 s i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 := m d 11 ξ1, τ 1 ), ξ, τ ) ) m d 1 ξ 3, τ 3 ), ξ 4, τ 4 ) ). 3.66) Similarly with the above, we can obtain the result for s 1/ + 5ε. Case D-I-3. If σ 4 = σ max or σ med,then m d 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/ iσ + ξ 1/ i σ 4 + ξ 4 1/ i σ 3 + ξ 3 1/4 ξ s ξ 4 s iσ 1 + ξ 1 1/ iσ + ξ 1/ i σ 4 + ξ 4 1/4 i σ 3 + ξ 3 1/4 ξ s iσ + ξ 1/ i σ 3 + ξ 3 1/4 ξ 4 s i σ 4 + ξ 4 1/4 iσ 1 + ξ 1 1/ := m d 11 ξ, τ ), ξ 3, τ 3 ) ) m d 1 ξ1, τ 1 ), ξ 4, τ 4 ) ). 3.67) Similarly with Case A) in the proof of Theorem 3.4, we can obtain the result for s 1/ + 5ε. Next, we consider the case: σ max ξ max ξ.infact,wecanobtain3.6)fors1/ + 5ε med to consider the following cases similarly as above ξ 1 ξ max ξ med corresponding to Case D-I-1, ξ ξ max ξ med corresponding to Case D-I-, ξ 4 ξ max ξ med corresponding to Case D-I-3.

15 74 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 Situation D-II. In this situation, we will prove md ξ3, τ 3 ), ξ 5, τ 5 ), ξ 6, τ 6 ) ) [4,R ) R] We choose two variables ξ 4 and τ 4 such that ξ 3 + ξ 4 + ξ 5 + ξ 6 = and τ 3 + τ 4 + τ 5 + τ 6 =. Let σ 4 = τ 4 ξ 4. Similarly with Situation D-I, we can obtain 3.68) for s > δ + 1/ + 5ε. Gathering 3.6) and 3.68), we have 3.59). Next, we consider Case E). It follows that K ξ 1,ξ,ξ 3,ξ 4,ξ 5,ξ 6 ) 1 ξ 1 s ξ s ξ 3 s ξ 5 s, 3.69) and m e ξ1, τ 1 ),...,ξ 6, τ 6 ) ) i σ 4 + ξ 4 1/ i σ 5 + ξ 5 1/ i σ 6 + ξ 6 1/+δ iσ 1 + ξ 1 1/ iσ + ξ 1/ iσ 3 + ξ 3 1/ 1 ξ 1 s ξ s ξ 3 s ξ 5 s i σ 4 + ξ 4 1/ ξ s ξ 1 s iσ 1 + ξ 1 1/ iσ + ξ i σ 5 + ξ 5 1/ i σ 6 + ξ 6 1/+δ 1/ iσ 3 + α ξ 3 1/ ξ 3 s ξ 5 s := m e 1 ξ1, τ 1 ), ξ, τ ), ξ 4, τ 4 ) ) m e ξ3, τ 3 ), ξ 5, τ 5 ), ξ 6, τ 6 ) ). 3.7) Infact,bysymmetryaboutσ j and σ j, similarly with Case D), we can obtain me ξ1, τ 1 ),...,ξ 6, τ 6 ) ) [6,R ) R] Gathering 3.59) and 3.71), we have 3.54). This completes the proof of Theorem 3.5. Corollary 3.6. Let <δ 1. Then there exist μ, C δ > such that for u 1, u, u 3 Y s,1/, ū 3, ū 4, ū 5 Y s,1/ with compact support in [ T, T ], u1 )u ū 3 Y s, 1/+δ C δ T μ u 1 Y s,1/ u Y s,1/ u 3 Y s,1/, 3.7) u 1 u ū 3 Y s, 1/+δ C δ T μ u 1 Y s,1/ u Y s,1/ u 3 Y s,1/, 3.73) u 1 u u 3 ū 4 ū 5 Y s, 1/+δ C δ T μ u 1 Y s,1/ u Y s,1/ u 3 Y s,1/ u 4 Y s,1/ u 5 Y s,1/. 3.74) Proof. In fact, from Theorem 3.5, we can complete the proof of Corollary 3.6 by the inequality for f t) with compact support in [ T, T ] F ˆf τ,ξ) 1 τ ξ δ C δ T μ f L, for any δ>. 3.75) L 4. Some a priori estimates and global well-posedness In this section, we first give some a priori estimates for Eqs. 1.1). Then we can obtain that the local solution obtained in Section 3 can be extended to the global one by using Lemma.3 and the a priori estimates. Therefore, Theorem 1. can be obtained.

16 Z. Huo, Y. Jia / J. Differential Equations 47 9) Lemma 4.1. See [14].) Assume that 1 γ + λ ) 4αα 1 >, ut) is a smooth solution of the Cauchy problem 1.1) and 1.). Then there exists ε > such that γ + λ ) < αα 1 ε), it follows that 1 ut) + αε t L ut ) L dt + α 1ε t ut ) 6 L 6 dt 1 u. L 4.1) Moreover, if γ and λ are real vectors, then 1 t ut) + α L ut ) t L dt + α 1 ut ) 6 L 6 dt = 1 u. L 4.) Lemma 4.. See [14].) Assume 1 γ + λ ) 4αα 1 > and ββ 1 >. Ifut) is a smooth solution of the Cauchy problem 1.1) and 1.), thenforsomeη >, c>, c 1 >, it holds that 1 ut) + η t L ut) L 6 c ut ) t L dt + c 1 η ut ) 6 L 6 dt 1 u L + η 6 u 6 L ) Lemma 4.3. See [14].) Assume A := 1 γ + λ ) 4αα 1 > and ββ 1, { β min α A, β 1 α 1 A } 5 <, 4.4) or αα1 ββ 1 γ + ) λ ) 5 < β α1 + β 1 α ) 1 γ + ) λ ). 4.5) αα 1 Then 4.3) holds also for some η >, c>, c 1 >. Acknowledgments Z. Huo was supported by the NSF of China No. 1616). Y. Jia was supported by the NSF of China No ). Z. Huo was partially supported by Department of Mathematics of City University of Hong Kong and would like to thank Professor Tong Yang for his invitation and support. References [1] H.R. Brand, R.J. Deissler, Interaction of localized solutions for subcritical bifurcations, Phys. Rev. Lett ) [] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, Geom. Funct. Anal. 1993) ; part II: The KdV equation, Geom. Funct. Anal. 1993) 9 6. [3] C. Bu, On the Cauchy problem for the 1 + complex Ginzburg Landau equation, J. Aust. Math. Soc ) [4] M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Modern Phys ) [5] R.J. Deissler, H.R. Brand, Generation of counterpropagating nonlinear interacting traveling waves by localized noise, Phys. Lett. A ) [6] A. Doelman, W. Eckhaus, Periodic and quasi-periodic solutions of degenerate modulation equations, Phys. D 53 4) 1991)

17 76 Z. Huo, Y. Jia / J. Differential Equations 47 9) 6 76 [7] J.Q. Duan, P. Holmes, On the Cauchy problem of a generalized Ginzburg Landau equation, Nonlinear Anal. 1994) [8] H.J. Gao, J.Q. Duan, On the initial-value problem for the generalized two-dimensional Ginzburg Landau equation, J. Math. Anal. Appl. 16 ) 1997) [9] Z.H. Huo, Y.L. Jia, Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg Landau equation, J. Math. Pures Appl., in press. [1] Y.S. Li, B.L. Guo, Global existence of solutions to the derivative D Ginzburg Landau equation, J. Math. Anal. Appl. 49 ) ) [11] L. Molinet, F. Ribaud, On the low regularity of the Korteweg de Vries Burgers equation, Int. Math. Res. Not. 37 ) [1] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, New York, [13] B.X. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in L r. II. Initial data in critical Sobolev spaces H s,r, Nonlinear Anal. 83 3) [14] B.X. Wang, B.L. Guo, L.F. Zhao, The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg Landau equation in H 1, Nonlinear Anal ) 4) [15] T. Tao, Multilinear weighted convolution of L functions, and applications to nonlinear dispersive equation, Amer. J. Math. 13 1)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1

Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1 M a t h e m a t i c a B a l k a n i c a New Series Vol. 2, 26, Fasc. 3-4 Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1 Miloud Assal a, Douadi Drihem b, Madani Moussai b Presented

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα