Ενότητα 1 η. (1) Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 1 η. (1) Εισαγωγή"

Transcript

1 - 1 - Ενότητα 1 η (Εισαγωγή στην Ηλεκτροτεχνία. Απλά κυκλώματα και ηλεκτρικές πηγές. Νόμοι Kirchhoff. Στοιχεία που αποθηκεύουν ενέργεια. Ηλεκτρικά κυκλώματα συνεχούς ρεύματος) (1) Εισαγωγή Αντικείμενο του μαθήματος της Ηλεκτροτεχνίας είναι η μελέτη και ανάλυση κυκλωμάτων συνεχούς και εναλλασσόμενου ρεύματος, με σκοπό τον υπολογισμό χαρακτηριστικών ηλεκτρικών μεγεθών ενός κυκλώματος, όπως η ηλεκτρική τάση ή διαφορά δυναμικού μεταξύ δύο σημείων κυκλώματος, η ένταση ηλεκτρικού ρεύματος και η καταναλισκόμενη ισχύς στους κλάδους κυκλώματος κλπ. Στην παρούσα ενότητα εισάγονται τα βασικά ηλεκτρικά μεγέθη ενός κυκλώματος, παρουσιάζονται τα παθητικά και ενεργά ηλεκτρικά στοιχεία δύο ακροδεκτών και αναλύεται η λειτουργική συμπεριφορά τους, διατυπώνονται οι θεμελιώδεις νόμοι του Kirchhoff και το θεώρημα τουtellegen, παρουσιάζονται οι τρόποι σύνδεσης των ηλεκτρικών στοιχείων δύο ακροδεκτών και διατυπώνονται οι προϋποθέσεις ισοδυναμίας δύο κυκλωμάτων, όταν ενδιαφέρει μόνο η εξωτερική συμπεριφορά των κυκλωμάτων. (1.1) Βασικά ηλεκτρικά μεγέθη Τα βασικά ηλεκτρικά μεγέθη, οι τιμές των οποίων αναζητούνται ή ενδιαφέρουν στην ανάλυση ηλεκτρικών κυκλωμάτων, είναι στη γενική περίπτωση συναρτήσεις του χρόνου και είναι το ηλεκτρικό φορτίο, η ένταση ηλεκτρικού ρεύματος, η ηλεκτρική τάση ή διαφορά δυναμικού, η ηλεκτρική ισχύς, η ηλεκτρική ενέργεια και η μαγνητική ροή. (1.1.1) Ηλεκτρικό φορτίο (electric charge) Η έννοια του ηλεκτρικού φορτίου, Q ή q, εισήχθη για να επεξηγηθεί η ύπαρξη διαφόρων ηλεκτρικών φαινομένων. Η ύπαρξη ηλεκτρικού φορτίου προκαλεί τη δημιουργία ηλεκτρομαγνητικών (Η/Μ) πεδίων. Η εισαγωγή τώρα άλλων ηλεκτρικών φορτίων μέσα σε Η/Μ πεδία, έχει ως αποτέλεσμα, την άσκηση δυνάμεων ελκτικών ή απωστικών πάνω στα φορτία, οι οποίες ονομάζονται ηλεκτρομαγνητικές δυνάμεις. Μονάδα μέτρησης του ηλεκτρικού φορτίου είναι το Coulomb (Cb) και ορίζεται ως το φορτίο που μεταφέρεται σε χρόνο 1 (s) από ηλεκτρικό ρεύμα έντασης 1 (Α). Η μικρότερη ποσότητα ηλεκτρικού φορτίου είναι το φορτίο του ηλεκτρονίου, q e = -1, (Cb), ενώ το ηλεκτρικό φορτίο του πρωτονίου είναι, q p = +1, (Cb). Όλα τα ηλεκτρικά φορτία που παρατηρούνται στη φύση είναι πολλαπλάσια του στοιχειώδους ηλεκτρικού φορτίου του ηλεκτρονίου. (1.1.2) Ένταση ηλεκτρικού ρεύματος (electric current) Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση ηλεκτρικών φορτίων μέσα από ένα μέσο (π.χ. αγωγό). Το ηλεκτρικό ρεύμα ορίζεται από τη διεύθυνση και τη φορά κίνησης των ηλεκτρικών φορτίων, καθώς και από την ποσότητά τους. Ένταση ηλεκτρικού ρεύματος μέσα από ένα μέσο ορίζεται ως

2 - 2 - το συνολικό ηλεκτρικό φορτίο που περνά μέσα από μια διατομή του μέσου στη μονάδα του χρόνου. Εάν μέσα από τη διατομή του μέσου κίνησης των φορτίων περάσουν dq φορτία σε χρονικό διάστημα dt, η ένταση του ηλεκτρικού ρεύματος μέσα από το μέσο με κατεύθυνση αυτή της κίνησης των φορτίων είναι dq i (1.1) dt Δηλαδή, σύμφωνα με την εξ.(1.1), η ένταση του ηλεκτρικού ρεύματος ορίζεται και ως η χρονική μεταβολή του ηλεκτρικού φορτίου. Μονάδα μέτρησης του ηλεκτρικού ρεύματος είναι το Ampere (A), 1(A) = 1(Cb)/1(s). Η αιτία που προκαλεί τη ροή ηλεκτρικού ρεύματος μέσα από ένα μέσο είναι η ηλεκτρική τάση που εφαρμόζεται στα άκρα του μέσου. Εάν η ηλεκτρική τάση έχει σταθερή τιμή με το χρόνο, τότε και η ένταση του ηλεκτρικού ρεύματος έχει σταθερή τιμή με το χρόνο και ονομάζεται συνεχές ρεύμα (direct current, dc). Αντιθέτως, εάν η στιγμιαία τιμή της ηλεκτρικής τάσης μεταβάλλεται με το χρόνο, τότε η ένταση του ηλεκτρικού ρεύματος είναι γενικά μεταβαλλόμενη. Στην ειδική περίπτωση που η ηλεκτρική τάση προέρχεται από το δημόσιο δίκτυο διανομής ηλεκτρικής ενέργειας (ΔΕΗ), η ηλεκτρική τάση μεταβάλλεται ημιτονοειδώς και το ηλεκτρικό ρεύμα που προκύπτει μεταβάλλεται και αυτό ημιτονοειδώς και ονομάζεται εναλλασσόμενο ρεύμα (alternating current, ac). Το εναλλασσόμενο ρεύμα έχει ιδιαίτερο ενδιαφέρον, διότι τα ρεύματα που συναντώνται στα συστήματα παραγωγής-μεταφοράς και διανομής ηλεκτρικής ενέργειας έχουν ημιτονοειδή μορφή. (1.1.3) Ηλεκτρική τάση (electric voltage) Ηλεκτρική τάση ή διαφορά δυναμικού μεταξύ δύο σημείων Α και Β, v AB, εντός ενός ηλεκτροστατικού πεδίου ορίζεται ως το απαιτούμενο έργο που καταναλώνεται ή παράγεται dw κατά τη μετακίνηση ηλεκτρικού φορτίου dq από το σημείο Α στο σημείο Β εντός του πεδίου. v dw dq (1.2) Η ηλεκτρική τάση μεταξύ δύο σημείων είναι ανεξάρτητη από την τροχιά που θα ακολουθήσει το φορτίο κατά την μετακίνησή του από το ένα σημείο του ηλεκτρικού πεδίου στο άλλο και εξαρτάται μόνο από τη θέση των δύο αυτών σημείων (αστρόβιλο πεδίο). Σε ένα ηλεκτρικό κύκλωμα η διαφορά δυναμικού ή ηλεκτρική τάση στα άκρα ενός στοιχείου του κυκλώματος εκφράζει την ενέργεια (ή το έργο) που απαιτείται για την μετακίνηση ποσότητας ηλεκτρικού φορτίου από το ένα άκρο του στοιχείου στο άλλο, δηλαδή την ενέργεια που απαιτείται για τη δημιουργία ορισμένης έντασης ηλεκτρικού ρεύματος. Μονάδα της ηλεκτρικής τάσης είναι το Volt, 1(V) = 1(J)/1(Cb).

3 - 3 - (1.1.4) Ηλεκτρική ισχύς (electric power) Η στιγμιαία ηλεκτρική ισχύς που καταναλώνεται ή παράγεται από ένα στοιχείο κυκλώματος p(t) είναι το γινόμενο της ηλεκτρικής τάσης στα άκρα του στοιχείου v(t) επί την ένταση του ηλεκτρικού ρεύματος i(t) που διαρρέει το στοιχείο p t v t i t Μονάδα της ηλεκτρικής ισχύος είναι το Watt, 1(W) = 1(V) 1(A). (1.1.5) Ηλεκτρική ενέργεια (electric energy) Εάν είναι γνωστή η χρονική εξάρτηση της ισχύς p(t) ενός στοιχείου κυκλώματος, τότε η ηλεκτρική ενέργεια W που καταναλώνεται στο στοιχείο ή παράγεται από αυτό εντός του χρονικού διαστήματος [t 1, t 2 ] είναι (1.3) W t2 t1 p t dt Μονάδα μέτρησης της ηλεκτρικής ενέργειας είναι το Joule, 1(J) = 1(V) 1(Cb). (1.4) (1.1.6) Μαγνητική ροή (magnetic flux) Η μαγνητική ροή Φ (V s) που διαπερνά μια επιφάνεια S (m 2 ), η οποία τοποθετείται εντός μαγνητικού πεδίου με πυκνότητα μαγνητικής ροής (μαγνητική επαγωγή) B (V s/m 2 ) ισούται με: B d s (1.5) S Εάν το μαγνητικό πεδίο είναι ομοιόμορφο (ομογενές) με σταθερό μέτρο μαγνητικής επαγωγής ( B.) σε όλα τα σημεία της επίπεδης επιφάνειας S, τότε η μαγνητική ροή που διαπερνά την επιφάνεια είναι: BS cos (1.6) Όπου: θ είναι η γωνία μεταξύ της κατεύθυνσης της μαγνητικής επαγωγής B και της καθέτου προς την επιφάνεια. Μονάδα μέτρησης της μαγνητικής ροής είναι το Weber, 1(Wb) = 1(V) 1(s). (1.2) Ορισμοί Φορές αναφοράς Τα ηλεκτρικά κυκλώματα αποτελούνται από ηλεκτρικά στοιχεία, τα οποία μπορεί να είναι στοιχεία δύο ακροδεκτών (αντίσταση, πυκνωτής, πηνίο) ή στοιχεία με περισσότερους ακροδέκτες (μετασχηματιστής, τρανζίστορ, θυρίστορ, τελεστικός ενισχυτής κλπ.) και τα οποία συνδέονται από τους ακροδέκτες τους με διάφορους τρόπους. Κάθε ηλεκτρικό κύκλωμα αποτελείται από κλάδους, οι οποίοι διαμορφώνουν τους βρόχους του κυκλώματος.

4 - 4 - (1.2.1) Κλάδος (branch) κυκλώματος Συμβάσεις αναφοράς Κάθε στοιχείο δύο ακροδεκτών ή οποιαδήποτε ομάδα συνδεδεμένων στοιχείων που σχηματίζουν ένα σύνολο δύο ακροδεκτών ονομάζεται κλάδος του κυκλώματος (Σχήμα 1.1α). Σε κάθε κλάδο κυκλώματος ορίζεται το ρεύμα κλάδου και η τάση κλάδου, δηλαδή η διαφορά δυναμικού ανάμεσα στα δύο άκρα του στοιχείου, καθώς και οι λεγόμενες φορές αναφοράς, οι οποίες συσχετίζουν τη φορά του ρεύματος κλάδου με τη διαφορά δυναμικού στα άκρα του. Η φορά αναφοράς του ρεύματος κλάδου σημειώνεται με ένα βέλος και είναι τέτοια ώστε το ρεύμα να οδηγείται από τον ακροδέκτη με το υψηλότερο δυναμικό (+) προς τον ακροδέκτη με το χαμηλότερο δυναμικό (-). Η φορά αναφοράς της τάσης κλάδου σημειώνεται με τα σημεία (+) και (-) ή με ένα βέλος που κατευθύνεται από το άκρο με το σημείο (-) προς το άκρο με το σημείο (+) (Σχήμα 1.1α). Οι φορές αναφοράς μπορούν να οριστούν αυθαίρετα, ωστόσο οι παραπάνω έχουν καθιερωθεί και καλούνται συζευγμένες φορές αναφοράς (associated reference direction). Οι συζευγμένες φορές αναφοράς ρεύματος και τάσης κάθε κλάδου ενός κυκλώματος επιλέγονται πριν από την ανάλυση του κυκλώματος. Εάν το πραγματικό ρεύμα που θα προκύψει μετά την ανάλυση είναι θετικό, τότε η φορά του ρεύματος είναι αυτή που επιλέχθηκε αρχικά. Εάν το πραγματικό ρεύμα προκύψει αρνητικό, τότε η φορά του ρεύματος είναι αντίθετη από αυτή που επιλέχθηκε αρχικά. Το ίδιο ισχύει και για την τάση. Αναφερόμενοι στο Σχήμα 1.1(α), η τάση στα άκρα του στοιχείου είναι v AB (t) > 0, όταν το δυναμικό στον ακροδέκτη Α είναι μεγαλύτερο από το δυναμικό στον ακροδέκτη Β. Επίσης, το ρεύμα μέσα από το στοιχείο είναι i(t) > 0, όταν κάθε χρονική στιγμή το ρεύμα εισέρχεται στο στοιχείο από τον ακροδέκτη Α και εξέρχεται από τον ακροδέκτη Β. Λαμβάνοντας υπόψη τις συζευγμένες φορές αναφοράς κλάδου i κυκλώματος, τότε εάν ισχύει v t i t 0 p t i i i σημαίνει ότι η στιγμιαία ισχύς ρέει προς τον θεωρούμενο κλάδο i, ενώ εάν ισχύει v t i t 0 p t i i i σημαίνει ότι η στιγμιαία ισχύς ρέει έξω από τον κλάδο i. (1.7) (1.8) (1.2.2) Κόμβος (node) Βρόχος (loop) κυκλώματος Τα κυκλώματα αποτελούνται από ένα πλήθος ηλεκτρικών στοιχείων, τα οποία διασυνδέονται μεταξύ τους με διάφορους τρόπους. Τα κοινά σημεία διασύνδεσης των στοιχείων ονομάζονται κόμβοι. Κόμβος είναι ο κοινός ακροδέκτης δύο ή περισσότερων κλάδων. Διακρίνονται σε απλούς (Σχήμα 1.1β) και σύνθετους (Σχήμα 1.1γ) κόμβους. Κάθε κόμβος χαρακτηρίζεται από το ηλεκτρικό δυναμικό που κατέχει. Τα ηλεκτρικά δυναμικά των κόμβων μετρούνται ως προς έναν κοινό κόμβο, ο οποίος ονομάζεται κόμβος αναφοράς, Ως κόμβος

5 - 5 - αναφοράς μπορεί να επιλεγεί ο οποιοσδήποτε κόμβος του κυκλώματος, συνήθως όμως επιλέγεται ο κόμβος στον οποίο συνδέονται οι περισσότεροι κλάδοι του κυκλώματος. Βρόχος είναι οποιαδήποτε κλειστή διαδρομή κλάδων. Εάν ο βρόχος δεν έχει στο εσωτερικό του άλλους κλάδους ονομάζεται απλός βρόχος (mesh). Ο βρόχος που περιλαμβάνει και άλλους κλάδους στο εσωτερικό του ονομάζεται σύνθετος βρόχος (loop). Στο Σχήμα 1.1(δ) ο βρόχος είναι απλός και ο βρόχος είναι σύνθετος. (1.2.3) Συγκεντρωμένα κυκλώματα Όταν οι διαστάσεις των ηλεκτρικών στοιχείων είναι πολύ μικρές σε σχέση με το μήκος κύματος του ρεύματος που τα διαρρέει (ρεύματα χαμηλών συχνοτήτων), τότε τα στοιχεία αυτά ονομάζονται συγκεντρωμένα ηλεκτρικά στοιχεία. Ηλεκτρικά κυκλώματα που αποτελούνται από συγκεντρωμένα ηλεκτρικά στοιχεία ονομάζονται συγκεντρωμένα ηλεκτρικά κυκλώματα (lumped circuits). Τα συγκεντρωμένα κυκλώματα υπακούουν στους νόμους του Kirchoff. Αυτό σημαίνει ότι το ρεύμα που εισέρχεται από τον έναν ακροδέκτη ενός ηλεκτρικού στοιχείου (π.χ τον Α στο Σχήμα 1.1α) είναι κάθε χρονική στιγμή ίσο με το ρεύμα που εξέρχεται από τον άλλο ακροδέκτη (Β) του στοιχείου και ακόμη η τάση στα άκρα του ηλεκτρικού στοιχείου v AB προσδιορίζεται απόλυτα με μετρήσεις. Τα κυκλώματα που εξετάζονται στη συνέχεια αφορούν μόνο σε συγκεντρωμένα κυκλώματα. (α) (β) (γ) (δ) Σχήμα 1.1. (α) Φορές αναφοράς ρεύματος και τάσης κλάδου. (β) Απλός κόμβος. (γ) Σύνθετος κόμβος. (δ) Απλός βρόχος (1-3-4) και σύνθετος βρόχος (1-5-2).

6 - 6 - (1.2.4) Κατανεμημένα κυκλώματα Τα στοιχεία των κατανεμημένων κυκλωμάτων έχουν μέγεθος συγκρίσιμο με το μήκος κύματος του ρεύματος που τα διαρρέει. Τα στοιχεία αυτά δεν υπακούουν στους νόμους του Kirchoff και το χαρακτηριστικό τους είναι ότι ακτινοβολούν ηλεκτρική ενέργεια. Αποτέλεσμα αυτής της ιδιότητας είναι το ρεύμα εξόδου από το στοιχείο να είναι κάθε χρονική στιγμή διαφορετικό από το ρεύμα εισόδου. Για παράδειγμα, μια κεραία είναι ένα κατανεμημένο ηλεκτρικό κύκλωμα. (1.2.5) Πολικότητα ή φορά αναφοράς βρόχου Πριν από την επίλυση ενός ηλεκτρικού κυκλώματος πρέπει να οριστεί η φορά αναφοράς ή η πολικότητα των βρόχων του κυκλώματος. Αυτό είναι απαραίτητο για τη διαμόρφωση των εξισώσεων του κυκλώματος, οι οποίες προκύπτουν, για παράδειγμα, από την εφαρμογή των νόμων του Kirchoff. Η φορά αναφοράς εκλέγεται αυθαίρετα και μπορεί να είναι ή η φορά κίνησης των δεικτών του ρολογιού ή η αντίθετη, όμως πρέπει να διατηρείται σταθερή μέχρι την ολοκλήρωση της επίλυσης του κυκλώματος. Στο Σχήμα 1.2 παρουσιάζεται ένα παράδειγμα κυκλώματος, όπου φαίνονται οι κόμβοι, οι φορές αναφοράς των βρόχων και οι συζευγμένες φορές αναφοράς των ρευμάτων και τάσεων των κλάδων του κυκλώματος. Οι βρόχοι m 1 και m 2 είναι απλοί και περιλαμβάνουν τα ηλεκτρικά στοιχεία (1-3-4) και (2-4- 5) αντίστοιχα. Ο βρόχος l 1 είναι σύνθετος και διαμορφώνεται από τα ηλεκτρικά στοιχεία ( ). Τα σημεία (Α), (β), (Γ) και (Δ) είναι οι κόμβοι του κυκλώματος και ο κόμβος (Δ) λαμβάνεται ως κόμβος αναφοράς. Η φορά του ρεύματος και η πολικότητα της τάσης σε κάθε κλάδο του κυκλώματος συμφωνούν με τις συζευγμένες φορές αναφοράς (παρ ). Σχήμα 1.2. Φορές αναφοράς βρόχων και συζευγμένες φορές κλάδων κυκλώματος.

7 - 7 - (1.3) Ηλεκτρικά στοιχεία κυκλώματος Κάθε ηλεκτρικό στοιχείο δύο ακροδεκτών χαρακτηρίζεται από το ρεύμα που το διαρρέει (ρεύμα κλάδου) και από τη διαφορά δυναμικού στα άκρα του (τάση κλάδου). Στη γενική περίπτωση το ρεύμα και η τάση ενός στοιχείου είναι συναρτήσεις του χρόνου. Η σχέση της τάσης και του ρεύματος ενός στοιχείου δύο ακροδεκτών, σχέση v i, ονομάζεται χαρακτηριστική v i του στοιχείου. Εάν το ρεύμα ενός στοιχείου εξαρτάται από την τάση στα άκρα του, τότε πρόκειται για στοιχείο δύο ακροδεκτών ελεγχόμενο από τάση. Από μαθηματική σκοπιά, η χαρακτηριστική στοιχείου δύο ακροδεκτών ελεγχόμενο από τάση είναι μια συνάρτηση i t f v όπου το ρεύμα κλάδου i(t) είναι εξαρτημένη μεταβλητή και η τάση κλάδου v(t) είναι η ανεξάρτητη μεταβλητή. Εάν πρόκειται για ηλεκτρικό στοιχείο δύο ακροδεκτών ελεγχόμενο από ρεύμα, τότε το ρεύμα κλάδου είναι η ανεξάρτητη μεταβλητή και η τάση του στοιχείου η εξαρτημένη μεταβλητή και η χαρακτηριστική του στοιχείου δίνεται από την αντίστροφη συνάρτηση της εξ.(1.9) 1 v t f i Ανάλογα με τη μορφή της χαρακτηριστικής ρεύματος-τάσης, τα ηλεκτρικά στοιχεία διακρίνονται σε γραμμικά και μη γραμμικά στοιχεία. Σύμφωνα με τον ορισμό της γραμμικότητας, ένα ηλεκτρικό στοιχείο δύο ακροδεκτών είναι γραμμικό, όταν η χαρακτηριστική του είναι ευθεία γραμμή που διέρχεται από την αρχή των αξόνων (Σχήμα 1.3α). Στην αντίθετη περίπτωση πρόκειται για μη γραμμικό στοιχείο (Σχήμα 1.3β). (1.9) (1.10) (α) (β) Σχήμα 1.3. Χαρακτηριστική γραμμικού (α) και μη γραμμικού (β) στοιχείου.

8 - 8 - Από μαθηματικής πλευράς, μια συνάρτηση f(v) είναι γραμμική όταν ισχύουν η αρχή της ομογένειας και η αρχή της επαλληλίας, δηλαδή ισχύει: f k v k v k f v k f v (1.11) Όπου: k 1, k 2 σταθερές. Τα ηλεκτρικά στοιχεία ενός κυκλώματος διακρίνονται σε δύο κατηγορίες από ενεργειακής άποψης: (α) στα ενεργά (active) στοιχεία και (β) στα παθητικά (passive) στοιχεία. Τα ενεργά στοιχεία παρέχουν ηλεκτρική ενέργεια στο κύκλωμα και είναι οι πηγές ηλεκτρικής τάσης και οι πηγές ηλεκτρικού ρεύματος. Τα παθητικά στοιχεία διακρίνονται σε αυτά που καταναλώνουν ηλεκτρική ενέργεια (αντιστάτης) και σε αυτά που αποθηκεύουν ενέργεια, την οποία μπορούν στη συνέχεια να αποδώσουν (δυναμικά στοιχεία, όπως πυκνωτής, πηνίο). (1.3.1) Ανεξάρτητες πηγές τάσης και ρεύματος (Independent voltage and current sources) Οι πηγές τάσης και ρεύματος είναι στοιχεία δύο ακροδεκτών που παρέχουν ηλεκτρική ισχύ στο κύκλωμα ή διαφορετικά είναι τα στοιχεία που προκαλούν τις διεγέρσεις των ηλεκτρικών κυκλωμάτων. Μία ανεξάρτητη πηγή τάσης είναι ένα στοιχείο δύο ακροδεκτών, στο οποίο η διαφορά δυναμικού στα άκρα του (τάση κλάδου) είναι ανεξάρτητη από το ρεύμα που διαρρέει το στοιχείο. Μια ανεξάρτητη πηγή τάσης έχει σταθερή ηλεκτρική τάση (διαφορά δυναμικού) στα άκρα της (Σχήμα 1.4δ) και θα μπορούσε να δώσει στο κύκλωμα άπειρο ποσό ενέργειας, κάτι που βεβαίως είναι αδύνατο να υπάρξει στη φύση. Για το λόγο αυτό, η ανεξάρτητη πηγή τάσης ονομάζεται και ιδανική πηγή τάσης. Στο Σχήμα 1.4(α),(β),(γ) παρουσιάζονται τα σύμβολα μιας ανεξάρτητης πηγής τάσης. Η τάση αυτή μπορεί να είναι: γενικώς χρονικά μεταβαλλόμενη (Σχήμα 1.4α), σταθερής τιμής (πηγή συνεχούς ρεύματος, ΣΡ) (Σχήμα 1.4β) ή ημιτονοειδώς μεταβαλλόμενη (πηγή εναλλασσόμενου ρεύματος, ΕΡ) (Σχήμα 1.4γ). Το σύμβολο (α) έχει γενική χρήση και καλύπτει τις άλλες δύο περιπτώσεις. Στην περίπτωση της πηγής ΕΡ, η σταθερή τιμή της τάσης στο Σχήμα 1.4(δ) αντιπροσωπεύει την ενεργό (ενδεικνυμένη ή RMS) τιμή της τάσης της πηγής ΕΡ. Σε μια πηγή τάσης θα πρέπει το γινόμενο: v(t) i(t) < 0 (εξ. 1.8), ώστε η πηγή τάσης να προσφέρει ηλεκτρική ισχύ (ενέργεια) στο κύκλωμα. Για να ικανοποιείται αυτή η συνθήκη πρέπει η φορά αναφοράς του ρεύματος της πηγής να είναι αντίθετη της συζευγμένης φοράς αναφοράς. Μία ανεξάρτητη πηγή ρεύματος είναι ένα στοιχείο δύο ακροδεκτών, στο οποίο το ρεύμα του στοιχείου είναι σταθερό και ανεξάρτητο από την τάση του στοιχείου. Το σύμβολο και η χαρακτηριστική της ανεξάρτητης πηγής ρεύματος δίνονται στα Σχήματα 1.3(ε) και (στ) αντίστοιχα. Η ανεξάρτητη πηγή ρεύματος είναι και αυτή ένα ιδανικό στοιχείο και ονομάζεται ιδανική πηγή ρεύματος.

9 - 9 - (α), (β), (γ) (δ) (ε) (στ) Σχήμα 1.4. (α), (β), (γ) Συμβολισμοί ανεξάρτητης πηγής τάσης. (δ) Χαρακτηριστική v-i ανεξάρτητης πηγής τάσης. (ε) Σύμβολο ανεξάρτητης πηγής ρεύματος. (στ) Χαρακτηριστική v-i ανεξάρτητης πηγής ρεύματος. (1.3.2) Αντιστάτης (Resistor) Ο αντιστάτης είναι ένα ηλεκτρικό στοιχείο δύο ακροδεκτών, το οποίο όταν διαρρέεται από ηλεκτρικό ρεύμα προκαλείται µία πτώση τάσης (διαφορά δυναμικού) στα άκρα του αντιστάτη, η ενέργεια δε του ηλεκτρικού ρεύματος μετατρέπεται εξ ολοκλήρου σε θερμότητα (φαινόμενο Joule) πάνω στον αντιστάτη. Παραδείγματα συσκευών που μετατρέπουν την ηλεκτρική ενέργεια σε θερμότητα μέσω αντιστατών είναι οι θερμάστρες, οι ηλεκτρικές κουζίνες, τα ηλεκτρικά σίδερα, οι ηλεκτρικοί θερμοσίφωνες κλπ. Στη γενική περίπτωση, η πτώση τάσης στον αντιστάτη είναι μία αλγεβρική έκφραση της μορφής Όπου: α i = 0, 1,2,3,, σταθεροί συντελεστές. 2 3 v t i t i t i t (1.12)

10 Η απλούστερη μορφή αντιστάτη είναι ο γνωστός ωμικός αντιστάτης, που ονομάζεται και αντίσταση. Η αντίσταση είναι ένα γραμμικό στοιχείο, χρονικά αμετάβλητο και η χαρακτηριστική του v i εκφράζεται από τη σχέση v t Ri t Δηλαδή, όλοι οι συντελεστές της εξ.(1.12) είναι μηδενικοί, εκτός από τον α 1 = R, όπου R είναι η ωμική αντίσταση (resistance) του αντιστάτη. Για σταθερή θερμοκρασία, η αντίσταση R έχει σταθερή τιμή και είναι ανεξάρτητη από την τάση και το ρεύμα του αντιστάτη. Η εξ.(1.13) εκφράζει το νόμο του Ohm, σύμφωνα με τον οποίο η τάση στα άκρα ενός γραμμικού αντιστάτη είναι ανάλογη του ρεύματος που τον διαρρέει. Μονάδα μέτρησης της αντίστασης είναι το Ohm, 1 (Ω) = 1(V)/1(A). Η αντίστροφη χαρακτηριστική i v είναι i t G v t (1.13) (1.14) Όπου G είναι το αντίστροφο της αντιστάσεως και ονομάζεται αγωγιμότητα. Μονάδα της αγωγιμότητας είναι το mho ή Siemens, 1(S) = 1(A)/1(V) = (Ω) G R (1.15) Η χαρακτηριστική v i της αντίστασης είναι ευθεία που διέρχεται από την αρχή των αξόνων (Σχήμα 1.5β), η κλίση της δε είναι σταθερή και ίση με R. Το σύμβολο της αντίστασης δίνεται στο Σχήμα 1.5(α). (α) (β) Σχήμα 1.5. (α) Εναλλακτικοί συμβολισμοί ωμικού αντιστάτη. (β) Χαρακτηριστική v i αντιστάτη. Η ηλεκτρική ισχύς p(t) που καταναλώνεται σε έναν ωμικό αντιστάτη αντίστασης R, ο οποίος διαρρέεται από ρεύμα i(t) και η τάση στα άκρα του είναι v(t), είναι

11 v t 2 pt vt it Ri t R Εάν ο αντιστάτης διαρρέεται από ηλεκτρικό ρεύμα για χρονικό διάστημα Δt = t 2 t 1, η ηλεκτρική ενέργεια w(t) που μετατρέπεται σε θερμότητα επάνω στον ωμικό αντιστάτη είναι t1 t1 t1 t t2 t2 t2 2 v 2 wt vt it dt Ri tdt dt R Βραχυκύκλωμα (short circuit) - Ανοικτό κύκλωμα (open circuit) Δύο ειδικές περιπτώσεις αντιστατών, που παρουσιάζουν ιδιαίτερο ενδιαφέρον στην ανάλυση κυκλωμάτων, είναι το βραχυκύκλωμα και το ανοικτό κύκλωμα. Το βραχυκύκλωμα είναι ένας αντιστάτης με μηδενική αντίσταση (R = 0) και άπειρη αγωγιμότητα (G ) και επομένως με μηδενική διαφορά δυναμικού στα άκρα του. Το βραχυκύκλωμα παρίσταται συμβολικά στο Σχήμα 1.6(α) και η χαρακτηριστική v i συμπίπτει με τον άξονα του ρεύματος (Σχήμα1.6β), δηλαδή η κλίση της χαρακτηριστικής είναι μηδέν. Το ρεύμα βραχυκυκλώματος (shortcircuit current) i sc έχει αυθαίρετη τιμή, που σημαίνει ότι η τιμή του καθορίζεται από τα υπόλοιπα στοιχεία και τη δομή του κυκλώματος. (1.16) (1.17) (α) (β) Σχήμα 1.6. (α) Σύμβολο αναπαράστασης βραχυκυκλώματος. (β) Χαρακτηριστική v i βραχυκυκλώματος. Το ανοικτό κύκλωμα είναι ένας αντιστάτης με άπειρη αντίσταση (R ) και μηδενική αγωγιμότητα (G = 0), μέσα από τον οποίο δε διέρχεται ρεύμα ανεξάρτητα από το μέγεθος της διαφοράς δυναμικού που εφαρμόζεται στα άκρα του. Η τάση στα άκρα του αντιστάτη έχει αυθαίρετη τιμή, δηλαδή καθορίζεται από τα υπόλοιπα στοιχεία και τη δομή του κυκλώματος. Το σύμβολο και η χαρακτηριστική του αντιστάτη ανοικτού κυκλώματος δίνονται στα Σχήματα 1.7(α) και (β) αντίστοιχα. Τα στοιχεία δύο ακροδεκτών ανοικτού κυκλώματος και βραχυκυκλώματος δεν παράγουν ούτε καταναλώνουν ηλεκτρική ισχύ, αφού το γινόμενο (v i) είναι πάντα ίσο με μηδέν.

12 Ηλεκτρική αντίσταση αγωγών ρεύματος Για τη μεταφορά και διανομή ηλεκτρικής ενέργειας στα ηλεκτρικά δίκτυα και τις εσωτερικές ηλεκτρικές εγκαταστάσεις κτιρίων χρησιμοποιούνται πολυπολικά καλώδια, τα οποία αποτελούνται από δύο ή περισσότερους μονωμένους αγωγούς. Οι αγωγοί είναι συνήθως από χαλκό ή αλουμίνιο και έχουν κυκλική διατομή. Η ωμική αντίσταση των αγωγών εξαρτάται μόνο από τα γεωμετρικά τους χαρακτηριστικά και υπολογίζεται από τη σχέση l R (1.18) q Όπου: R είναι η ωμική αντίσταση του αγωγού σε (Ω), ρ είναι η ειδική αντίσταση του αγωγού σε (Ωmm 2 /m), l είναι το μήκος του αγωγού σε (m) και q είναι η διατομή του αγωγού σε mm 2. Η ειδική αντίσταση του χαλκού και του αλουμινίου στους 20 0 C είναι: 0,0172 και 0,0282(Ω mm 2 /m) αντίστοιχα. Αν και η μονάδα μέτρησης επιφάνειας στο σύστημα SI είναι το m 2, εντούτοις στην εξ.(1.18) χρησιμοποιείται το mm 2, διότι οι διατομές των αγωγών που χρησιμοποιούνται στην πράξη είναι πολύ μικρότερες από το m 2. (α) (β) Σχήμα 1.7. (α) Σύμβολο αναπαράστασης ανοικτού κυκλώματος. (β) Χαρακτηριστική v i ανοικτού κυκλώματος. (1.3.3) Πυκνωτής (Capacitor) Ένας πυκνωτής, στην πιο απλή μορφή του, αποτελείται από δύο αγώγιμες επιφάνειες που βρίσκονται κοντά η μία με την άλλη και ονομάζονται οπλισμοί. Οι δύο οπλισμοί χωρίζονται μεταξύ τους από ένα μη αγώγιμο υλικό, το οποίο ονομάζεται διηλεκτρικό (dielectric). Ως διηλεκτρικό μπορεί να είναι και ο αέρας, οπότε ο πυκνωτής ονομάζεται πυκνωτής αέρος. Στους οπλισμούς προσαρμόζονται ακροδέκτες και το όλο σύστημα συνιστά ένα στοιχείο δύο ακροδεκτών.

13 Κύριο χαρακτηριστικό ενός πυκνωτή είναι η αποθήκευση ηλεκτρικού φορτίου στους οπλισμούς του. Εάν οι οπλισμοί ενός πυκνωτή συνδεθούν προς μια πηγή τάσης, τότε η πηγή μεταφέρει στους οπλισμούς ίσα και αντίθετα φορτία, +q και q. Τα φορτία αυτά έλκονται μεταξύ τους και συγκρατούνται στις επιφάνειες των οπλισμών, προς τα μέσα του πυκνωτή (Σχήμα 1.8α), αφού το διηλεκτρικό που παρεμβάλλεται μεταξύ των οπλισμών είναι μονωτικό και εμποδίζει την αγώγιμη σύνδεση των δύο οπλισμών. Εάν διακοπεί η σύνδεση του πυκνωτή με την πηγή, τα φορτία παραμένουν στους οπλισμούς και ο πυκνωτής εμφανίζεται φορτισμένος. Η ύπαρξη ηλεκτρικών φορτίων +q και q στους οπλισμούς ενός πυκνωτή έχει ως αποτέλεσμα τη δημιουργία ηλεκτρικού πεδίου εντός του διηλεκτρικού, πεδιακής έντασης E. Υπό την επίδραση του ηλεκτρικού πεδίου τα μόρια του διηλεκτρικού πολώνονται (αρνητικά προς το θετικό οπλισμό και θετικά προς τον αρνητικό οπλισμό) (Σχήμα 1.8β), με αποτέλεσμα να αυξάνεται το φορτίο που μπορεί να συγκρατείται στους οπλισμούς του πυκνωτή και αυτό συμβαίνει λόγω της έλξης των ετερώνυμων φορτίων του διηλεκτρικού, τα οποία βρίσκονται σε επαφή με τους οπλισμούς του πυκνωτή. Αυτό σημαίνει ότι η χωρητικότητα ενός πυκνωτή αυξάνεται περαιτέρω με την εισαγωγή διηλεκτρικού υλικού μεταξύ των οπλισμών του πυκνωτή. Η αρχική ενέργεια που απαιτήθηκε για τη συγκέντρωση των φορτίων στους οπλισμούς του πυκνωτή μετατράπηκε τώρα, με την ολοκλήρωση της φόρτισης του πυκνωτή, σε ενέργεια του ηλεκτρικού πεδίου εντός του διηλεκτρικού. Δηλαδή, ο πυκνωτής είναι ένα παθητικό στοιχείο (δεν παράγει ενέργεια) με δυνατότητα αποθήκευσης ενέργειας. (α), (β) (γ) Σχήμα 1.8. (α) Κυκλωματικό σύμβολο (β) Φόρτιση πυκνωτή. (γ) Χαρακτηριστική v q ανοικτού κυκλώματος.

14 Το φορτίο q(t) που αποθηκεύεται στους οπλισμούς ενός πυκνωτή είναι αvάλογο της τάσης v(t) που εφαρμόζεται στα άκρα του q t C v t Όπου C είναι σταθερά και ονομάζεται χωρητικότητα (capacitance) του πυκνωτή. Μονάδα μέτρησης της χωρητικότητας είναι το Farad, 1(F) = 1(Cb)/1(V). Επειδή το Farad είναι πολύ μεγάλη μονάδα, χρησιμοποιούνται συνήθως τα υποπολλαπλάσια της μονάδας αυτής: 1(mF) = 10-3 (F), 1(nF) = 10-9 (F), 1(pF) = (F). 1(µF) = 10-6 (F), Όταν η χωρητικότητα είναι σταθερή και ανεξάρτητη από τα μεγέθη q(t), v(t) και το χρόνο t, τότε πρόκειται για γραμμικό πυκνωτή µε χαρακτηριστική v q αυτή του Σχήματος (1.8γ). Στην αντίθετη περίπτωση, πρόκειται για μη γραμμικό πυκνωτή. Εδώ εξετάζονται μόνο οι γραμμικοί πυκνωτές. Η χωρητικότητα εκφράζει την ποσότητα φορτίων που είναι δυνατόν να αποθηκευτούν στους οπλισμούς ενός πυκνωτή για συγκεκριμένη διαφορά δυναμικού στα άκρα του, δηλαδή την ικανότητα του πυκνωτή να αποθηκεύει ενέργεια με τη μορφή ηλεκτρικού πεδίου. Για γραμμικό πυκνωτή, η χωρητικότητα C εξαρτάται από το διηλεκτρικό υλικό και τα γεωμετρικά χαρακτηριστικά του πυκνωτή S S C r 0 d d Όπου: ε είναι η διηλεκτρική σταθερά του μονωτικού υλικού σε (F/m), ε r είναι η σχετική διηλεκτρική 9 σταθερά του διηλεκτρικού υλικού, 0 1/ είναι η διηλεκτρική σταθερά του κενού (και κατά προσέγγιση του αέρα) σε (C 2 /Nm 2 ), S είναι το εμβαδόν της επιφάνειας των οπλισμών σε (m 2 ) και d είναι η απόσταση μεταξύ των οπλισμών σε (m). Λαμβάνοντας υπόψη τις εξς.(1.1) και (1.19), το ρεύμα i C του πυκνωτή είναι dq dv t ic t C dt dt Από την εξ.(1.21), η οποία είναι μια διαφορική (δυναμική) και όχι αλγεβρική (στατική) σχέση, παρατηρούμε ότι το ρεύμα του πυκνωτή εξαρτάται κάθε χρονική στιγμή από το ρυθμό μεταβολής της τάσης στα άκρα του. Εάν ο πυκνωτής συνδέεται σε μία πηγή ΣΡ σταθερής τάσης είναι dvt dt 0 και επομένως το ρεύμα του πυκνωτή είναι μηδέν. Ο πυκνωτής συμπεριφέρεται στο ΣΡ ως ανοικτός διακόπτης. Αντιθέτως, στο ημιτονοειδές ΕΡ ο πυκνωτής επιτρέπει τη ροή του ρεύματος, διότι και στις δύο ημιπεριόδους του ρεύματος είναι dvt dt 0. Από την εξ.(1.21) προκύπτει η τάση στα άκρα του πυκνωτή στο χρονικό διάστημα [t 0, t] (1.19) (1.20) (1.21) 1 1 t c 0 v t i t dt v t C Όπου: v(t o ) είναι η τιμή της τάσης του πυκνωτή τη χρονική στιγμή t 0. t0 (1.22)

15 Η εναποθηκευμένη ενέργεια W C (t) σε ένα γραμμικό πυκνωτή χωρητικότητας C και τάσης v(t) στα άκρα του, για το χρονικό διάστημα [t 0, t] και λαμβάνοντας υπόψη την εξ.(1.19), είναι t t q t q t q 1 2 WC t vt it dt V q1 dq1 q1 dq1 C v t 0 0 C 2 C 2 t q t 0 Το φορτίο του πυκνωτή τη χρονική στιγμή t 0 είναι q(t 0 ) = 0. (1.3.4) Πηνίο (Inductor) Το πηνίο είναι ένα στοιχείο δύο ακροδεκτών και χρησιμοποιείται για τη δημιουργία μαγνητικού πεδίου, όταν διαρρέεται από ηλεκτρικό ρεύμα. Η συνηθέστερη μορφή πηνίου είναι το σωληνοειδές πηνίο, το οποίο αποτελείται από έναν αριθμό ομοαξονικών σπειρών που τοποθετούνται η μία δίπλα στην άλλη. Σπείρα ονομάζεται η κυκλική μορφή που παίρνει ένας μονωμένος αγωγός όταν τυλιχθεί γύρω από έναν κύλινδρο. Στα Σχήματα 1.9(α) και (β) δίνονται το κυκλωματικό σύμβολο πηνίου και το μαγνητικό πεδίο σωληνοειδούς πηνίου αντίστοιχα. (1.23) (α 1 ), (α 2 ), (β) (γ) Σχήμα 1.9. (α 1 ), (α 2 ) Εναλλακτικά κυκλωματικά σύμβολα πηνίου. (β) Μαγνητικό πεδίο σωληνοειδούς πηνίου. (γ) Χαρακτηριστική i φ γραμμικού πηνίου. Το μαγνητικό πεδίο του πηνίου είναι χρονικά σταθερό όταν διαρρέεται από ΣΡ, ενώ είναι χρονικά μεταβαλλόμενο όταν διαρρέεται από χρονικά μεταβαλλόμενο ηλεκτρικό ρεύμα (π.χ. ημιτονοειδές ΕΡ). Η ποσότητα του μαγνητικού πεδίου που διέρχεται από κάθε σπείρα του πηνίου εκφράζεται από τη μαγνητική ροή, φ(t), ενώ η συνολική μαγνητική ροή που διέρχεται από πηνίο Ν σπειρών εκφράζεται από την

16 πεπλεγμένη μαγνητική ροή, Ψ(t) = Ν φ(t). Επειδή, η μαγνητική ροή του πηνίου είναι ανάλογη του ρεύματος που το διαρρέει, κατά συνέπεια και η πεπλεγμένη ροή είναι ανάλογη του ρεύματος t N t Lit Ο συντελεστής αναλογίας, L, στην εξ.(1.24) ονομάζεται αυτεπαγωγή (ή συντελεστής αυτεπαγωγής) με μονάδα μέτρησης το Henry (H), 1(H) = 1(Wb)/1(A). Για ένα γραμμικό χρονικά αμετάβλητο πηνίο ο συντελεστής αυτεπαγωγής είναι σταθερός και εξαρτάται μόνο από τα γεωμετρικά και κατασκευαστικά χαρακτηριστικά του πηνίου L 2 N S 0 Όπου: L είναι ο συντελεστής αυτεπαγωγής του πηνίου σε (Η), µ είναι η μαγνητική διαπερατότητα του υλικού του πυρήνα του πηνίου, µ 0 = 4 π 10-6 (H/m) είναι η θεμελιώδης μαγνητική σταθερά, Ν είναι ο αριθμός σπειρών του πηνίου, S είναι το εμβαδόν μιας κάθετης διατομής του πηνίου σε (m 2 ) και l είναι το μήκος του πηνίου σε (m). Η χαρακτηριστική i φ ενός γραμμικού πηνίου δίνεται στο Σχήμα 1.9(γ). Σύμφωνα με το νόμο του Faraday, η τάση στα άκρα ενός πηνίου είναι κάθε στιγμή ίση με τη χρονική μεταβολή της πεπλεγμένης ροής l d t d t di t vl t N L dt dt dt Από την εξ.(1.26), παρατηρούμε ότι η τάση που επάγεται στα άκρα ενός πηνίου είναι ανάλογη της χρονικής μεταβολής του ρεύματος που διαρρέει το πηνίο. Η επαγόμενη αυτή τάση (v L ) οφείλεται ακριβώς στη χρονική μεταβολή του μαγνητικού πεδίου, μεταβολή την οποία υφίσταται το ίδιο το πηνίο. Εάν πρόκειται για ΣΡ, τότε dit dt 0 και v L (t) = 0. Δηλαδή, το πηνίο συμπεριφέρεται στο ΣΡ ως βραχυκύκλωμα. (1.24) (1.25) (1.26) (α) (β 1 ), (β 2 ) Σχήμα (α) Ημιτονοειδής κυματομορφή ΕΡ. (β 1 ), (β 2 ) Πολικότητα της τάσης του πηνίου v L (t) κατά την αύξηση και μείωση του ρεύματος αντίστοιχα.

17 Ιδιαίτερο ενδιαφέρον παρουσιάζει η λειτουργική συμπεριφορά του πηνίου σε κυκλώματα ΕΡ με ημιτονοειδή διέγερση. Στα κυκλώματα αυτά και με την προϋπόθεση ότι τα στοιχεία του κυκλώματος είναι γραμμικά, τα ρεύματα στους κλάδους του κυκλώματος είναι εναλλασσόμενα ρεύματα ημιτονοειδούς μορφής (Σχήμα 1.10α). Η πολικότητα της επαγόμενης τάσης σε ένα πηνίο καθορίζεται από τον κανόνα του Lenz, σύμφωνα με τον οποίο η τάση που επάγεται κάθε χρονική στιγμή στο πηνίο έχει φορά τέτοια, ώστε να εμποδίζει τη μεταβολή της πεπλεγμένης μαγνητικής ροής του πηνίου. Όταν το πηνίο διαρρέεται από ΕΡ, τότε κατά την αύξηση του ρεύματος [di(t)/dt > 0], η πεπλεγμένη ροή αυξάνεται [dψ(t)/dt > 0], η επαγόμενη τάση (εξ.1.26) αυξάνεται [v)t) > 0] και επομένως το δυναμικό του ακροδέκτη εισόδου Α είναι μεγαλύτερο από το δυναμικό του ακροδέκτη εξόδου Β του πηνίου. Η πολικότητα της τάσης του πηνίου είναι αυτή του Σχήματος 1.10(β 1 ). Μετά τη μέγιστη τιμή του το ρεύμα αρχίζει και μειώνεται [di(t)/dt < 0], η πεπλεγμένη μαγνητική ροή μειώνεται [dψ(t)/dt < 0], η επαγόμενη τάση μειώνεται [v)t) < 0] και επομένως, σύμφωνα με τον κανόνα του Lenz, το δυναμικό του ακροδέκτη εισόδου Α γίνεται μικρότερο από το δυναμικό του ακροδέκτη εξόδου Β του πηνίου. Η πολικότητα της τάσης του πηνίου είναι τώρα αυτή του Σχήματος 1.10(β 2 ). Τα όσα αναφέρθηκαν προηγουμένως για τον καθορισμό της πολικότητας της επαγόμενης τάσης στο πηνίο, όταν διαρρέεται από ΕΡ ισχύουν και για τις δύο ημιπεριόδους ρεύματος (Σχήμα 1.10α). Για τον υπολογισμό του ρεύματος του πηνίου συναρτήσει της επαγόμενης τάσης στα άκρα του απαιτείται η ολοκλήρωση της εξ.(1.26) στο χρονικό διάστημα [t 0, t] 1 t L 0 i t v t dt i t L t0 Όπου i(t 0 ) είναι η τιμή του ρεύματος στο πηνίο κατά τη χρονική στιγμή t 0 (αρχική συνθήκη). Η ηλεκτρική ενέργεια του ρεύματος μετατρέπεται σε μαγνητική ενέργεια και αποθηκεύεται στο μαγνητικό πεδίο του πηνίου. Το πηνίο είναι ένα παθητικό στοιχείο (δεν παράγει ενέργεια) με δυνατότητα αποθήκευσης ενέργειας. Η εναποθηκευμένη ενέργεια W L (t) σε ένα γραμμικό πηνίο με συντελεστή αυτεπαγωγής L και τάσης v L (t) στα άκρα του, για το χρονικό διάστημα [t 0, t] και λαμβάνοντας υπόψη την εξ.(1.24), είναι t t WL tvl t it dt I d 1d 1 Li t 0 0 L 2 L 2 t t 0 Η πεπλεγμένη ροή τη στιγμή t 0 είναι Ψ(t 0 ) = 0. t t (1.27) (1.28)

18 (1.3.5) Στοιχείο αλληλεπαγωγής (α) (β) (γ) (δ) (ε) (στ) Σχήμα (α) Μαγνητικώς συζευγμένα πηνία με τροφοδότηση μόνο του ενός από τα δύο πηνία. (β) Μαγνητικώς συζευγμένα πηνία με ροή ρεύματος και στα δύο πηνία. (γ) Οι μαγνητικές ροές των δύο πηνίων αθροίζονται, Μ > 0. (δ) Οι μαγνητικές ροές των δύο πηνίων αφαιρούνται, Μ < 0. (ε), (στ) Εφαρμογή του κανόνα των τελειών για τον προσδιορισμό του πρόσημου του συντελεστή Μ. Το φαινόμενο της αλληλεπαγωγής ή αμοιβαίας επαγωγής παρατηρείται σε μαγνητικώς συζευγμένα κυκλώματα. Δύο πηνία είναι μαγνητικώς συζευγμένα όταν η μαγνητική ροή που παράγεται από το ρεύμα

19 του ενός πηνίου εμπλέκει τις σπείρες του άλλου πηνίου (Σχήμα 1.11α). Δηλαδή, επάγεται ηλεκτρική τάση στο δεύτερο πηνίο, λόγω της μεταβαλλόμενης μαγνητικής ροής που παράγεται από το ρεύμα του πρώτου πηνίου (λειτουργία μετασχηματιστή). Αναφερόμενοι στο Σχήμα 1.11(α), η μαγνητική ροή που παράγεται από το πηνίο 1 και εμπλέκει τις σπείρες του πηνίου 2 ονομάζεται ροή αλληλενδέσεως. Συντελεστής αμοιβαίας επαγωγής, Μ (mutual inductance), μεταξύ των πηνίων 1 και 2 ορίζεται όταν τροφοδοτείται μόνο το πηνίο 1 (Π1) και N2 2 M i 1 (1.29) N1 1 M i όταν τροφοδοτείται μόνο το πηνίο 2 (Π2). Μονάδα μέτρησης του συντελεστή αμοιβαίας επαγωγής είναι το Henry (H). Στη γενική περίπτωση που και τα δύο συζευγμένα πηνία διαρρέονται από ηλεκτρικό ρεύμα (Σχήμα 1.11β), η πεπλεγμένη ροή κάθε πηνίου είναι N L i M i N L2 i2 M i1 (1.32) Η διαφορά δυναμικού που αναπτύσσεται στα άκρα κάθε πηνίου διαμορφώνεται από δύο μέρη: (α) από την τάση που οφείλεται στην αυτεπαγωγή του πηνίου και (β) από την τάση που οφείλεται στην αμοιβαία επαγωγή με το άλλο πηνίο di di v1 t L1 M dt dt 1 2 di di v2 t L2 M dt dt 2 1 Ο συντελεστής αμοιβαίας επαγωγής, Μ, είναι θετικός εάν οι μαγνητικές ροές φ 1, φ 21 (ή φ 2, φ 12 ) προστίθενται (Σχήμα 1.11γ) και αρνητικός εάν οι μαγνητικές ροές φ 1, φ 21 (ή φ 2, φ 12 ) αφαιρούνται (Σχήμα 1.11δ). Το πρόσημο της σταθεράς Μ προσδιορίζεται στα ηλεκτρικά κυκλώματα με τον «κανόνα των τελειών» (dot convention). Σύμφωνα με τον κανόνα των τελειών, όταν οι φορές των τάσεων και των ρευμάτων στα πηνία είναι συζευγμένες και τα ρεύματα μπαίνουν ή βγαίνουν από τους ακροδέκτες των πηνίων που σημειώνονται με τελεία, τότε ο συντελεστής αμοιβαίας επαγωγής είναι θετικός (Σχήμα 1.11ε). Σε οποιαδήποτε άλλη περίπτωση ο συντελεστής αμοιβαίας επαγωγής είναι αρνητικός (Σχήμα 1.11στ). 2 (1.30) (1.31) (1.33) (1.34)

20 (1.4) Πραγματικές πηγές τάσης και ρεύματος Στην πράξη οι πηγές τάσης και ρεύματος είναι πραγματικές και όχι ιδανικές. Δηλαδή, οι πηγές τάσης και ρεύματος προσφέρουν πεπερασμένη και όχι άπειρη ενέργεια στο κύκλωμα και χαρακτηρίζονται από κάποια εσωτερική αντίσταση. (1.4.1) Πραγματική πηγή τάσης Μια ανεξάρτητη (ιδανική) πηγή τάσης θεωρείται ότι προσφέρει σταθερή τάση, ανεξάρτητα από την τιμή του ρεύματος που παρέχει στο κύκλωμα (παρ.1.3.1). Στην πραγματικότητα, όμως, η τάση στους ακροδέκτες της πηγής μειώνεται με την αύξηση του ρεύματος που παρέχει στο κύκλωμα και αυτό οφείλεται στην πτώση τάσης στην εσωτερική αντίσταση (internal resistance) της πηγής. Η πραγματική πηγή τάσης είναι ο εν σειρά συνδυασμός μιας ιδανικής πηγής τάσης Ε (V S ) και μιας αντίστασης R S (Σχήμα 1.12α). Η ιδανική πηγή ονομάζεται ηλεκτρεγερτική δύναμη (ΗΕΔ, E) και η τάση στους ακροδέκτες της πηγής, όταν αυτή διαρρέεται από ηλεκτρικό ρεύμα, ονομάζεται πολική τάση (V). Είναι, Ε V κατά το ποσόν της πτώσης τάσης στην εσωτερική αντίσταση R S. Η χαρακτηριστική i v μιας πραγματικής πηγής τάσης δίνεται στο Σχήμα 1.12(β) και εκφράζει τη μεταβολή της πολικής τάσης της πηγής συναρτήσει του ρεύματος. Με εφαρμογή του νόμου των τάσεων του Kirchhoff (παρ.1.5.2) στο βρόχο του κυκλώματος του Σχήματος 1.12(α), προκύπτει η πολική τάση της πηγής v t v t R i t s και είναι η τάση που εφαρμόζεται στα άκρα του φορτίου R L. Γενικώς, για τις πηγές τάσης ισχύει: R S <<R L. Το ρεύμα της πηγής θα είναι: i t S s t vs R R Η εξ.(1.36) εκφράζει το νόμο του Ohm στο κλειστό κύκλωμα. L (1.35) (1.36) (α) (β) Σχήμα (α) Πραγματική πηγή τάσης. (β) Χαρακτηριστική i v πραγματικής πηγής τάσης.

21 (1.4.2) Πραγματική πηγή ρεύματος Σε αντίθεση με την ιδανική πηγή ρεύματος, η οποία θεωρείται ότι προσφέρει σταθερό ρεύμα, το ρεύμα μιας πραγματικής πηγής ρεύματος δεν είναι σταθερό, αλλά είναι συνάρτηση της τάσης στα άκρα της πηγής. Η πραγματική πηγή ρεύματος είναι ο παράλληλος συνδυασμός μιας ιδανικής πηγής ρεύματος i S και μιαs εσωτερικής αντίστασης R S (Σχήμα 1.13α). Η εφαρμογή του νόμου των ρευμάτων του Kirchhoff (παρ.1.5.1) στον κόμβο Α του κυκλώματος του Σχήματος 1.13(α) δίνει Το ρεύμα που διαρρέει το φορτίο είναι v t v t R R i t i t i t i t v t i t L S L s Rs S s RL RS RL RS Γενικώς, για τις πηγές ρεύματος ισχύει: R S >>R L. v t R S il t is t RL RL RS (1.37) (1.38) (α) (β) Σχήμα (α) Πραγματική πηγή ρεύματος. (β) Χαρακτηριστική i v πραγματικής πηγής ρεύματος. (1.4.3) Ισοδυναμία πραγματικής πηγής τάσης και πραγματικής πηγής ρεύματος Συγκρίνοντας τις χαρακτηριστικές των πραγματικών πηγών τάσης και ρεύματος, οι οποίες δίνονται στα Σχήματα 1.12(β) και 1.13(β) αντίστοιχα, παρατηρούμε ότι έχουν την ίδια μορφή και επομένως πρόκειται για ισοδύναμα ηλεκτρικά στοιχεία δύο ακροδεκτών που δε διαφέρουν εξωτερικά μεταξύ τους. Αυτό σημαίνει ότι είναι δυνατή η μετατροπή μιας πραγματικής πηγής τάσης σε μια πραγματική πηγή ρεύματος και αντιστρόφως. Η σχέση ισοδυναμίας μεταξύ των δύο πηγών προκύπτει από την εξίσωση των τιμών των αντίστοιχων σημείων επί την αρχή των δύο χαρακτηριστικών, δηλαδή ισχύει S S S v t R i t (1.39)

22 Μία πραγματική πηγή τάσης v S (t) και εσωτερικής αντίστασης R S μετατρέπεται σε μία πραγματική πηγή ρεύματος i S (t) = v S (t)/r S και εσωτερικής αντίστασης R S (Σχήμα 1.14α). Κατά τον ίδιο τρόπο, μια πραγματική πηγή ρεύματος i S (t) και εσωτερικής αντίστασης R S μετατρέπεται σε μια πραγματική πηγή τάσης v S (t) = i S (t) R S και εσωτερικής αντίστασης R S. Η δυνατότητα μετατροπής μιας πηγής τάσης σε πηγή ρεύματος και αντιστρόφως αξιοποιείται στην απλοποίηση σύνθετων ηλεκτρικών κυκλωμάτων. (α) (β) Σχήμα (α) Μετατροπή πραγματικής πηγής τάσης σε πραγματική πηγή ρεύματος. (β) Μετατροπή πραγματικής πηγής ρεύματος σεπραγματική πηγή τάσης. (1.5) Οι θεμελιώδεις νόμοι της θεωρίας των κυκλωμάτων Οι θεμελιώδεις νόμοι που διέπουν τα συγκεντρωμένα ηλεκτρικά κυκλώματα είναι οι νόμοι του Kirchhoff (Gustav Robert Kirchhoff, 1847) και το θεώρημα του Tellegen (1952). Οι νόμοι του Kirchhoff είναι γενικοί, ισχύουν για κάθε συγκεντρωμένο ηλεκτρικό κύκλωμα και εξαρτώνται μόνο από την τοπολογία (γεωμετρική μορφή, δομή) του κυκλώματος και όχι από τη φύση των ηλεκτρικών στοιχείων που συνθέτουν το κύκλωμα. Αυτό σημαίνει ότι η εφαρμογή των νόμων του Kirchhoff σε δύο κυκλώματα με την ίδια ακριβώς τοπολογία, αλλά με διαφορετικά ηλεκτρικά στοιχεία θα οδηγήσει στις ίδιες ακριβώς εξισώσεις (περιορισμούς) για τα ρεύματα και τις τάσεις των κλάδων των εξεταζόμενων κυκλωμάτων. Το θεώρημα του Tellegen είναι άμεση συνέπεια των νόμων του Kirchhoff.

23 (1.5.1) Ο πρώτος νόμος ή ο νόμος των ρευμάτων του Kirchhoff Ο νόμος των ρευμάτων του Kirchhoff εκφράζει την αρχή διατήρησης του ηλεκτρικού φορτίου, σύμφωνα με την οποία το ηλεκτρικό φορτίο ούτε καταστρέφεται, ούτε δημιουργείται εκ του μηδενός, αλλά διατηρείται σταθερό σε κάθε κλειστό σύστημα. Συνέπεια της αρχής αυτής είναι η αρχή διατήρησης του ηλεκτρικού φορτίου σε έναν κόμβο. Με βάση τα προηγούμενα, ο πρώτος νόμος του Kirchhoff διατυπώνεται ως εξής: Το αλγεβρικό άθροισμα των ρευμάτων όλων των κλάδων, που εισέρχονται ή εξέρχονται από κάθε κόμβο συγκεντρωμένου ηλεκτρικού κυκλώματος είναι κάθε χρονική στιγμή ίσο με μηδέν. Η μαθηματική διατύπωση του νόμου αυτού είναι N k k 1 i t 0, t (1.40) Όπου: i k (t) τα ρεύματα των κλάδων, συμπεριλαμβανομένων και των ρευμάτων των πηγών ρεύματος, που συνδέονται στον κόμβο k του κυκλώματος. Για τη διατύπωση της αλγεβρικής εξίσωσης (1.40) σε κάθε κόμβο κυκλώματος, πρέπει προηγουμένως να οριστούν οι φορές αναφοράς των ρευμάτων σε κάθε κλάδο του κυκλώματος. Θεωρείται η σύμβαση ότι τα ρεύματα που εισέρχονται σε έναν κόμβο λαμβάνονται ως θετικά και τα ρεύματα που εξέρχονται από τον κόμβο ως αρνητικά. Για παράδειγμα, στον κόμβο Α του Σχήματος 1.15(α) ισχύει: i 1 i 2 + i 3 + i 4 i 5 = 0. Με εφαρμογή της εξ.(1.40) σε κάθε κόμβο κυκλώματος, το οποίο έχει Ν n κόμβους, προκύπτει ένα σύστημα Ν n - 1 γραμμικών ανεξάρτητων εξισώσεων με αγνώστους τα ρεύματα των κλάδων. (α) (β) Σχήμα (α) Κόμβος κυκλώματος. (β) Βρόχος κυκλώματος.

24 (1.5.2) Ο νόμος των τάσεων ή νόμος των βρόχων του Kirchhoff Ο νόμος των τάσεων του Kirchhoff διατυπώνεται ως εξής: Το αλγεβρικό άθροισμα των τάσεων των κλάδων σε κάθε βρόχο συγκεντρωμένου ηλεκτρικού κυκλώματος είναι κάθε χρονική στιγμή ίσο με μηδέν. Μαθηματικά, ο νόμος των τάσεων του Kirchhoff διατυπώνεται με τη σχέση N k 1 v t 0, t Όπου v k (t) είναι οι τάσεις των κλάδων που διαμορφώνουν το βρόχο. k Για την εφαρμογή του νόμου των τάσεων (εξ.1.41) πρέπει σε κάθε βρόχο του κυκλώματος να οριστούν η φορά αναφοράς του βρόχου (παρ.1.2.5) και οι πολικότητες των τάσεων των κλάδων των βρόχων (παρ.1.2.1). Η φορά αναφοράς των βρόχων και οι πολικότητες των τάσεων των κλάδων ορίζονται αυθαίρετα από την αρχή και τηρούνται σταθερά μέχρι την οριστική επίλυση του προβλήματος. Οι σωστές φορές των ρευμάτων στους κλάδους δεν μπορούν, κατά κανόνα, να προβλεφθούν από την αρχή, αφού για τη δημιουργία του ρεύματος σε έναν κλάδο συνεργάζονται όλες οι πηγές του κυκλώματος. Η διόρθωση της φοράς του ρεύματος στους κλάδους, εάν χρειαστεί, γίνεται μετά την επίλυση του προβλήματος. Εάν από την ανάλυση του κυκλώματος προκύψει ότι το ρεύμα σε έναν κλάδο είναι θετικός αριθμός, αυτό σημαίνει ότι η αρχικά εκλεγείσα φορά του ρεύματος είναι η πραγματική φορά. Στην αντίθετη περίπτωση η πραγματική φορά του ρεύματος είναι αντίθετη από αυτή που αρχικά επιλέχθηκε. Στη γενική περίπτωση, οι βρόχοι των κυκλωμάτων περιέχουν ενεργά και παθητικά στοιχεία. Ο βρόχος του Σχήματος 1.15(β) περιλαμβάνει τις πηγές τάσης (ενεργά στοιχεία) ηλεκτρεγερτικών δυνάμεων Ε 1 και Ε 2 και τις αντιστάσεις (παθητικά στοιχεία) των κλάδων R 1, R 2, R 3 και R 4. Για τη διαμόρφωση των εξισώσεων των βρόχων ενός κυκλώματος θεωρούμε θετικές τις τάσεις των κλάδων, των οποίων οι συζευγμένες φορές αναφοράς της τάσης (παρ.1.2.1) συμπίπτουν με τη φορά αναφοράς του βρόχου και αρνητικές στην αντίθετη περίπτωση. Αυτό σημαίνει ότι, η τάση στα άκρα ενός παθητικού στοιχείου λαμβάνεται θετική όταν, ακολουθώντας την πορεία που καθορίζει η φορά αναφοράς το βρόχου, συναντάει κανείς πρώτα τον ακροδέκτη του στοιχείου με το χαμηλότερο δυναμικό (-), ενώ στην αντίθετη περίπτωση λαμβάνεται αρνητική. Κατά τον ίδιο τρόπο, η τάση (ΗΕΔ) μιας πηγής τάσης θεωρείται θετική όταν, ακολουθώντας την πορεία που καθορίζει η φορά αναφοράς του βρόχου, συναντάει κανείς πρώτα τον αρνητικό ακροδέκτη της πηγής, ενώ στην αντίθετη περίπτωση θεωρείται αρνητική. Με βάση τα προηγούμενα, η εξίσωση των τάσεων του βρόχου του Σχήματος 1.15(β) είναι E1 E2 V1 V3 V2 V4 0 και λαμβάνοντας υπόψη το νόμο του Ohm (εξ.1.13), η προηγούμενη εξίσωση γίνεται E1 E2 I1 R1 I3 R3 I2 R2 I4 R4 0. (1.41) Γενικώς, σε ένα ηλεκτρικό κύκλωμα δίνονται οι ηλεκτρικές πηγές και τα ηλεκτρικά στοιχεία και ζητείται να υπολογιστούν τα ρεύματα και οι τάσεις στους κλάδους του κυκλώματος. Με εφαρμογή του

25 νόμου των τάσεων του Kirchhoff στους απλούς και σύνθετους βρόχους ενός κυκλώματος προκύπτει ένα σύστημα γραμμικών εξαρτημένων εξισώσεων με αγνώστους τις τάσεις των κλάδων των βρόχων. Από τις εξισώσεις αυτές, εάν N b και N n είναι ο αριθμός των κλάδων και των κόμβων του κυκλώματος αντίστοιχα, μόνο οι N b -N n +1 είναι οι γραμμικά ανεξάρτητες εξισώσεις και είναι αυτές που χρειάζονται για τον υπολογισμό των τάσεων των κλάδων. Πρακτικά, για τη διαμόρφωση των ανεξάρτητων εξισώσεων τάσεων στους βρόχους ενός κυκλώματος, αγνοούνται οι εξισώσεις τάσεων των σύνθετων βρόχων και λαμβάνονται υπόψη μόνο οι εξισώσεις τάσεων των απλών βρόχων. Η επίλυση οποιουδήποτε κυκλώματος επιτυγχάνεται με εφαρμογή των νόμων του Kirchhoff και του νόμου του Ohm. Θεωρώντας ως αγνώστους τα ρεύματα στους κλάδους ενός κυκλώματος, ο συνολικός αριθμός των ανεξάρτητων εξισώσεων που απαιτούνται για την επίλυση του κυκλώματος είναι N b -N n Ν n 1 = N b, δηλαδή ισάριθμες προς τα ρεύματα των κλάδων. Παράδειγμα 1.1 Δίνεται το κύκλωμα ΣΡ του Σχήματος 1.16(α) και ζητούνται τα υπολογιστούν: (α) οι τιμές των ρευμάτων και οι πραγματικές φορές τους στους κλάδους του κυκλώματος και (β) η ισχύς που παράγεται ή καταναλώνεται στα ηλεκτρικά στοιχεία (ενεργά ή παθητικά) του κυκλώματος. Όπου: Ε 1 = 150 (V), E 2 = 230 (V), R 1 = R 3 = 1 (Ω), R 2 = 0,5 (Ω), R 4 = 6 (Ω), R 5 = 10 (Ω), R 6 = 20 (Ω). (α) (β) Σχήμα (α) Κύκλωμα Παραδείγματος 1.1. (β) Φορές αναφοράς βρόχων, ρευμάτων και τάσεων κλάδων του κυκλώματος (α). Λύση (α) Το εξεταζόμενο κύκλωμα έχει τρεις απλούς βρόχους, m 1, m 2, m 3, τέσσερις κόμβους (N n = 4) και έξι κλάδους (N b = 6). Οι συζευγμένες φορές των ρευμάτων και των τάσεων των κλάδων, καθώς και οι φορές αναφοράς των βρόχων απεικονίζονται στο κύκλωμα του Σχήματος 1.16(β). Με εφαρμογή του νόμου των ρευμάτων του Kirchhoff προκύπτουν N n 1 = 4 1 = 3 ανεξάρτητες εξισώσεις

26 Κόμβος Β: Ι 1 + Ι 4 + Ι 6 = 0 (1) Κόμβος Γ: Ι 2 Ι 4 Ι 5 = 0 (2) Κόμβος Δ: Ι 5 Ι 3 Ι 6 = 0 (3) και με εφαρμογή του νόμου των τάσεων προκύπτουν N b -N n +1 = = 3 ανεξάρτητες εξισώσεις Βρόχος m 1 : -Ε 1 V 1 + V 4 + V 2 = 0 (4) Βρόχος m 2 : E 2 V 2 V 5 V 3 = 0 (5) Βρόχος m 3 : -V 4 + V 6 + V 5 = 0 (6), δηλαδή προκύπτουν συνολικά έξι ανεξάρτητες εξισώσεις. Η εξίσωση για τον κόμβο Α δεν είναι ανεξάρτητη, αφού μπορεί να προκύψει από το συνδυασμό των εξισώσεων (1), (2) και (3). Επειδή ζητούνται οι εντάσεις των ρευμάτων των κλάδων, αντικαθίστανται στις εξισώσεις (4), (5), (6) οι τάσεις των κλάδων με το γινόμενο του ρεύματος επί την αντίσταση (νόμος του Ohm): V 1 = I 1 R 1, V 2 = I 2 R 2, V 3 = I 3 R 3, V 4 = I 4 R 4, V 5 = I 5 R 5, V 6 = I 6 R 6 και γίνονται Βρόχος m 1 : -Ε 1 I 1 R 1 + I 4 R 4 + I 2 R 2 = 0 (4) Βρόχος m 2 : E 2 I 2 R 2 I 5 R 5 I 3 R 3 = 0 (5) Βρόχος m 3 : - I 4 R 4 + I 6 R 6 + I 5 R 5 = 0 (6) Οι (1), (2), (3), (4), (5), (6) συνιστούν γραμμικό σύστημα ανεξάρτητων εξισώσεων με έξι αγνώστους (τα ρεύματα των κλάδων του κυκλώματος), το οποίο λύνεται κατά τα γνωστά (π.χ. με τον κανόνα του Cramer ή του Sarrus). Αναδιατυπώνουμε το σύστημα των εξισώσεων I 1 + I 4 + I 6 = 0 I 2 I 4 I 5 = 0 -I 3 + I 5 I 6 = 0 -I 1 R 1 + I 2 R 2 + I 4 R 4 = E 1 -I 2 R 2 I 3 R 3 I 5 R 5 = - E 2 -I 4 R 4 + I 5 R 5 + I 6 R 6 = 0 και το θέτουμε σε πίνακα της μορφής: [R]*[I] = [E] I I I 3 0 R1 R2 0 R4 0 0 I4 E1 0 R R 0 R 0 I E R4 R5 R6 I6 0 RI E Με εφαρμογή του κανόνα του Cramer υπολογίζουμε τα ρεύματα των κλάδων. Προς τούτο, υπολογίζουμε την ορίζουσα των συντελεστών των αγνώστων

27 R 1872( ) R R 0 R , R R 0 R 0 0 0, R R R και τις ορίζουσες: DIi, i 1,2,...,6, οι οποίες προκύπτουν από την R εάν στη θέση των συντελεστών των αγνώστων Ι i, τεθούν οι σταθεροί όροι DI ( V ) E R 0 R , E R R 0 R , R R R DI DI DI ( V ) R E 0 R E R 0 R R R R ( V ) R R E1 R , R E 0 R 0 0 0, R R R ( V ) R R 0 E , R R E2 R 0 0 0, R R

28 DI ( V ) R R 0 R4 E , R R 0 E 0 0 0, R4 0 R DI ( V ) R R 0 R4 0 E1 1 0, E R R 0 R E2 0 0, E R4 R Τα άγνωστα ρεύματα υπολογίζονται από τη σχέση: I DI R και είναι: i i I DI I I I I I R DI 2 2 R DI 3 3 R DI 4 4 R DI 5 5 R DI 6 6 R 15,577( A) ( A ) ,500( A ) ,231( A ) ,846( A ) ,654( A) Η επίλυση του παραπάνω συστήματος εξισώσεων γίνεται και με αντιστροφή του πίνακα [R]. Ο πίνακας [R] είναι τετραγωνικός, η ορίζουσά του είναι διάφορη του μηδενός και επομένως έχει αντίστροφο [R] Είναι:

29 1 RI E I R E I R1 R2 0 R4 0 0 E1 0 R R3 0 R 0 E R4 R5 R ,8323 0, , ,1677 0, , , ,1261 0,8953 0, ,1261 0, , , , , ,8750 0, ,1250 0, , ,1282 0, , ,1282 0, , , , , , , , , ,8462 0, , , , , , , 6538 Για την επαλήθευση των τιμών του πίνακα [I] πρέπει να ισχύει: [R]*[I] = [Ε], η οποία σχέση ικανοποιείται. Από τις τιμές των ρευμάτων που ευρέθησαν, τα ρεύματα Ι 1 και Ι 6 έχουν αρνητική τιμή και αυτό σημαίνει ότι η πραγματική φορά των ρευμάτων αυτών είναι αντίθετη από την αρχικά θεωρούμενη φορά στο Σχήμα 1.16(β), ενώ οι φορές των υπόλοιπων θετικών ρευμάτων συμφωνούν με τις αρχικά θεωρούμενες φορές. (β) Η ισχύς που καταναλώνεται στα παθητικά στοιχεία (αντιστάσεις) του κυκλώματος είναι: P 1 = R 1 I 2 1 = 1 * 15,577 2 = 242,64 (W) P 2 = R 2 I 2 2 = 0,5 * 38,077 2 = 725 (W) P 3 = R 3 I 2 3 = 1 * 22,5 2 = 506,25 (W) P 4 = R 4 I 2 4 = 6 * 19,231 2 = (W) P 5 = R 5 I 2 5 = 10 * 18,846 2 = (W) P 6 = R 6 I 2 6 = 20 * 3,654 2 = 267 (W) Συνολική ισχύς που καταναλώνεται στις αντιστάσεις: 6 2 t, R i i i1 P R I 242, , , ( W ) Η ισχύς που παράγεται από τις πηγές τάσης του κυκλώματος (εξ.1.8) είναι: P E1 = - I 1 E 1 = -15,577 * 150 = ,6 (W) P E2 = - I 3 E 2 = -22,5 * 230 = (W) και η συνολική ισχύς που παράγεται από τις πηγές τάσης: Pt, E E1 I1 E2 I , , ( W ).

30 Συγκρίνοντας τις τιμές των P t,r και P t,e επαληθεύεται το ισοζύγιο ισχύος στο συγκεντρωμένο κύκλωμα του Σχήματος 1.16(β), δηλαδή η ισχύς που παράγεται από τις πηγές τάσης καταναλώνεται ως θερμότητα στις αντιστάσεις του κυκλώματος. Παράδειγμα 1.2 Στο κύκλωμα του Σχήματος 1.17 να υπολογιστούν τα ρεύματα στους κλάδους του κυκλώματος με τους νόμους του Kirchhoff και να γίνει ο ισολογισμός ισχύος μεταξύ αυτής που παράγεται από τις ηλεκτρικές πηγές και αυτής που καταναλώνεται στις αντιστάσεις. Δίνονται: I S1 = 50 (A), I S2 = 30 (A), E = 100 (V), R 1 = 6 (Ω), R 2 = 20 (Ω), R 3 = 4 (Ω), R 4 = 3 (Ω), R 5 = 25 (Ω). Λύση Στο κύκλωμα του Σχήματος 1.17 έχουν επιλεγεί αυθαίρετα οι φορές των ρευμάτων στους κλάδους του κυκλώματος και με βάση αυτές τις φορές ρευμάτων προέκυψαν οι συζευγμένες φορές των τάσεων στους κλάδους. Από τη θεώρηση του κυκλώματος προκύπτουν έξι ανεξάρτητες γραμμικές εξισώσεις, τρεις από το νόμο των ρευμάτων του Kirchhoff στους κόμβους Α, Β, Γ και τρεις από το νόμο των τάσεων στους βρόχους m 1, m 2, m 3. Ο βρόχος m 1 διαμορφώνεται από την πηγή τάσης Ε και την αντίσταση R 5, ο βρόχος m 2 διαμορφώνεται από τις αντιστάσεις R 3, R 4, R 5 και ο βρόχος m 3 διαμορφώνεται από τις αντιστάσεις R 1, R 2 και R 3. Ο κόμβος Δ λαμβάνεται ως κόμβος αναφοράς. Σχήμα Κύκλωμα Παραδείγματος 1.2 Εξισώσεις κυκλώματος Κόμβος A: I S1 + I 2 I 1 = 0 (1) Κόμβος Γ: Ι S2 Ι 2 Ι 3 I 4 = 0 (2) Κόμβος Δ: Ι 4 + Ι 5 + Ι 6 = 0 (3)

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ 1 ΝΟΜΟΣ ΤΟΥ OHM (ΩΜ) Για πολλά υλικά ο λόγος της πυκνότητας του ρεύματος προς το ηλεκτρικό πεδίο είναι σταθερός και ανεξάρτητος από το ηλεκτρικό

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4 18 Σεπτεμβρίου, 2012 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματα μας σήμερα Επανάληψη

Διαβάστε περισσότερα

Μ ά θ η μ α. «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Μ ά θ η μ α. «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» (Μέρος 1 ο : Ανάλυση Κυκλωμάτων ΣΡ) Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός ΕΜΠ

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών: Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5 21 Σεπτεμβρίου, 2012 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματα μας σήμερα Επανάληψη

Διαβάστε περισσότερα

ΣΤΟΧΟΙ : Ο μαθητής να μπορεί να :

ΣΤΟΧΟΙ : Ο μαθητής να μπορεί να : ΠΗΝΙΟ ΣΤΟΧΟΙ : Ο μαθητής να μπορεί να : Αναφέρει τι είναι το πηνίο Αναφέρει από τι αποτελείται το πηνίο Αναφέρει τις ιδιότητες του πηνίου Αναφέρει το βασικό χαρακτηριστικό του πηνίου Αναφέρει τη σχέση

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 7

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 7 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 7 29 Σεπτεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Εισαγωγή Φώτης Πλέσσας

Εισαγωγή Φώτης Πλέσσας Ανάλυση Κυκλωμάτων Εισαγωγή Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγικές Κυκλωμάτων Έννοιες Ανάλυσης Φυσικά και μαθηματικά μοντέλα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ 1 3.1 ΠΕΙΡΑΜΑΤΑ ΕΠΑΓΩΓΗΣ Το Σχ. 3.1 δείχνει μερικά από τα πειράματα που πραγματοποίησε o Michael Faraday. Στο Σχ. 3.1(α, β, γ) ένα πηνίο συνδέεται με γαλβανόμετρο.

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Τα στοιχεία του Πυκνωτή και του Πηνίου

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Τα στοιχεία του Πυκνωτή και του Πηνίου Το στοιχείο του πυκνωτή (1/2) Αποτελείται από δύο αγώγιμα σώματα (οπλισμοί)ηλεκτρικά μονωμένα μεταξύ τους μέσω κατάλληλου μονωτικού υλικού (διηλεκτρικό υλικό) Η ικανότητα του πυκνωτή να αποθηκεύει ενέργεια

Διαβάστε περισσότερα

C (3) (4) R 3 R 4 (2)

C (3) (4) R 3 R 4 (2) Πανεπιστήμιο Θεσσαλίας Βόλος, 29/03/2016 Τμήμα: Μηχανολόγων Μηχανικών Συντελεστής Βαρύτητας: 40%/ Χρόνος Εξέτασης: 3 Ώρες Γραπτή Ενδιάμεση Εξέταση στο Μάθημα: «ΜΜ604, Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ i.

ΚΕΦΑΛΑΙΟ 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ i. ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ i. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΙ Ηλεκτρικό ρεύµα i ρέει σ έναν αγωγό, όταν ηλεκτρικό φορτίο q µεταφέρεται από ένα σηµείο σε άλλο µέσα σ αυτόν

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ 1 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Το ηλεκτρικό ρεύμα είναι ροή ηλεκτρικών φορτίων. Θεωρούμε ότι έχουμε για συγκέντρωση φορτίου που κινείται και διέρχεται κάθετα από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 4

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 4 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 4 15 Σεπτεµβρίου, 2005 Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 2005Ηλίας Κυριακίδης,

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ ΚΥΚΛΩΜΑ 2019Κ1-2

ΤΙ ΕΙΝΑΙ ΚΥΚΛΩΜΑ 2019Κ1-2 ΕΙΣΑΓΩΓΙΚΑ 2019Κ1-1 ΤΙ ΕΙΝΑΙ ΚΥΚΛΩΜΑ 2019Κ1-2 ΤΙ ΕΙΝΑΙ ΚΥΚΛΩΜΑ 2019Κ1-3 Η ΦΥΣΙΚΗ ΔΙΝΕΙ ΤΗ ΛΥΣΗ ΕΞΙΣΩΣΕΙΣ MAXWELL 2019Κ1-4 Η ΦΥΣΙΚΗ ΔΙΝΕΙ ΤΗ ΛΥΣΗ ΑΛΛΑ ΕΞΙΣΩΣΕΙΣ MAXWELL??? 2019Κ1-5 ΑΠΛΟΠΟΙΗΣΗ Από κάθε στοιχείο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΙΙΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ

ΕΝΟΤΗΤΑ ΙΙΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΕΝΟΤΗΤΑ ΙΙΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ 19 Μαγνητικό πεδίο Μαγνητικό πεδίο ονοµάζεται ο χώρος στον οποίο ασκούνται δυνάµεις σε οποιοδήποτε κινούµενο φορτίο εισάγεται σε αυτόν. Επειδή το ηλεκτρικό ρεύµα είναι διατεταγµένη

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

Στο μαγνητικό πεδίο του πηνίου αποθηκεύεται ενέργεια. Το μαγνητικό πεδίο έχει πυκνότητα ενέργειας.

Στο μαγνητικό πεδίο του πηνίου αποθηκεύεται ενέργεια. Το μαγνητικό πεδίο έχει πυκνότητα ενέργειας. Αυτεπαγωγή Αυτεπαγωγή Ένα χρονικά μεταβαλλόμενο ρεύμα που διαρρέει ένα κύκλωμα επάγει ΗΕΔ αντίθετη προς την ΗΕΔ από την οποία προκλήθηκε το χρονικά μεταβαλλόμενο ρεύμα.στην αυτεπαγωγή στηρίζεται η λειτουργία

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων Κεφάλαιο 1 ο Βασικά στοιχεία των Κυκλωμάτων Ένα ηλεκτρικό/ηλεκτρονικό σύστημα μπορεί εν γένει να παρασταθεί από ένα κυκλωματικό διάγραμμα ή δικτύωμα, το οποίο αποτελείται από στοιχεία δύο ακροδεκτών συνδεδεμένα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΣΕΠΤΕΜΒΡΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις 1-4, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 1 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Κύκλωμα είναι ένα σύνολο ηλεκτρικών πηγών και άλλων στοιχείων που είναι συνδεμένα μεταξύ τους και διέρχεται ηλεκτρικό ρεύμα από

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας) Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Αυτεπαγωγή. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Αυτεπαγωγή. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Αυτεπαγωγή Νίκος Ν. Αρπατζάνης Εξισώσεις Maxwell Στα τέλη του 19 ου αιώνα, οι γνώσεις γύρω απ τα ηλεκτρικά και μαγνητικά πεδία συνοψίζονταν στις εξισώσεις Maxwell: Νόμος Gauss: τα ηλεκτρικά

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ στο μάθημα ΚΤΙΡΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ («ΗΛΕΚΤΡΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ») Για τους σπουδαστές του Γ Εξαμήνου Σταύρος Καμινάρης Δρ.

Διαβάστε περισσότερα

Διάλεξη 2. Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος

Διάλεξη 2. Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος Ηλεκτροτεχνία Ι Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός Α Δροσόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Σχολή Τεχνολογικών Εφαρμογών ΤΕΙ Δυτικής Ελλάδος Α Δροσόπουλος Ηλεκτροτεχνία Ι Θεμελιώδεις έννοιες

Διαβάστε περισσότερα

v(t) = Ri(t). (1) website:

v(t) = Ri(t). (1) website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ. Ένα μεταβαλλόμενο μαγνητικό πεδίο γεννά ηλεκτρικό ρεύμα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ. Ένα μεταβαλλόμενο μαγνητικό πεδίο γεννά ηλεκτρικό ρεύμα ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Ένα μεταβαλλόμενο μαγνητικό πεδίο γεννά ηλεκτρικό ρεύμα ΠΕΙΡΑΜΑΤΑ ΕΠΑΓΩΓΗΣ Όταν κλείνουμε το διακόπτη εμφανίζεται στιγμιαία ρεύμα στο δεξιό πηνίο Michael Faraday 1791-1867 Joseph

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb.

1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb. 1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb. Η δύναμη που ασκείται μεταξύ δυο σημειακών ηλεκτρικών φορτίων είναι ανάλογη των φορτίων και αντιστρόφως ανάλογη του τετραγώνου της απόστασης τους (νόμος

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της αρχικής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΘΗΓΗΤΗΣ κ.αναστασιοσ ΜΠΑΛΟΥΚΤΣΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ

ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Ως ισχύς ορίζεται ο ρυθμός παροχής ή κατανάλωσης ενέργειας. Η ηλεκτρική ισχύς ορίζεται ως το γινόμενο της τάσης επί το ρεύμα: p u i Ιδανικό πηνίο

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ :

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ : ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 5 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΕ ΑΜΕΣΕΣ ΚΑΙ ΕΜΜΕΣΕΣ ΜΕΘΟΔΟΥΣ Θεωρητική Ανάλυση Πυκνωτής

Διαβάστε περισσότερα

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης - - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Μάθημα: Στοιχεία Ηλεκτροτεχνίας

Μάθημα: Στοιχεία Ηλεκτροτεχνίας Κεφάλαιο 1 Αλέξανδρος Φλάμος, Επ.. Καθηγητής e-mail: aflamos@unipi.gr 3 ος όροφος, Γραφείο 304, κτίριο Γρηγορίου Λαμπράκη 126 *Σημειώσεις - ασκήσεις από ανάλυση ηλεκτρικών κυκλωμάτων, Νίκος Μάργαρης,,

Διαβάστε περισσότερα

Θέµατα Εξετάσεων 94. δ. R

Θέµατα Εξετάσεων 94. δ. R Θέµατα Εξετάσεων 94 Συνεχές ρεύµα 42) Ο ρόλος µιας ηλεκτρικής πηγής σ' ένα κύκλωµα είναι: α) να δηµιουργεί διαφορά δυναµικού β) να παράγει ηλεκτρικά φορτία γ) να αποθηκεύει ηλεκτρικά φορτία δ) να επιβραδύνει

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Συνδυασμοί αντιστάσεων και πηγών

Συνδυασμοί αντιστάσεων και πηγών ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 3 Συνδυασμοί αντιστάσεων και πηγών ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Σύνδεση σε σειρά. Παράλληλη σύνδεση Ισοδυναμία τριγώνου και αστέρα Διαιρέτης τάσης Διαιρέτης ρεύματος Πραγματικές πηγές.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΙΣΑΓΩΓΙΚΑ Η ηλεκτρική μηχανή είναι μια διάταξη μετατροπής μηχανικής ενέργειας σε ηλεκτρική και αντίστροφα. απώλειες Μηχανική ενέργεια Γεννήτρια Κινητήρας Ηλεκτρική ενέργεια

Διαβάστε περισσότερα

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη ΠΥΚΝΩΤΗΣ ΣΥΝΔΕΔΕΜΕΝΟΣ ΠΑΡΑΛΛΗΛΑ ΜΕ ΠΗΓΗ. Στο διπλανό κύκλωμα η πηγή έχει ΗΕΔ = V και ο διακόπτης είναι αρχικά στη θέση. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση στη θέση και αρχίζουν οι

Διαβάστε περισσότερα

Φ Υ Σ Ι Κ Η Τ Α Ξ Η Σ Β 1 ο υ Κ Υ Κ Λ Ο Υ

Φ Υ Σ Ι Κ Η Τ Α Ξ Η Σ Β 1 ο υ Κ Υ Κ Λ Ο Υ Φ Υ Σ Ι Κ Η Τ Α Ξ Η Σ Β 1 ο υ Κ Υ Κ Λ Ο Υ Ε π ι σ η μ ά ν σ ε ι ς Η Λ Ε Κ Τ Ρ Ι Σ Μ Ο Σ a. Σ τ α τ ι κ ό ς Η λ ε κ τ ρ ι σ µ ό ς Ερ.1 Τι είναι το ηλεκτρικό φορτίο; Απ.1 Κανείς δεν γνωρίζει τι είναι το

Διαβάστε περισσότερα

Βασικά στοιχεία μετασχηματιστών

Βασικά στοιχεία μετασχηματιστών Βασικά στοιχεία μετασχηματιστών 1. Εισαγωγικά Οι μετασχηματιστές (transformers) είναι ηλεκτρικές διατάξεις, οι οποίες μετασχηματίζουν (ανυψώνουν ή υποβιβάζουν) την τάση και το ρεύμα. Ο μετασχηματιστής

Διαβάστε περισσότερα

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ 5Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 17.03 ΗΛΕΚΤΡΟΛΟΓΩΝ, ΤΕΧΝΟΛΟΓΩΝ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΙΚΗΣ (κατεύθυνσης:

Διαβάστε περισσότερα

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία University of Cyprus ptical Diagnostics ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 10 Σήκω ψυχή μου δώσε ρεύμα! II Ρεύμα (Current) Η ροή ηλεκτρικού φορτίου Μετριέται σε AMPERES (A) I = Δq/Δt (φορτίο ανά

Διαβάστε περισσότερα

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt) Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 22 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο 1.1 Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της. ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ. Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της. ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός χάλκινου αγωγού σταθερής θερμοκρασίας

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Κυκλώματα Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Τα ηλεκτρικά κυκλώματα ταξινομούνται σε διάφορες κατηγορίες,

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Βασικές αρχές ηλεκτροτεχνίας

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Βασικές αρχές ηλεκτροτεχνίας Βασικά στοιχεία τοπολογίας (1/2) Κλάδος δικτύου: Κάθε στοιχείο (πηγές,r,l,c) του δικτύου με δύο ακροδέκτες ή οποιαδήποτε ομάδα συνδεδεμένων στοιχείων που σχηματίζουν ένα σύνολο δύο ακροδεκτών Ακροδέκτης

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Το ηλεκτρικό φορτίο στο εσωτερικό του ατόμου 1. Από τι σωματίδια αποτελούνται τα άτομα σύμφωνα με τις απόψεις των Rutherford και Bohr;

ΚΕΦΑΛΑΙΟ Το ηλεκτρικό φορτίο στο εσωτερικό του ατόμου 1. Από τι σωματίδια αποτελούνται τα άτομα σύμφωνα με τις απόψεις των Rutherford και Bohr; ΚΕΦΑΛΑΙΟ 1 1.1 Γνωριμία με τη ηλεκτρική δύναμη. 1. Ποιες δυνάμεις λέγονται ηλεκτρικές; Λέμε τις δυνάμεις που ασκούνται μεταξύ σωμάτων που έχουμε τρίψει προηγουμένως δηλαδή σωμάτων ηλεκτρισμένων. 2. Τι

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

3. Στοιχεία ανάλυσης κυκλωμάτων

3. Στοιχεία ανάλυσης κυκλωμάτων 3.1 Εισαγωγή 3. Στοιχεία ανάλυσης κυκλωμάτων Επανερχόμαστε στην έννοια των κυκλωμάτων, όπως παρουσιάστηκε στο πρώτο κεφάλαιο, με σκοπό την α- νάλυση της λειτουργίας τους με όρους τάσης και έντασης ρεύματος.

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Green Park, Γραφείο Τηλ. 899 Διάλεξη Από την προηγούμενη διάλεξη Στο ΗΜΥ θα επικεντρωθούμε σε γραμμικά και συγκεντρωμένα κυκλώματα

Διαβάστε περισσότερα

Βασικά στοιχεία Ηλεκτρισμού

Βασικά στοιχεία Ηλεκτρισμού Βασικά στοιχεία Ηλεκτρισμού Ηλεκτρική δύναμη και φορτίο Γνωριμία με την ηλεκτρική δύναμη Ηλεκτρισμένα σώματα: Τα σώματα που όταν τα τρίψουμε πάνω σε κάποιο άλλο σώμα αποκτούν την ιδιότητα να ασκούν δύναμη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής κατεύθυνσης B! Λυκείου.

Διαγώνισμα Φυσικής κατεύθυνσης B! Λυκείου. Φροντιστήριο Φάσμα 1 Διαγώνισμα Φυσικής κατεύθυνσης B! Λυκείου. Ζήτημα 1 ο. Στις ερωτήσεις 1.1 έως 1.5 επιλέξτε τη σωστή απάντηση. 1.1. Οι ρευματοδότες της ηλεκτρικής εγκατάστασης στα σπίτια μας λέμε ότι

Διαβάστε περισσότερα

2π 10 4 s,,,q=10 6 συν10 4 t,,,i= 10 2 ημ 10 4 t,,,i=± A,,, s,,,

2π 10 4 s,,,q=10 6 συν10 4 t,,,i= 10 2 ημ 10 4 t,,,i=± A,,, s,,, 1. Ο πυκνωτής του σχήματος έχει χωρητικότητα C=5μF και φορτίο Q=1μC, ενώ το πηνίο έχει συντελεστή αυτεπαγωγής L=2 mh. Τη χρονική στιγμή t=0 κλείνουμε το διακόπτη και το κύκλωμα εκτελεί ηλεκτρική ταλάντωση.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος

Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος Ηλεκτροτεχνία Ι Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός Α Δροσόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Σχολή Τεχνολογικών Εφαρμογών ΤΕΙ Δυτικής Ελλάδος Α Δροσόπουλος Ηλεκτροτεχνία Ι Ηλεκτρικό Κύκλωμα

Διαβάστε περισσότερα

Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα

Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα ΠΑΡΑΡΤΗΜΑ Ηµιτονοειδές Ρεύµα και Τάση Τριφασικά Εναλλασσόµενα ρεύµατα Ισχύς και Ενέργεια Ενεργός τιµή περιοδικών µη ηµιτονικών κυµατοµορφών 1. Ηµιτονοειδές Ρεύµα και Τάση Οταν οι νόµοι του Kirchoff εφαρµόζονται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ Α.1 ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΟΝΟΦΑΣΙΚΟ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗ Ο μετασχηματιστής είναι μια ηλεκτρική διάταξη που μετατρέπει εναλλασσόμενη ηλεκτρική ενέργεια ενός επιπέδου τάσης

Διαβάστε περισσότερα

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (Direct Current Circuits-DC ) Κωδ. ΗΝ0131 ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΑΜΟΙΒΑΙΑ ΕΠΑΓΩΓΗ, M. Θεωρούμε δύο πηνία όπου στο ένα ελέγχουμε το ρεύμα και στο δεύτερο μετράμε την ΗΕ στα άκρα του. N

ΑΜΟΙΒΑΙΑ ΕΠΑΓΩΓΗ, M. Θεωρούμε δύο πηνία όπου στο ένα ελέγχουμε το ρεύμα και στο δεύτερο μετράμε την ΗΕ στα άκρα του. N ΑΜΟΙΒΑΙΑ ΕΠΑΓΩΓΗ, ΑΥΤΕΠΑΓΩΓΗ ΑΜΟΙΒΑΙΑ ΕΠΑΓΩΓΗ, M Θεωρούμε δύο πηνία όπου στο ένα ελέγχουμε το ρεύμα και στο δεύτερο μετράμε την ΗΕ στα άκρα του. d ( N 1 ), 1 i 1, N1 M11 i Πηνίο d d 1 N 1 1, ό Πηνίο 1

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και

Διαβάστε περισσότερα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 8 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ Όπως θα παρατηρήσετε, τα θέματα αφορούν σε θεωρία που έχει διδαχθεί στις παραδόσεις και σε ασκήσεις που είτε προέρχονται από τα λυμένα παραδείγματα του βιβλίου, είτε έχουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4. Ωμική αντίσταση - αυτεπαγωγή πηνίου

ΑΣΚΗΣΗ 4. Ωμική αντίσταση - αυτεπαγωγή πηνίου Συσκευές: ΑΣΚΗΣΗ 4 Ωμική αντίσταση - αυτεπαγωγή πηνίου Πηνίο, παλμογράφος, αμπερόμετρο (AC-DC), τροφοδοτικό DC (συνεχούς τάσης), γεννήτρια AC (εναλλασσόμενης τάσης). Θεωρητική εισαγωγή : Το πηνίο είναι

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 5: Επανάληψη στο Συνεχές Ρεύμα. Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4.

Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4. 1) Δύο αντιστάτες με αντιστάσεις R 1 = 2 Ω, R 2 = 4 Ω, είναι μεταξύ τους συνδεδεμένοι σε σειρά, ενώ ένας τρίτος αντιστάτης R 3 = 3 Ω είναι συνδεδεμένος παράλληλα με το σύστημα των δύο αντιστατών R 1, R

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΕΙΣΑΓΩΓΙΚΑ Ι Από το πραγματικό κύκλωμα στο μοντέλο Μαθηματική μοντελοποίηση Η θεωρία κυκλωμάτων είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΚΕΦΑΛΑΙΟ 2: ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΕΦΑΛΑΙΟ 2: ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 Το ηλεκτρικό ρεύμα 1. Με ποιες θεμελιώδεις έννοιες του ηλεκτρισμού συνδέεται το ηλεκτρικό ρεύμα; Με την εμπειρία μας διαπιστώνουμε ότι το ηλεκτρικό ρεύμα

Διαβάστε περισσότερα