ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής"

Transcript

1 Ενότητα 6: Εκτατική μορφή παίγνιων Ρεφανίδης Ιωάννης

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Natural Monopoly Μελέτη περίπτωσης: φυσικό μονοπώλιο 4

5 Γενικά Μια αγορά χαρακτηρίζεται ως φυσικό μονοπώλιο όταν οι εξωτερικές συνθήκες (τεχνολογικές, ζήτηση κλπ) είναι τέτοιες που δεν υπάρχει χώρος για περισσότερες από μια εταιρείες. Φυσικά μονοπώλια μπορούν να προκύψουν όταν: Το κόστος παραγωγής μειώνεται με την ποσότητα. Όταν υπάρχουν ελάχιστες ποσότητες παραγωγής. Όταν η αγορά είναι μικρή. Παραδείγματα: Microsoft Boeing 5

6 Ένα απλό μοντέλο Έστω δύο εταιρείες σε μια αγορά φυσικό μονοπώλιο: Κάθε χρόνο που οι δύο εταιρείες παραμένουν στην αγορά χάνουν c. Εάν μια εταιρεία αποσυρθεί, η άλλη εταιρεία κερδίζει ετησίως π (έστω π>c), ενώ αυτή που αποσύρθηκε δεν έχει κέρδη/ζημίες. Έστω ότι κάθε εταιρεία έχει τις επιλογές να αποσυρθεί φέτος (year0), του χρόνου (year1) ή τον μεθεπόμενο χρόνο (year2). A\B year0 year1 year2 year0 0,0 0,π 0, 2π year1 π,0 -c, -c -c, π-c year2 2π,0 π-c, -c -2c, -2c 6

7 Ανάλυση (1/3) Υπάρχουν δύο σημεία καθαρής ισορροπίας Nash, τα year2-year0 και year0- year2. Πρόκειται για μη-συμμετρικές ισορροπίες. Θα προσπαθήσουμε να βρούμε ένα σημείο συμμετρικής ισορροπίας (προφανώς μικτής πλέον). Έστω p Α, q Α και (1-p Α -q Α ) η πιθανότητα με την οποία ο παίκτης Α επιλέγει τις στρατηγικές year0, year1 και year2. Τα αναμενόμενα οφέλη για τις διάφορες στρατηγικές του παίκτη Β είναι: Eu B (year0)=p Α 0+q Α 0+(1-p Α -q Α ) 0=0 Eu B (year1)=p Α π+q Α (-c)+(1-p Α -q Α ) (-c)=p Α π+(1-p Α ) (-c) Eu B (year2)=p Α 2π+q Α (π-c)+(1-p Α -q Α ) (-2c) A\B year0 year1 year2 year0 0,0 0,π 0, 2π year1 π,0 -c, -c -c, π-c year2 2π,0 π-c, -c -2c, -2c 7

8 Ανάλυση (2/3) Τα p Α και q Α θα επιλεγούν από την εταιρεία Α με τέτοιο τρόπο ώστε: Eu B (year0)=eu B (year1)=eu B (year2) Λύνοντας το σύστημα των εξισώσεων (2x2) προκύπτει: p Α =c/(π+c) q Α =0 1-p A -q A =π/(π+c) Ακριβώς τα ίδια αποτελέσματα θα προέκυπταν και για την εταιρεία Β. p B =c/(π+c) q B =0 1-p B -q B =π/(π+c) A\B year0 year1 year2 year0 0,0 0,π 0, 2π year1 π,0 -c, -c -c, π-c year2 2π,0 π-c, -c -2c, -2c 8

9 Ανάλυση (3/3) Άρα, το σημείο μικτής (συμμετρικής) ισορροπίας Nash δεν περιλαμβάνει τη στρατηγική year1 για καμία εταιρεία! Κάθε εταιρεία λοιπόν πρέπει ανεξάρτητα να αποφασίσει αν θα εξέλθει της αγοράς εξαρχής ή μετά από 2 χρόνια. Το παράδειγμα μπορεί να γενικευθεί σε περισσότερες χρονικές περιόδους. Προσοχή: Το παράδειγμα υποθέτει ότι κάθε εταιρεία λαμβάνει την απόφαση της στην αρχή της περιόδου και δεν μπορεί να την αλλάξει ενδιάμεσα. A\B year0 year1 year2 year0 0,0 0,π 0, 2π year1 π,0 -c, -c -c, π-c year2 2π,0 π-c, -c -2c, -2c 9

10 Extensive form games Εκτατική μορφή παιχνιδιών 10

11 Γενικά Πολλά παιχνίδια περιλαμβάνουν διαδοχικές (μη-ταυτόχρονες) αποφάσεις των παικτών. Κάθε παίκτης αποφασίζει γνωρίζοντας συνήθως τις αποφάσεις όλων των παικτών που προηγήθηκαν. Σκάκι Τέτοια παιχνίδια λέγονται δυναμικά (dynamic) ή ακολουθιακά (sequential). Τα δυναμικά παιχνίδια συνηθίζεται να παριστάνονται στην εκτατική μορφή αναπαράστασης (extensive form). 11

12 Παράδειγμα: Εισιτήρια Δύο θεατρόφιλοι, Α και Β, πρέπει να αποφασίσουν ποιο μέσο μεταφοράς θα χρησιμοποιήσουν για να πάνε στο θέατρο: Τ(αξί) Μ(ετρό) Λ(εωφορείο) θεάτρου (1/2) Στο θέατρο έχει απομείνει ακριβώς ένα εισιτήριο, το οποίο θα το πάρει ο πρώτος που θα φθάσει. Το Τ είναι γρηγορότερο από το Μ, το οποίο είναι γρηγορότερο από το Λ. Ο Α αναχωρεί πριν από τον Β. Για να προλάβει ο Β πρέπει να χρησιμοποιήσει γρηγορότερο μέσο μεταφοράς. 12

13 Παράδειγμα: Εισιτήρια θεάτρου (2/2) Τ u 1 (True,Τ), u 2 (False,Τ) Μ Λ u 1 (True,Τ), u 2 (False,Μ) Τ u 1 (True,Τ), u 2 (False,Λ) Μ Παίκτης Α Παίκτης Β Τ Μ Λ u 1 (False,Μ), u 2 (True,Τ) u 1 (True,Μ), u 2 (False,Μ) u 1 (True,Μ), u 2 (False,Λ) Λ Τ u 1 (False,Λ), u 2 (True,Τ) Μ Λ u 1 (False,Λ), u 2 (True,Μ) u 1 (True,Λ), u 2 (False,Λ) 13

14 Παρατηρήσεις Το δένδρο της προηγούμενης διαφάνειας ονομάζεται δένδρο του παιχνιδιού (game tree) Οι εσωτερικοί κόμβοι του δένδρου ονομάζονται κόμβοι απόφασης (decision nodes). Τα φύλλα (τερματικοί κόμβοι) του δένδρου αναγράφουν το αντίστοιχο όφελος κάθε παίκτη. Ένας παίκτης μπορεί να εμφανίζεται στο δένδρο περισσότερες από μία φορές. Ένα παιχνίδι μπορεί να περιλαμβάνει περισσότερους από δύο παίκτες. 14

15 Σύνολα πληροφόρησης (1/3) Είναι δυνατόν ένας παίκτης να αποφασίζει τη στρατηγική του χωρίς να γνωρίζει αποφάσεις άλλων παικτών που προηγήθηκαν. Για παράδειγμα, στο παιχνίδι με τα εισιτήρια, ο παίκτης Β που ξεκινά δεύτερος από το σπίτι του, δεν γνωρίζει ποιο μέσο μεταφοράς επέλεξε ο παίκτης Α. Σε τέτοιες περιπτώσεις, όπου δηλαδή μια απόφαση δεν γίνεται γνωστή σε άλλους παίκτες, τα παιδιά του αντίστοιχου κόμβου απόφασης εμφανίζονται ως ένας μεγάλος οβάλ κόμβος που ονομάζεται σύνολο πληροφόρησης (information set). 15

16 Σύνολα πληροφόρησης (2/3) Τ Τ Μ Λ Μ Παίκτης Α Παίκτης Β Τ Μ Λ Λ Τ Μ Λ 16

17 Σύνολα πληροφόρησης (3/3) Παιχνίδια στα οποία δεν υπάρχουν σύνολα πληροφόρησης ονομάζονται παιχνίδια πλήρους πληροφόρησης (perfect information games). Στα παιχνίδια πλήρους πληροφόρησης κάθε παίκτης γνωρίζει όλες τις προηγούμενες αποφάσεις των αντιπάλων του. Τα υπόλοιπα παιχνίδια ονομάζονται παιχνίδια μη-πλήρους πληροφόρησης (imperfect information games). 17

18 Στρατηγικές Μια στρατηγική είναι ένα πλήρες, υπό προϋποθέσεις πλάνο ενεργειών. Πρέπει να καλύπτει όλες τις περιπτώσεις του παιχνιδιού (πριν ξεκινήσει το παιχνίδι). Πρέπει να περιλαμβάνει μια απόφαση για κάθε κόμβο απόφασης που αφορά τον παίκτη. Στο παιχνίδι με τα εισιτήρια, ο παίκτης Α έχει 3 στρατηγικές. Τ, Μ, Λ Ο παίκτης Β έχει 3 3 =27 στρατηγικές, τρεις για κάθε μία από τις στρατηγικές του παίκτη Α. ΤΤΤ, ΤΤΜ, ΤΤΛ, ΤΛΤ, ΤΛΜ, ΤΛΛ,..., ΛΛΛ 18

19 Εκτατική και στρατηγική μορφή παιχνιδιών (1/2) Έχοντας καταγράψει τις διάφορες στρατηγικές των δύο παικτών, μπορούμε να περιγράψουμε το παιχνίδι στην στρατηγική μορφή: Β Α ΤΤΤ ΤΤΜ... ΛΛΛ Τ u 1 (True, T), u 2 (False, T) u 1 (True, T), u 2 (False, T)... u 1 (True, T), u 2 (False, Λ) Μ u 1 (False, M), u 2 (True, T) u 1 (False, M), u 2 (True, T)... u 1 (True, Μ), u 2 (False, Λ) Λ u 1 (False, Λ), u 2 (True, T) u 1 (False, Λ), u 2 (True, Μ)... u 1 (True, Λ), u 2 (False, Λ) 19

20 Εκτατική και στρατηγική μορφή παιχνιδιών (2/2) Ισχύει και το αντίστροφο: Κάθε παιχνίδι σε στρατηγική μορφή μπορεί να γραφεί σε εκτατική, χρησιμοποιώντας σύνολα πληροφόρησης. O Α O ΔO Β ΔO O ΔO 20

21 Μικτές στρατηγικές Κάθε παίκτης μπορεί να έχει μικτές στρατηγικές, όπως ακριβώς και στη στρατηγική μορφή των παιχνιδιών. Μια μικτή στρατηγική είναι μία κατανομή πιθανοτήτων επάνω στις καθαρές στρατηγικές του παίκτη. 21

22 Παράδειγμα: Coke-Pepsi (1/9) Έστω ότι η Coca-Cole (Coke) πρέπει να αποφασίσει εάν θα εισέλθει ή όχι στην αγορά της πρώην Σοβιετικής Ένωσης, την οποία μέχρι τώρα ελέγχει η Pepsi. Υπάρχουν λοιπόν δύο επιλογές για την Coke, Μ(έσα) και Ε(ξω). Εάν η Coke αποφασίσει να εισέλθει, η Pepsi έχει δύο επιλογές, να Α(ντιδράσει) έντονα και να Σ(υμβιβαστεί). Pepsi A -2,-1 Coke M Σ 1,2 E 0, 5 22

23 Προς τα πίσω επαγωγή Η μέθοδος της προς τα πίσω επαγωγής (backward induction) επιχειρεί να προβλέψει τι θα επιλέξει κάθε παίκτης σε κάθε κόμβο απόφασης. Η κεντρική ιδέα είναι ότι κάθε παίκτης επιλέγει σε κάθε κόμβο την επιλογή εκείνη που του δίνει το καλύτερο αποτέλεσμα από το σημείο εκείνο και πέρα. Οι υπολογισμοί γίνονται ξεκινώντας από τους τελευταίους κόμβους απόφασης και προχωρώντας προς τα πίσω μέχρι τη ρίζα. 23

24 Παράδειγμα: Coke-Pepsi (2/9) Το δένδρο απόφασης έχει δύο κόμβους απόφασης, έναν για την Coke στην αρχή και έναν για την Pepsi στη συνέχεια. Έστω ότι έχει έρθει η ώρα της Pepsi να αποφασίσει. Αυτή θα επιλέξει Σ, μιας και σε αυτή την περίπτωση το όφελος της είναι 2 (αντί για -1). Το αντίστοιχο όφελος της Coke θα είναι 1. Pepsi A -2,-1 Coke M Σ 1,2 E 0, 5 24

25 Παράδειγμα: Coke-Pepsi (3/9) Η Coke, εκτελώντας τους ίδιους συλλογισμούς, αντιλαμβάνεται ότι εάν επιλέξει να εισέλθει στην αγορά η Pepsi δεν θα αντιδράσει και άρα το τελικό όφελος της Coke θα είναι 1. Αντίθετα, εάν δεν εισέλθει στην αγορά, το τελικό όφελός της θα είναι 0. Έτσι τελικά αποφασίζει να εισέλθει στην αγορά. Coke M Pepsi 1,2 A -2,-1 1,2 Σ 1,2 E 0, 5 25

26 Παράδειγμα: Coke-Pepsi (4/9) Στο ίδιο αποτέλεσμα θα καταλήγαμε εάν διερευνούσαμε την στρατηγική μορφή του παιχνιδιού. Pepsi Coke Α Σ Μ -2,-1 1,2 Ε 0,5 Ο συνδυασμός στρατηγικών (Μ,Σ) αποτελεί σημείο ισορροπίας Nash. Το ίδιο ισχύει και για το συνδυασμό στρατηγικών (Ε,Α). Ωστόσο, με δεδομένο ότι πρώτη αποφασίζει η Coke, έχει κάθε λόγο να οδηγήσει το παιχνίδι στο σημείο (Μ,Σ). 26

27 Παράδειγμα: Coke-Pepsi (5/9) Επεκτείνουμε το παράδειγμα ως εξής: Αφού η Coke εισέλθει στην αγορά, ανεξαρτήτως της επιλογής της Pepsi, η Coke μπορεί και αυτή με τη σειρά της να ακολουθήσει μια επιθετική πολιτική, δηλαδή να Α(ντιδράσει), ή να ακολουθήσει μια ήρεμη πολιτική, δηλαδή να Σ(υμβιβαστεί). Coke A -2, -1 Pepsi A Σ -3, 1 Coke M E 0, 5 Σ A Σ 0, -3 1, 2 27

28 Παράδειγμα: Coke-Pepsi (6/9) Το δένδρο τώρα έχει τέσσερις κόμβους απόφασης, τρεις για την Coke και έναν για την Pepsi. Οι κόμβοι απόφασης του τελευταίου επιπέδου αφορούν την Coke. Οι αποφάσεις της Coke λαμβάνονται βάσει του οφέλους της στα διάφορα φύλλα του δένδρου: Coke A -2, -1 Pepsi A -2, -1 Σ -3, 1 Coke M E 0, 5 Σ 1, 2 A Σ 0, -3 1, 2 28

29 Παράδειγμα: Coke-Pepsi (7/9) Στη συνέχεια, η Pepsi αποφασίζει εάν θα αντιδράσει ή θα συμβιβαστεί βάσει της αναμενόμενης εξέλιξης του παιχνιδιού σε κάθε μια περίπτωση: Coke A -2, -1 Pepsi A -2, -1 Σ -3, 1 Coke M E 1, 2 0, 5 Σ 1, 2 A Σ 0, -3 1, 2 29

30 Παράδειγμα: Coke-Pepsi (8/9) Τελικά, η Coke αποφασίζει στη ρίζα του δένδρου να εισέλθει στην αγορά. Η τελική κατάληξη του παιχνιδιού είναι (1,2). Coke A -2, -1 Pepsi A -2, -1 Σ -3, 1 1, 2 Coke M E 1, 2 0, 5 Σ 1, 2 A Σ 0, -3 1, 2 Πλέον η Coke έχει το μεγαλύτερο μερίδιο στην αγορά των χωρών της Ανατολικής Ευρώπης. 30

31 Παράδειγμα: Coke-Pepsi (9/9) Στον πίνακα φαίνεται η στρατηγική μορφή αναπαράστασης του παιχνιδιού. Pepsi Τα δύο κελιά με πορτοκαλί φόντο αποτελούν σημείο ισορροπίας Nash. Ουσιαστικά πρόκειται για το ίδιο σημείο, το οποίο αποτελεί και τη λύση που βρήκαμε με τη μέθοδος της προς τα πίσω επαγωγής. Coke Α Σ ΜΑΑ -2,-1 0,-3 ΜΑΣ -2,-1 1,2 ΜΣΑ -3,1 0,-3 ΜΣΣ -3,1 1,2 Ο 0,5 0,5 Ωστόσο, η στρατηγική ΜΑΣ πλεονεκτεί έναντι της ΜΣΣ, γιατί χειρίζεται καλύτερα την περίπτωση που η Pepsi αποφασίσει να αντιδράσει. 31

32 Ο ρόλος της δέσμευσης (1/4) Είναι κοινή πεποίθηση ότι το να έχουμε πολλές επιλογές είναι καλύτερο από το να έχουμε λίγες. Ωστόσο κάτι τέτοιο μπορεί να είναι επιζήμιο σε παιχνίδια με αντιπάλους, όταν οι αντίπαλοι γνωρίζουν τις επιλογές μας. Έστω για παράδειγμα το παιχνίδι Coke-Pepsi με 2 επιπέδων, όπου το τελικό αποτέλεσμα ήταν (1,2). 1,2 Coke M Pepsi 1,2 A Σ -2,-1 1,2 E 0, 5 32

33 Ο ρόλος της δέσμευσης (2/4) Ας θεωρήσουμε ότι η Pepsi έχει μόνο μια επιλογή, να αντιδράσει εφόσον η Coke αποφασίσει να εισέλθει στην αγορά. Pepsi A -2,-1 0, 5 Coke M -2,-1 E 0, 5 Γνωρίζοντάς το αυτό η Coke αποφασίζει να μην εισέλθει στην αγορά, με αποτέλεσμα το τελικό όφελος να είναι (0,5), δηλαδή πολύ καλύτερο για την Pepsi! 33

34 Ο ρόλος της δέσμευσης (3/4) Παρόμοια, έστω το παιχνίδι τριών επιπέδων, όπου το τελικό αποτέλεσμα ήταν (1,2). Έστω τώρα ότι η Coke έχει μόνο μια επιλογή στο τελευταίο επίπεδο, να αντιδράσει: Coke A -2, -1 Pepsi A Σ -3, 1 Coke M E 0, 5 Σ A Σ 0, -3 1, 2 34

35 Ο ρόλος της δέσμευσης (4/4) Τελικά, όπως φαίνεται στο σχήμα, η Coke αποφασίζει να μην εισέλθει στην αγορά, και το τελικό όφελος διαμορφώνεται σε (0,5), ωφελώντας την Pepsi. Coke A -2, -1 Pepsi A -2, -1 Σ -3, 1 Coke 0, 5 M E -2, -1 0, 5 Σ 0, -3 A Σ 0, -3 1, 2 35

36 Παρατηρήσεις Θεώρημα του Kuhn (και του Zermelo): Κάθε παιχνίδι πλήρους πληροφόρησης με πεπερασμένο αριθμό κόμβων απόφασης έχει μία λύση με τη μέθοδο της προς τα πίσω επαγωγής. Η λύση αυτή είναι μοναδική αν για κάθε παίκτη δεν υπάρχουν φύλλα με το ίδιο όφελος. Η μέθοδος της προς τα πίσω επαγωγής στα παιχνίδια σε εκτατική μορφή είναι το αντίστοιχο της επαναλαμβανόμενης απαλοιφής κυριαρχούμενων στρατηγικών (IEDS) στα παιχνίδια στην στρατηγική μορφή. 36

37 Research & Development (R&D) Μελέτη περίπτωσης: έρευνα και ανάπτυξη 37

38 Γενικά Η οικονομική ανάπτυξη τα τελευταία 250 χρόνια βασίζεται κατά κύριο λόγο στην επιστημονική έρευνα και ανάπτυξη νέων προϊόντων. Πληροφορική Τηλεπικοινωνίες Φαρμακευτική Βιοτεχνολογία Η έρευνα κατά κύριο λόγο χρηματοδοτείται από μεγάλες πολυεθνικές εταιρείες. Στην ιδανική περίπτωση τα αποτέλεσμα των ερευνών θα έπρεπε να ήταν κοινό αγαθό (public good). Η έρευνα κοστίζει. 38

39 Πατέντες Οι πατέντες (patents) κατοχυρώνουν δικαιώματα εκμετάλλευσης για τις εταιρείες που αναπτύσσουν νέα προϊόντα. Ο πρώτος που θα αναπτύξει/κατοχυρώσει ένα προϊόν παίρνει τα πάντα! Είναι στρατηγικής σημασίας για κάθε εταιρεία να αποφασίσει: Πού θα κατευθύνει τους πόρους της για έρευνα Με τι ρυθμό θα χρηματοδοτήσει την έρευνα Πότε πρέπει να αποχωρήσει από την ανάπτυξη ενός νέου προϊόντος. 39

40 Μοντέλο Έστω 2 εταιρείες, Α και Β, που διαγωνίζονται για την ανάπτυξη μιας πατέντας για κάποια υπηρεσία (π.χ. τηλεόραση υψηλής ευκρίνειας). Κάνουμε τις εξής παραδοχές: Η απόσταση από τον επιθυμητό στόχο είναι μετρήσιμη. Ορίζουμε αυθαίρετη μονάδα μέτρησης τα βήματα (steps). Κάθε εταιρεία μπορεί να προχωρήσει 1, 2 ή 3 βήματα σε μια χρονική περίοδο με αντίστοιχο κόστος 2, 7 και 15 μονάδες. Η εμπειρία δείχνει ότι διπλάσια επένδυση σε έρευνα δεν αποφέρει διπλάσια αποτελέσματα... Η εταιρεία που θα φθάσει πρώτη στον στόχο κερδίζει την πατέντα, η αξία της οποίας είναι 20 μονάδες. Η δεύτερη εταιρεία δεν κερδίζει τίποτα. Θεωρούμε ότι οι δύο εταιρείες λαμβάνουν αποφάσεις εναλλάξ, γνωρίζοντας πάντα τις προηγούμενες αποφάσεις του αντιπάλου τους (παιχνίδι πλήρους πληροφόρησης). 40

41 Λειτουργία καρτέλ Τι θα συνέβαινε αν οι δύο εταιρείες αποφάσιζαν να συνεννοηθούν: Η έρευνα θα διεξαγόταν από μια μόνο εταιρεία. Η έρευνα θα διεξαγόταν με τον πλέον αργό ρυθμό, δηλαδή ένα βήμα ανά χρονική περίοδο. Η έρευνα θα διεξαγόταν από την εταιρεία που είναι πιο κοντά στον στόχο. Γενικά, η λειτουργία καρτέλ μειώνει τις επενδύσεις σε έρευνα και ανάπτυξη, σε αντίθεση με τον ανταγωνισμό που τις αυξάνει κατακόρυφα. 41

42 Ανάλυση (1/13) Θα αναλύσουμε το πρόβλημα χρησιμοποιώντας την προς τα πίσω επαγωγή. Για την ανάλυση θα χρησιμοποιήσουμε έναν διδιάστατο χώρο καταστάσεων, του οποίου οι συντεταγμένες αντιστοιχούν στην απόσταση (σε βήματα) κάθε εταιρείας από την ολοκλήρωση της έρευνας/ανάπτυξης: Η οριζόντια γραμμή είναι η γραμμή τερματισμού της εταιρείας Α. Η κατακόρυφη γραμμή είναι η γραμμή τερματισμού της εταιρείας Β. Θα χρησιμοποιούμε τα γράμματα a και b για να δηλώσουμε την απόσταση της εταιρείας Α και της εταιρείας Β αντίστοιχα από τις σχετικές γραμμές τερματισμού. 42

43 Ανάλυση (2/13) Τέλος Α b=4 Άξονας Β a=3 (3,4) Τέλος Β Άξονας Α 43

44 Ανάλυση (3/13) Ας υποθέσουμε ότι το παιχνίδι είναι στην κατάσταση (1,b) και είναι σειρά του παίκτη Α να παίξει. Προφανώς ο παίκτης Α τελειώνει το παιχνίδι με μία κίνηση. Ο παίκτης κερδίζει την πατέντα αξίας 20, ενώ χάνει 2 μονάδες λόγω της κίνησης, άρα το κέρδος του είναι 18. Παρόμοια, εάν το παιχνίδι είναι στην κατάσταση (a,1) και είναι σειρά της εταιρείας Β να παίξει, αυτή τερματίζει το παιχνίδι και κερδίζει την πατέντα. ΠΡΟΣΟΧΗ: Στο σημείο αυτό δεν μας ενδιαφέρει πόσα έχει ξοδέψει στο παρελθόν κάθε εταιρεία. Η απόφαση που λαμβάνεται αφορά το μέλλον, σαν να ξεκινούσε τώρα το παιχνίδι. 44

45 Ανάλυση (4/13) Ας υποθέσουμε ότι βρισκόμαστε στην κατάσταση (2,1) ή (3,1) και είναι σειρά της εταιρείας Α να παίξει. Η εταιρεία Α ολοκληρώνει το παιχνίδι σε μία κίνηση, κερδίζοντας αντίστοιχα 20-7=13 ή 20-15=5. Αν δεν το κάνει, στο επόμενο βήμα η εταιρεία Β θα τελειώσει το παιχνίδι, οπότε το κέρδος για την Α θα είναι μηδέν. Φυσικά το ίδιο ισχύει για την εταιρεία Β, εάν το παιχνίδι είναι σε μια από τις καταστάσεις (1,2) ή (1,3) και είναι σειρά της Β να παίξει. 45

46 Ανάλυση (5/13) Με παρόμοιο τρόπο, εάν η τρέχουσα κατάσταση είναι η (2,2), οποιαδήποτε εταιρεία είναι σειρά της να κινηθεί θα επιλέξει να τερματίσει το παιχνίδι άμεσα, κερδίζοντας 20-7=13. Πράγματι, αν π.χ. είναι σειρά της Α και αυτή επιλέξει να κινηθεί ένα βήμα προς την κατάσταση (1,2) με κόστος για την Α 2 μονάδες, τότε η Β θα τερματίσει το παιχνίδι κερδίζοντας 13 μονάδες, όπως είδαμε! Με παρόμοιο τρόπο βρίσκεται ότι εάν η τρέχουσα κατάσταση είναι η (3,2) και είναι σειρά της Α να κινηθεί, θα τερματίσει το παιχνίδι. Παρόμοια εάν η τρέχουσα κατάσταση είναι η (2,3) και είναι η σειρά της Β. Τέλος, εάν η τρέχουσα κατάσταση είναι η (3,3), όποια εταιρεία κινείται πρώτη θα τερματίσει το παιχνίδι! 46

47 Ανάλυση (6/13) Από τα παραπάνω προκύπτει ότι εάν το παιχνίδι βρίσκεται στην περιοχή a 3 και b 3, οποιαδήποτε εταιρεία έχει την πρώτη κίνηση θα τερματίσει το παιχνίδι. Η περιοχή αυτή ονομάζεται πρώτη ζώνη πυροδότησης (trigger zone I). Θα χρησιμοποιήσουμε τα συμπεράσματα που βγάλαμε για την πρώτη περιοχή πυροδότησης για να δούμε τι γίνεται στις άμεσα γειτονικές περιοχές. Η προσέγγισή μας στο πρόγραμμα είναι ουσιαστικά η προς τα πίσω επαγωγή. 47

48 Ανάλυση (7/13) Τέλος Α Άξονας Β Πρώτη περιοχή πυροδότησης (3,3) Τέλος Β Άξονας Α 48

49 Ανάλυση (8/13) Τι γίνεται εάν βρισκόμαστε στην κατάσταση (4,3) και είναι σειρά της εταιρείας Α να κινηθεί; Η εταιρεία Α μπορεί να κινηθεί 1, 2 ή 3 βήματα, με κόστος 2, 7 και 15 αντίστοιχα. Ωστόσο, σε κάθε περίπτωση η εταιρεία Β θα κερδίσει την πατέντα. Άρα είναι καλύτερα για την εταιρεία Α να μην κινηθεί καθόλου, δηλαδή να εγκαταλείψει! Το ίδιο συμπέρασμα προκύπτει εάν το παιχνίδι βρίσκεται στις καταστάσεις (4,2), (4,1), (5,3), (5,2) και (5,1). Εάν η εταιρεία Α εγκαταλείψει, τότε η εταιρεία Β θα προχωρήσει με μικρά βήματα μέχρι τη γραμμή τερματισμού της. 49

50 Ανάλυση (9/13) Γενικά, εάν είναι a>3 και b 3 και είναι σειρά της Α, τότε πρέπει να εγκαταλείψει. Το σύνολο των θέσεων b 3 ονομάζεται Πρώτη ζώνη ασφαλείας για την Β (Safety Zone I for B). Προφανώς, μιας και το παιχνίδι είναι συμμετρικό, υπάρχει η αντίστοιχη πρώτη ζώνη ασφαλείας για την Α, η οποία ορίζεται για a 3 και b>3. 50

51 Ανάλυση (10/13) Άξονας Β Τέλος Α Πρώτη ζώνη ασφαλείας για την Α (3,3) Πρώτη περιοχή πυροδότησης Πρώτη ζώνη ασφαλείας για την Β Τέλος Β Άξονας Α 51

52 Ανάλυση (11/13) Ας υποθέσουμε ότι είμαστε στην κατάσταση (4,4) και είναι σειρά της Α. Η Α μπορεί με ένα βήμα (κόστους 2) να μπει στην πρώτη ζώνη ασφαλείας της. Στη συνέχεια η Β εγκαταλείπει. Τέλος η Α, με τρία ακόμη απλά βήματα τερματίζει. Το όφελος της Α είναι 20-4x2=12 Εάν η Α δεν μπει στη ζώνη ασφαλείας της, τότε θα μπει η Β και θα πρέπει η Α να εγκαταλείψει. Παρόμοια, η Α θα επιχειρήσει να μπει στην πρώτη ζώνη ασφαλείας της από την (5,4), με αναμενόμενο κέρδος 7. Η Α δεν θα επιχειρήσει να μπει στη ζώνη ασφαλείας της από τη θέση (6,4), μιας και τότε το αναμενόμενο κέρδος της θα ήταν

53 Ανάλυση (12/13) Άρα, υπάρχει μια δεύτερη ζώνη πυροδότησης (Trigger Zone II), για 3<a 5 και 3<b 5, από την οποία κάθε εταιρεία έχει δυνατότητα να κερδίσει. Παρόμοια, υπάρχουν δεύτερες ζώνες ασφαλείας: Για την Α, για 3<a 5 και b>5. Για την Β, για 3<b 5 και a>5. Αν συνεχίσουμε με τον ίδιο τρόπο, καταλήγουμε στο σχήμα που φαίνεται στο επόμενο διάγραμμα. 53

54 Ανάλυση (13/13) Τέλος Α Άξονας Β (10,10) Δεύτερη ζώνη ασφαλείας για την Α Τρίτη ζώνη ασφαλείας για την Α (9,9) (8,8) Πρώτη ζώνη ασφαλείας για την Α (3,3) (7,7) Τρίτη ζώνη ασφαλείας για την Β (5,5) Δεύτερη ζώνη ασφαλείας για την Β Πρώτη ζώνη ασφαλείας για την Β Άξονας Α Τέλος Β Πρώτη περιοχή πυροδότησης Δεύτερη περιοχή πυροδότησης Τρίτη περιοχή πυροδότησης 54

55 Παρατηρήσεις (1/2) Στην ανάλυση που προηγήθηκε, κάθε εταιρεία σε κάθε βήμα δεν λαμβάνει υπόψη τα έξοδα που έχει κάνει μέχρι εκείνη τη στιγμή, παρά μόνο τα αναμενόμενα έσοδα/έξοδα από εκεί και πέρα. Η ίδια ανάλυση μπορεί να γίνει και για μη-συμμετρικές εταιρείες. Εάν μια εταιρεία έχει μικρότερα κόστη έρευνας και ανάπτυξης, οι ζώνες της είναι πλατύτερες. Και πάλι θα δούμε ότι όσο απομακρυνόμαστε από την αρχή των αξόνων, τα πλάτη των ζωνών μικραίνουν. Όσο μεγαλύτερη είναι η αξία της πατέντας, τόσο μεγαλύτερα είναι τα πλάτη των ζωνών. 55

56 Παρατηρήσεις (2/2) Εάν υπάρχει αβεβαιότητα για το αποτέλεσμα της έρευνας και ανάπτυξης, τότε οι εταιρείες παραμένουν στον ανταγωνισμό περισσότερο. Εάν μια εταιρεία έχει προτίμηση για γρήγορο κέρδος, μπορεί να αποφασίσει να προχωρήσει γρηγορότερα, ακόμη και αν δεν υπάρχει ανταγωνισμός. Η εθνική πολιτική σε θέματα επιδότησης της έρευνας παίζει πολύ σημαντικό ρόλο, ιδιαίτερα στον ανταγωνισμό μεταξύ επιχειρήσεων από διαφορετικά κράτη / ομάδες κρατών. Π.χ. Ευρωπαϊκά και εθνικά προγράμματα. 56

57 Τέλος Ενότητας

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 3: Αγορά Χρήματος και επιτόκια. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 3: Αγορά Χρήματος και επιτόκια. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 3: Αγορά Χρήματος και επιτόκια Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ Ενότητα 11η: ΣΤΡΑΤΗΓΙΚΕΣ ΤΙΜΟΛΟΓΗΣΗΣ ΑΛΕΞΑΝΔΡΙΔΗΣ ΑΝΑΣΤΑΣΙΟΣ Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Ενότητα 3: Θεωρία του Διεθνούς Εμπορίου Θεωρητικές προσεγγίσεις Γεώργιος Μιχαλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 2: Ζήτηση. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 2: Ζήτηση. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 2: Ζήτηση Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 12 : Μορφές Αγοράς Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 12 : Μορφές Αγοράς Καραμάνης Κωνσταντίνος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 12 : Μορφές Αγοράς Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 9: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: Μ/Σ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αρχές Μάρκετινγκ. Ενότητα 5: Συμπεριφορά Καταναλωτή. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Αρχές Μάρκετινγκ. Ενότητα 5: Συμπεριφορά Καταναλωτή. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Αρχές Μάρκετινγκ Ενότητα 5: Συμπεριφορά Καταναλωτή Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λογιστικές Εφαρμογές Εργαστήριο

Λογιστικές Εφαρμογές Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #5: Αναλυτικά Καθολικά Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 5: Όρια και Συνέχεια Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 10: Το πρόβλημα της ανεργίας. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 10: Το πρόβλημα της ανεργίας. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 10: Το πρόβλημα της ανεργίας Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 4(γ): Ενεργειακή αξιοποίηση βιοαερίου Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: 24610 56690, e-mail: gmarnellos@uowm.gr

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ Ενότητα 7η: ΕΠΙΧΕΙΡΗΜΑΤΙΚΕΣ ΣΤΡΑΤΗΓΙΚΕΣ ΑΛΕΞΑΝΔΡΙΔΗΣ ΑΝΑΣΤΑΣΙΟΣ Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ Ενότητα 1: Χρήμα και Προσφορά Χρήματος Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων

Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων Διονύσης Γιαννακόπουλος Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ

ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ενότητα 6: Οικονομική Ολοκλήρωση Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 4: H Λογική της Έρευνας Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 3: Ανάλυση και περιγραφή θέσης εργασίας Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 3: Ανάλυση και περιγραφή θέσης εργασίας Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 3: Ανάλυση και περιγραφή θέσης εργασίας Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Ενότητα: Μηχανοργάνωση Νοσοκομείου

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Ενότητα: Μηχανοργάνωση Νοσοκομείου Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Ενότητα: Μηχανοργάνωση Νοσοκομείου Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ Ενότητα 6η: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΣΤΡΑΤΗΓΙΚΗ ΑΛΕΞΑΝΔΡΙΔΗΣ ΑΝΑΣΤΑΣΙΟΣ Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ

ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ Ενότητα 3: Εισαγωγή στη Διοίκηση Ολικής Ποιότητας Δημήτριος Δρόσος Διοίκηση Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται Βασικές Έννοιες Οικονομικών των Επιχειρήσεων - Τα οικονομικά των επιχειρήσεων μελετούν: (α) Τον τρόπο με τον οποίο λαμβάνουν τις αποφάσεις τους οι επιχειρήσεις. (β) Τις μορφές στρατηγικής αλληλεπίδρασης

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 3: Ελαστικότητα Ζήτησης και Προσφοράς. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 3: Ελαστικότητα Ζήτησης και Προσφοράς. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 3: Ελαστικότητα Ζήτησης και Προσφοράς Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 3 η : ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 8: ΟΡΓΑΝΩΣΗ ΤΗΣ ΔΥΝΑΜΗΣ ΠΩΛΗΤΩΝ

Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 8: ΟΡΓΑΝΩΣΗ ΤΗΣ ΔΥΝΑΜΗΣ ΠΩΛΗΤΩΝ Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 8: ΟΡΓΑΝΩΣΗ ΤΗΣ ΔΥΝΑΜΗΣ ΠΩΛΗΤΩΝ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 4: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 9Α: ΕΛΛΗΝΙΚΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΑΚ, 2003) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΔΙΔΑΣΚΩΝ: ΑΡΙΣΤΕΙΔΗΣ Νικ. ΠΑΥΛΙΔΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Επιχειρησιακές Επικοινωνίες

Επιχειρησιακές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακές Επικοινωνίες Ενότητα # 1: Εισαγωγή στην Επιχειρησιακή Επικοινωνία Πρόδρομος Γιαννάς Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Διαστήματα εμπιστοσύνης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 2 : Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Ricardo model) Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

Ειδικό Τεχνικό Σχέδιο

Ειδικό Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ειδικό Τεχνικό Σχέδιο Ενότητα 5.4: Κατακόρυφες επικοινωνίες στα κτίρια Δρ Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διδάσκων: Νίκος Λαγαρός

Διδάσκων: Νίκος Λαγαρός ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λογιστικές Εφαρμογές Εργαστήριο

Λογιστικές Εφαρμογές Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #1: Απογραφή Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Σχόλιο [h1]: Παράδειγμα: https://ocp.teiath.gr/modules/ exercise/exercise_result.php?course=pey101&eurid=16 9 ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Αρχές Μάρκετινγκ. Ενότητα 4: Συστήματα Πληροφοριών Μάρκετινγκ και Μέθοδοι Έρευνας Αγοράς

Αρχές Μάρκετινγκ. Ενότητα 4: Συστήματα Πληροφοριών Μάρκετινγκ και Μέθοδοι Έρευνας Αγοράς Αρχές Μάρκετινγκ Ενότητα 4: Συστήματα Πληροφοριών Μάρκετινγκ και Μέθοδοι Έρευνας Αγοράς Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

Μάθημα: Τεχνική Μηχανική

Μάθημα: Τεχνική Μηχανική Μάθημα: Τεχνική Μηχανική Ενότητα 1: Τεχνική Μηχανική Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές Ι Ενότητα 4: Εύρεση Παραμέτρων Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 2: Βήμα 1 Ανάλυση Υφιστάμενης Εταιρικής Κατάστασης Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης Ιωάννης Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης

Διαβάστε περισσότερα

ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ

ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ Ενότητα 7β: Ανάλυση καταναλωτών Χρήστος Βασιλειάδης Τμήμα Οργάνωσης & Διοίκησης Επιχειρήσεων ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ ΧΡΗΣΤΟΣ ΒΑΣΙΛΕΙΑΔΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα