מדדים מכונה. .served) Time)
|
|
- Κίμων Μπουκουβαλαίοι
- 7 χρόνια πριν
- Προβολές:
Transcript
1 מדדים עמידה בלוחות זמנים מזעור רמת המלאי בתהליך (WIP) מזעור זמן הזרימה הממוצע במערכת מזעור זמן המתנה (חשוב כאשר נותנים שירות לאדם) מזעור זמן בטלה ניצולת גבוה הקטנת זמן הכינון מזעור עלויות דפוסי זרימה זרימה קווית Shop).(Flow כל אחת מ n המטלות חייבת להיות מעובדת ב m מכונות באותו סדר וכל מטלה עוברת פעם אחת בלבד בכל מכונה (דוגמא: פס ייצור). סדנת ייצור Shop).(Job לא כל המטלות דורשות את כל m המכונות. מספר מטלות עשויות לדרוש יותר מפעילות אחת על מכונה מסויימת. לכל מטלה סדר פעולות אחר. עיבוד טורי. m מכונות שונות זו מזו מבצעות עיבודים שונים. עבוד מקבילי. כל המכונות זהות וכל מטלה יכולה להתבצע על כל מכונה. תזמון על גבי מכונה בודדת: חוקי סידור מושג ים ראשון מגיע ראשון נכנס רמר"נ first- (FFS First-come.served) משך העיבוד הקצר ביותר עק"ב (SPT Shortest Processing Time) משך העיבוד הארוך ביותר- LPT: Longest Processing Time המשימות הארוכות בד"כ חשובות יותר ולכן ימוקמו קודם. זמן המסירה הקרוב ביותר מק"ב ate).( arliest ue מטלות מסודרות על פי סדר עולה של זמן היעד שלהן. המטלה עם זמן היעד הקרוב ביותר ראשונה לאחריה המטלה עם זמן היעד הבא וכן הלאה. יחס קריטי י"ק Ratio).(R ritical זמן זרימה Time).(Flow הזמן החולף מרגע שבו מגיעה המטלה למכונה הראשונה ועד לסיום העיבוד במכונה האחרונה. זמן זה שווה לזמן "השהייה" של המטלה במערכת. זמן הזרימה הממוצע, שהוא המדד המקובל לביצועי המערכת, הוא הממוצע החשבוני של זמני זרימת כל n המטלות. מרווח ייצור.(Makespan) זמן הזרימה של המטלה המסתיימת אחרונה, או זמן הנדרש לסיים את כל n המטלות. פיגור. ההפרש החיובי בין זמן הסיום העיבוד של מטלה לבין זמן המסירה המתוכנן של המטלה (זמן יעד). מטלה בפיגור היא מטלה אשר ביצועה נסתיים לאחר זמן היעד. חריגה. ההפרש בין זמן הסיום של המטלה לבין זמן היעד שלה. הערך יכול להיות חיובית או שלילית.
2 First ome, First Served Rule Process first job to arrive at a work center first verage performance on most scheduling criteria ppears fair & reasonable to customers Important for service organizations xample: Restaurants Shortest Processing Time Rule Process job with shortest processing time first. Usually best at minimizing job flow and minimizing the number of jobs in the system Major disadvantage is that long jobs may be continuously pushed back in the queue. ניתן להוכיח כי משך הזרימה הממוצע המינימלי מתקבל כאשר מפעילים את כלל התזמון SPT arliest ue ate Rule Process job with earliest due date first Widely used by many companies If due dates important If MRP used ue dates updated by each MRP run Performs poorly on many scheduling criteria ניתן להוכיח כי כדי למזער את האיחור המירבי יש לסדר את הפריטים לפי זמן היעד שלהם (כלל.( ritical Ratio (R) Ratio of time remaining to work time remaining Time remaining R = Work days remaining = ue date - Today' s date Work (lead ) time remaining Process job with smallest R first Performs well on average lateness
3 dvantages of the ritical Ratio Scheduling Rule Use of the critical ratio can help to: determine the status of a specific job establish a relative priority among jobs on a common basis relate both stock and make-to-order jobs on a common basis adjust priorities and revise schedules automatically for changes in both demand and job progress dynamically track job progress and location riteria to valuate Priority Rules verage completion time = ΣProcess times Utilization = ΣFlow times verage number of jobs in the ΣFlow times # Jobs Σ Late times verage job lateness = Number of jobs Σ Flow times system = ΣProcess times המש ך דוגמא דוגמא ל- FFS משימה זמן עיבוד P 4 P 3 P 3 3 נניח שהמשימות הגיעו יחדיו לפי הסדר:,P,P P3 תרשים גאנט שמתקבל: 0 P P 3 נניח שהמשימות הגיעו לפי הסדר: P, P 3, P. תרשים הגאנט שמתקבל: P P P P זמן זרימה ממוצע :,P3=6. P=30,P=3 ממוצע: 3 תוצאה זו ידועה כאפקט השי ירה. זמן זרימה ממוצע :,P=4. P3=30,P=7 ממוצע: 7
4 0 דוגמא SPT משימה זמן הגעה זמן עיבוד P P.0 4 P P גאנט שמתקבל: P P 3 P תרשים זמן זרימה ממוצע: P: 7; P:-=0; P3:8-4=4;P4:6-5=; verage=8 P 4 Job Sequencing xample Job Job Work Processing time in days Job ue ate (day) FFS SPT Parameter Value Sequence Parameter Value Sequence verage completion time Utilization verage number of jobs in the system verage job lateness 5.4 days 36.4%.75 jobs. days verage completion time Utilization verage number of jobs in the system verage job lateness 3 days 43.%.3 jobs.8 days
5 Summary Parameter Value Sequence verage completion time Utilization verage number of jobs in the system verage job lateness 3.6 days 4.%.43 jobs. days Rule FFS SPT verage ompletio n Time (days) Utilizati on (%) verage Number of Jobs in the System verage Latenes s (ays)..8. ritical Ratio (R) מבוא לתיאורית סידרור למכונה יחידה Job Job Work Processin g time in days Job ue ate (day) ritical Ratio Sequence נניח שקיימות n מטלות לביצוע בעזרת מכונה יחידה. עבור כל מטלה i, נגדיר את הגדלים הבאים: = ti זמן ביצוע/עיבוד למטלה i. ידוע מראש. = di זמן מסירה (מתוכנן) של מטלה i. ידוע מראש. = Wi זמן המתנה עבור מטלה i. זמן ההמתנה לכל מטלה הוא משך הזמן שעל המטלה להמתין בטרם ניתן להתחיל בביצועה. זהו בעצם סכום זמני העיבוד של כל המטלות הקודמות = Fi זמן זרימה עבור מטלה i. זמן הזרימה הוא פשוט זמן ההמתנה ועוד זמן העיבוד.(Fi=Wi+ti) מוגדר כ- Li=Fi-di i. איחור של מטלה = Li Ti=max(Li,0).i פיגור של מטלה = Ti. i=max(-li,0).i הקדמת סיום ביצוע מטלה = i
6 גדלים מסוכמ ים n כמויות רלבנטיות אחרות הן פיגור מרבי,Tmax הנתון על ידי הפונקציה: Tmax = max{t, T,.Tn} וזמן הזרימה הממוצע F, הנתון על ידי הנוסחה: F ' = n i= F i מספר חלופו ת תזמון מכיוון שאנו דנים רק במקרה של מכונה יחידה, ניתן לבטא כל תזמון על ידי חלופה של המספרים השלמים קיימות בדיוק!n חלופות. תזמון על מס פר מכונות סידור אופט י מלי מיזעור משך הזרימה הממוצע: ניתן להוכיח כי משך הזרימה הממוצע המינימלי מתקבל כאשר מפעילים את כלל התזמון.SPT מיזעור האיחור המרבי: ניתן להוכיח כי כדי למזער את האיחור המירבי יש לסדר את הפריטים לפי זמן היעד שלהם (כלל.( בעיה מורכבת בהרבה. תכונה חשובה בעיבוד של מספר מכונות היא האם יש משמעות לסדר המכונות בעיבוד. אם אין משמעות לסדר המכונות בעיבוד זה אומר שלא משנה אם מעבדים את הפריט קודם כל במכונה ואח"כ במכונה או להפך קודם כל מכונה ואח"כ מכונה. הפתרון האופטימלי לתזמון n פריטים על שתי מכונות (כאשר סדר המכונות בעיבוד חייב להישמר) הוא תזמון של הפריטים לפי סדר זהה בשתי המכונות.
7 כלל ג'ונסון Johnson s Rule Used to sequence N jobs through machines in the same order Jobs (N = 3) Saw rill Job Job פריט i קודם לפריט +i אם: min( i, i+ )<min( i+, i ) כאשר i ו- i מייצג זמן עיבוד של פריט i על מכונה או בהתאמה. הכלל מבטיח בהכרח מרווח זרימה מינימלי. Job 995 orel orp. 995 orel orp. Johnson's Rule - Scheduling N Jobs on Two Machines ll jobs are to be listed, and the time each requires on a machine shown. Select the job with the shortest activity time. If the shortest time lies with the first machine, the job is scheduled first; if with the second machine, the job is scheduled last. Once a job is scheduled, eliminate it. pply steps -3 to the remaining jobs, working toward the center of the sequence. Johnson s Rule Steps List jobs & activity times Select job with shortest time Ties? Yes reak arbitrarily No Yes Machine? Schedule FIRST liminate job from list Jobs left? No Schedule LST Stop
8 Johnson s Rule - xample Johnson s Rule - xample Step Job Machine (rill Press) Work enter (Lathe) Step Step Step Step 5 7 Graphical epiction of Job Flow Time => Work center Work center Time => = Idle = Job completed Limitations of Rule-ased ispatching Systems Scheduling is dynamic; therefore, rules need to be revised to adjust to changes in process, equipment, product mix, etc. Rules do not look upstream or downstream; idle resources and bottleneck resources in other departments may not be recognized Rules do not look beyond due dates
9 התפלגות מספר המטלות במערכת על פי תורת התורים הבסיסית התפלגות מספר המטלות במערכת (מספר המטלות המחכות לביצוע ועוד מספר המטלות המבוצעות) במצב יציב היא גיאומטרית עם הגורמים.ρ = λ/µ כלומר, אם L הוא מספר המטלות במערכת במצב יציב, אזי ρ) P{L = i} = ρ i ( עבור = 0,,, 3. i ערכים מ מוצ עים מספר המטלות הצפוי במערכת הוא: L= ρ/(- ρ) מספר המטלות הצפוי בתור הוא:.L q = ρ /(- ρ) שאלה: איך מגיעים לערכים האלה? קיים פתרון רק עבור < ρ. כלומר קצב הגעת המטלות למערכת חייב להיות נמוך מן הקצב בו הן מבוצעות על מנת להבטיח שהמערכת לא תגדל בלי שליטה. זמן הזרימה הממוצע הוא: W ( ) = µ λ שונות זמן הזרימה היא: זמן הז רימה זמן הזרימה של מטלה מתחיל ברגע שהמטלה מצטרפת לתור ונמשך עד שביצוע המטלה הושלם. זמן הזרימה הוא משתנה אקראי. הוא תלוי במימוש זמני העיבוד של מטלות קודמות גם כן. המונח של תורת התורים עבור זמן זרימה הוא זמן ההמתנה במערכת ומסומן באות. W התפלגות זמן הזרימה עבור תור מסוג M/M//FFS היא מעריכית עם פרמטר.µ-λ כלומר, עבור כל t>0 P{W>t} = e -(µ-λ)t VR( W ) = ( µ λ)
10 דוגמא בתחנת דלק קטנה ישנה משאבה אחת בלבד. מכוניות מגיעות לתדלוק בקצב של 0 מכוניות בשעה. הזמן בין מופעי המכוניות מתפלג מעריכית. זמן התדלוק של מכונית בודדת מתפלג אף הוא מעריכית עם ממוצע של דקות. נדרש לחשב: א. משך הזמן בו מכונית נמצאת בתחנת הדלק ב. מספר המכוניות הממוצע הנמצא בתחנת הדלק ג. מספר המכוניות הממוצע הממתין בתור ד. ההסתברות ליותר מארבע מכוניות בתחנת דלק. פתרון א. בשלב הראשון נמצא את λ ואת µ. קצב ההגעה של המכוניות הוא 0 מכוניות לשעה, לפיכך 0=λ לעומת זאת קצב התדלוק הוא 30=60/=µ מכוניות לשעה. לפיכך זמן הזרימה מתפלג מערכית עם פרמטר 0=λ -µ. התוחלת של התפלגות מעריכית הינו ההופכי של פרמטר ההתפלגות. במקרה זה: 0/ כלומר משך זמן השהייה הממוצע הוא 6 דקות. ב. מספר המכוניות במערכת מתפלג גיאומטרי עם פרמטר λ/µ=30/0 ρ. = מספר המכוניות הצפוי במערכת הוא (ρ -)/ρ.לפיכך במקרה זה מספר המכוניות בתחנת הדלק בממוצע הוא מכוניות. ג. מספר המכוניות בתור מתקבל על ידי הנוסחה: L q = ρ /(- ρ)=4/3 ד. קיימות שתי אפשרויות לחשב את ההסתברות המתבקשת באופן ישיר או באמצעות ההסתברות המשלימה. נשתמש בגישה הישירה. על פי נספח מתקיים: P(L>k)= ρ k+ = (/3)5 =0.3 אפשרות אחרת היא לחשב את ההסתברות הרצויה על ידי ההסתברות המשלימה: P(L>k)= - P(L<=k)=-P(L=0)-P(L=)-P(L=)- P(L=3)-P(L=4)=0.3
11 משטר י תורי ם שאינ ם תל ויים בזמנ י עי בוד אם חוק המיון אינו תלוי בזמן העיבוד, זמני הזרימה הממוצעים זהים (ועל כן מספר המטלות הממוצע במערכת והאורך הממוצע של התור גם כן זהה). אולם שונות זמן הזרימה תלויה בחוק המיון. השונות בזמן הזרימה גדול ביותר ב LFS וקטן ביותר ב.FFS VRRNOM 4µ ( W ) = ( µ λ )( µ λ ) ( µ λ) VRLFS VRFFS µ ( W ) = ( µ λ ) ( µ λ) 3 ( W ) = ( µ λ) דוגמא בנתוני הדוגמא האחרונה, חשבו את השונות של זמני השהייה של המכוניות בתחנת הדלק בהנחה של א. הראשון שמגיע מתדלק ראשון ב. האחרון שמגיע מתדלק ראשון ג. התדלוק מתבצע באופן אקראי פתר ו ן VRRNOM 4µ 0 ( W ) = = = 0.0 ( µ λ )( µ λ ) ( µ λ) VRLFS VRFFS 60 ( W ) = µ 0.05 µ λ µ λ = = 3 ( ) ( ) ( W ) = 0.0 ( µ λ) = 00 =
מבוא לרשתות - תרגול מס 5 תורת התורים
מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן
מבוא לרשתות - תרגול מס 5 תורת התורים
מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב
הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...
שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים
הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז
תורת התורים תור לקוחות
תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד
א ב ג ד ה לימודי מוסמך בלוגיסטיקה הרצאה 0: תורת התורים נוסחאות כלליות ותורים של שרת יחיד תרגיל בתחנת מוניות יש מקום ל מוניות ויש מקום לשלושה נוסעים ממתינים. כאשר נוסע מגיע ויש מוניות ממתינות הוא עוזב מיד,
הרצאה 9: CTMC מבוא לתורת התורים
הרצאה 9: CTMC מבוא לתורת התורים תורת התורים למערכת תורים שלושה מרכיבים עיקריים: -- זרם של צרכנים שזמני המופע שלהם הם תהליך נקודות T1, T1 + T2,, T1 + + T, -- דרישות שרות של הצרכנים, שהם סדרה של משתנים מקריים
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות
אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
מס' סטודנט מועד א' פתרון
ס הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת תעשייה וניהול מרצה : מתרגלת: פרופסור אבישי מנדלבאום גלית יום-טוב 11.2.2010 מס' סטודנט תאריך הבחינה: שם הנדסת מערכות שירות 096324 מועד א' מסטר חורף תש"ע 2010
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.
חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =
4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח
(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;
מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =
{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:
A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
דיאגמת פאזת ברזל פחמן
דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r
ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.
Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
מתמטיקה בדידה תרגול מס' 2
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.
תרגול מס' 1 3 בנובמבר 2012
תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
אלגברה ליניארית 1 א' פתרון 7
אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N
ROBABILITY A STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר ugee Kazieer All rights reserved 005/06 כל הזכויות שמורות 005/06 הרצאה 5 התפלגויות בדידות מיוחדות התפלגות אחידה ניסוי והתפלגות ברנולי התפלגות
א הקיטסי ' טטסל אובמ רלדנ הינור בג '
מבוא לסטטיסטיקה א' נדלר רוניה גב' מדדי פיזור Varablty Measures of עד עתה עסקנו במדדים מרכזיים. אולם, אחת התכונות החשובות של ההתפלגות, מלבד מיקום מרכזי, הוא מידת הפיזור של ההתפלגות. יכולות להיות מספר התפלגויות
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
הרצאה 3 קומבינטוריקה נוסחת ניוטון משפט מולטינומי. + t עבור ( ) + t
ROBABILITY AND STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר Eugee Kazieper All rights reserved 5/6 כל הזכויות שמורות 5/6 הרצאה קומבינטוריקה עצרת של מספר ופונקצית גאמא עקרון הכפל סידורים ובחירות תמורות
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
אלגוריתמים בתורת הגרפים חלק ראשון
גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
םירותה תאות לש םייטמתמ םילדומ םושיי רותה
יישום מודלים מתמטיים של תואת התורים לאיפיון תופעת התור, ולניהול מערכות שירות. משתני החלטה בניהול מערכות שירות (דרגות חופש): מספר שרתים, טכנולוגיה זמן שירות, משטר התור (תור משותף \ תור מפוצל). - - - שתי
הסקה סטטיסטית/תקציר/תלמה לויתן
הסקה סטטיסטית/תקציר/תלמה לויתן בניסוי אקראי נמדד ערכו של משתנה כמותי משתנה המחקר ואולם התפלגות המשתנה אינה ידועה החוקר מעוניין לענות על שאלות הנוגעות לערכי הנחות: - משפחת ההתפלגות של ידועה (ניווכח שזה
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03
15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת
אלגברה ליניארית 1 א' פתרון 8
אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב
תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
שאלה 5: להלן סטטיסטיקה תיאורית מפורטת עם טבלת שכיחות לציוני בית ספר לוח 1: סטטיסטיקה תיאורית של ציוני בית ספר
20 0 79.80 78.50 75 שאלה 5: להלן סטטיסטיקה תיאורית מפורטת עם טבלת שכיחות לציוני בית ספר לוח : סטטיסטיקה תיאורית של ציוני בית ספר סטטיסטיקה תיאורית של ציוני בית ספר Score Valid Missing גודל מדגם חסרים מדד=
תוכן הפרק: ,best case, average case דוגמאות 1. זמן - נמדד באמצעות מס' פעולות סיבוכיות, דוגמאות, שיפור בפקטור קבוע האלגוריתם. וגודלם. איטרטיביים. לקלט.
פרק סיבוכיות פרק סיבוכיות המושג יעילות מהו? במדעי המחשב היעילות נמדדת בעזרת מדדי סיבוכיות, החשובים שבהם: של אלגוריתמים יעילותם תוכן הפרק: יעילות מהי (זיכרון וזמן, זמן ריצה T( של אלגוריתם מהו, מהם case,
Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}
כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
טושפ הרעשה ןחבמ t ןחבמ
מבחן השערה פשוט מבחן t מבחן השערה על תוחלת חוקר מעוניין לבדוק את כמות הברגים הפגומים שמיוצרים ע"י מכונה לייצור ברגים. לשם האמידה מחליטים לקחת מדגם של n מכונות מאותו סוג ולאמוד את תוחלת מספר המוצרים הפגומים,
מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.
בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה