תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים"

Transcript

1 הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז זהו זמן ההמתנה שלו, T FCFS זמן ההמתנה הממוצע: עבור גדולים מקבלים T V = Vn = W tn) = W t) dt n= n= PASTA T 0 נסתכל בתמונה ונראה כי: T W t) dt = VnSn + Sn ) 0 n= לכן נקבל: נוסחת חינצ'ין פולטשק T V = W t) dt VnSn Sn ) T = 0 T + n= + c = λ Vm + E S )) = λ Vm + m s ) + c = V + m s ) + c V = m s זמן שהיה ממוצע: + c W = m s + m + c E Q ) s V = λv = מספר צרכנים ממוצע בתור ממתינים) לפי ליטל

2 ומספר צרכנים ממוצע במערכת, לפי ליטל n במערכת + c E Q) = W = V + = s + λ λ טרנספורם לפלאס: אין לנו נוסחה עבור ההתפלגות של המשתנה הרציף שהוא התפלגות זמן ההמתנה של הצרכן ה M/G/ במצב יציב, אבל יש נוסחה מפורשת לטרנספורם לפלאס שלה: sx sx Ψ X s) = E e ) = e f X x) dx 0 µ x sx µ x µ X exp µ ), f X x) = µ e, Ψ X s) = e µ e dx = 0 µ + s נוסחת חינצ'ין פולטשק עבור טרנספורם לפלאס של זמן ההמתנה בתור: Vn : Ψ V s) = n s λ + λ Ψ S n s) זה מאפשר לחשב נומרית כל הסתברות שרוצים עבור התור M/G/ תור GI/M/ זמני השרות אכספוננציאליים חסרי זכרון הזמנים הבין מופעיים הם בלתי תלויים שוי התפלגות מהתפלגות H עם צפיפות h אורך התור וכמות העבודה כבר אינם תהליכי מרקוב אבל ניתן להסתכל על התהליך ברגעי ההגעה של הצרכנים, ואז לפי חוסר הזכרון התהליך ברגעים אלה הוא כן מרקובי זה נקרא תהליך מרקוב משוכן process) embedded Markov n מספר הצרכנים לפני רגע ההגעה של הצרכן ה Qn = Q tn נגדיר: אז Q n הוא שרשרת מרקוב בזמן בדיד נגדיר: ν k µ t) µ t k = P Qn+ = i + k Qn = i) = e h t) dt 0 k! ν ν 0 ν ν ν 0 ν P = ν0 ν k ν אז מטריצת המעבר עבור התהליך Q n היא מכאן מקבלים כי ההתפלגות הסטציונרית של מספר הצרכנים שרואה צרכן שמגיע היא גאומטרית עם:

3 k P Qn = k) = uk = α ) α, α = ΨT µ α )) < למשואה עבור α יש פתרון יחיד בין 0 ל אם ורק אם למערכת קיים ההתפלגות הסטציונרית של אורך התור בזמן כלשהו לא רק ברגע הגעה) היא: π0 = P Q t) = k) = k πk = α ) α k =,, תור GI/G/ לתור GI/G/ אין נוסחאות מפורשות לשום מדד של ביצועי התור פתרון משואות מסובכות או על ידי קירובים כל חישוב דורש הערכה נומרית על ידי c a h נניח כי קצב המופע הוא λ והזמן הבינמופעי מתפלג H עם צפיפות ומקדם השתנות ריבועי c s g נניח כי קצב השרות הוא µ וזמן השרות מתפלג G עם צפיפות ומקדם השתנות ריבועי חסם קינגמן וקירוב במצב של : heavy traffic ca + c V = m s שימו לב לתור GI/G/ בעומס כבד זמן ההמתנה הוא בקירוב: 3

4 ב א ג לימודי מוסמך בלוגיסטיקה + c V = m s + V = m = a c לבין מופעי אכספוננציאלי) בתור M/G/ בתור זמן המתנה הוא ) M/M/ זמן המתנה הוא = s c לשרות אכספוננציאלי) תרגיל : חישוב תוחלות של זמן המתנה וזמן שהיה חשב את זמן ההמתנה הממוצע ואת זמן השהיה הממוצע בתור M/M/ עם = 05 µ =, λ = 05, חזור על החישוב עבור תור M/D/ עם אותם פרמטרים, ועבור תור חזור על החישוב של א) כאשר זמן השרות נותר כשהיה, וקצב המופעים גדל ל ולתור /M/ E M/E / = 5, 8, 9, 95, 99 חשב זמן המתנה ממוצע וזמן שהיה ממוצע מקורבים לתור D/M/ וכמו כן לתור D/D/ ולתור E /E / עם = 08, 09, 095, 099 µ =, קירובי נוזלים וקירובי דיפוזיה אם נסתכל בתהליך ההגעות t )A ונסתכל על הזמן ביחידות של ונספור את מספר המגיעים ביחידות A t) = A t) λt של אז לפי חוק המספרים הגדולים נקבל בקירוב כי: באותו אופן, אם השרת עובד ברציפות במשך זמן t שרות שנסמנו ב אז כאשר סופרים זמן ביחידות של ואנחנו סופרים את מספר הצרכנים המצטבר שיקבלו וצרכנים ביחידות של מקבלים: S t) A t) = λ t, S t) = µ t S t) = S t) µ t קירוב הנוזלים של תהליך ההגעות ותהליך השרותים הוא: אם מתחילים עם כמות נוזלים התחלתית 0)Q אז קירוב נוזלים של התור הוא : ) λ µ ) + + Q t) = Q0) + A t) S t) = Q0) + ) t 4

5 קירוב הנוזלים מבוסס על החוק החזק של המספרים הגדולים ומתעלם לגמרי מהאקראיות שימוש במשפט הגבול המרכזי נותן לנו קירוב לסטיות האקראיות מקירוב הנוזלים אם נסתכל בתהליך ההגעות ביחידות זמן של ונחסיר ממנו את קירוב הנוזלים ונחלק בשורש של נקבל לפי משפט הגבול המרכזי הגירסה הפונקציונלית) כי: ˆ A t) A t) A t) = BM t), BM t) 0, λcat) λc a כאשר t) BM הוא תנועה בראונית עם ממוצע 0 ועם פרמטר דיפוזיה ˆ S t) S t) S t) = BM t), BM t) 0, µ cst) באותו אופן לתהליך השרות λ =, µ אז ההפרש בין ) = d אם קצב המופע וקצב השרות קרובים מאוד זה לזה כך ש מספר המופעים ומספר השרותים הוא בקירוב: ˆ ˆ ) ) ˆ Z t = A t S t) BM t), BM t) dt, λcat) אבל חלק מהזמן התור ריק ואז לא עוזבים צרכנים ˆ התהליך t Z הוא אורך תור אם עובדים כל הזמן קירוב דיפוזיה של תור כאשר קצב מופע קרוב מאוד לקצב השרות הוא: ˆ ) ˆ ) ˆ Q t = Z t + Y t) 0, ˆ Y 0) = 0, ˆ ), ˆ ) ˆ Y t Y t increases only when Q t) = 0 5

6 RBM reflected Brownian motion or ˆ לתהליך t Q קוראים תנועה בראונית משוקפת או מבוקרת regulated Brownian motion שרתים במקביל: שיתוף משאבים Resource Pooling נסתכל ב C תורים מסוג M/M/ עם קצב מופע λ וקצב שרות µ מופע Cλ ועם קצב שרות Cµ ונשוה אותם לתור יחיד עם קצב מספר הצרכנים בכל אחד מהתורים מתפלג גאומטרית כלומר בתור שמשרת את כל k P Q t) = k) = ), k = 0,, C הזרמים במשותף יש אותו מספר צרכנים כמו בכל אחד מ C מה שקורה זה שאנו רואים בדיוק העתק של כל אחד מהתורים אצל התור המשותף אבל הכל נע פי מהר זמן השהיה בתור המשותף עם השרת המהיר הוא התורים C W exp Cµ Cλ) שרות של הרבה צרכנים על ידי משאבים משותפים הוא הרבה הרבה יותר יעיל לא נחוץ למעשה שרת יחיד עם קצב מהיר פי C אם ניקח את להם תור משותף, אז בעומס כבד כאשר ולכן תהליך השרות המשותף שלהם יהיה בקירוב פואסון עם קצב Cµ זה נכון בדיוק ל M/M/ C השרתים שלכל אחד קצב µ ונשים יותר Cλ λ = = כל השרתים יהיו עסוקים כמעט כל הזמן, Cµ µ אבל תוצאות דומות מקבלים גם למופעים וזמני שרות כלליים יתר על כן, בעומס כבד אפילו המדיניות של תורים נפרדים אבל צרכנים בוחרים את התור הקצר ביותר, מביאה לשרות יעיל כמעט כאילו יש תור משותף עם שרת יעיל מהיר פי C ראה בטבלה: 6

7 זמני שהיה ממוצעים לשני תורים, תחת שיתוף משאבים מענין שניתן להשיג שיתוף פעולה בלי להשקיע במערכת שרות מהירה יותר! שרתים בטור, Tandem Queues יש לנו שרות בשני שלבים, צרכן מגיע, מחכה בתור הראשון, מקבל שרות ראשון, ואז מצטרף לתור השני כדי לקבל שרות שני נניח כי כל אחד מהתורים עם שרת /M/* וכי הצרכנים מגיעים בזרם פואסון משפט Burke בתור M/M/ במצב יציב זרם הצרכנים שעוזבים את התור הוא תהליך פואסון בקצב המופעים, ויתר על כן, מספר הצרכנים בתור בזמן t הוא בלתי תלוי בזמני העזיבות שלפני זמן t הוכחה: תור M/M/ הוא תהליך לידה ומוות, ולכן במצב יציב הוא הפיך בזמן נסתכל בתהליך בזמן הפןך: היציאות של התהליך הרגיל הן הכניסות של התהליך ההפוך ולכן לפי הפיכות בזמן הן תהליך פואסון בקצב המופעים יתר על כן, היצאות לפני זמן t של התהליך הרגיל הן הכניסות אחרי זמן t של התהליך ההפוך, והכניסות אחרי זמן t לא תלויות במצב התור בזמן t מפתיע: כשהשרת עובד הוא מוציא צרכנים בזרם פואסון עם קצב λ וכאשר הוא אינו עסוק אין יציאות אבל מסתבר שמה שרואים מהצרוף של שני אלו הוא תהליך פואסון כמו כן אם רואים הרבה יציאות או מעט יציאות זה לא אומר לנו כלום לגבי מה המצב בתור, האם השרת עסוק או פנוי, והאם יש תור קצר או ארוך מסקנה ממשפט : Burke במערכת של תורים בטור במצב יציב, כל אחד מהתורים מתנהג כמו תור M/M/, ומספרי הצרכנים בתורים השונים בזמן t הם משתנים מקריים בלתי תלויים 7

8 א ב ד ג לימודי מוסמך בלוגיסטיקה n ) =, ) =,, ) ) ) l = = l l l= התפלגות משותפת של אורכי התור: P Q t n Q t n Q t n תרגיל : צרכנים מגיעים למערכת שרות עם שלושה שרתים בטור בזרם פואסון עם קצב = 6 λ זמני µ µ µ השרות אכספוננציאליים, עם קצבים = 9 3 = 8, = 0, במצב יציב חשב את : תוחלת זמן השהיה, תוחלת מספר הצרכנים בכל אחד מהתורים כולל השרת) P Q t) = 4, Q t) = 3, Q3 t) = ) P Q t) + Q t) + Q3 t) 3),, = l היא תחנת שרות עם שרת יחיד אכספוננציאלי, רשתות : Jackson הרשת מורכבת מ צמתים, כאשר כל צומת שעובד בקצב µ l צרכנים מגיעים למערכת בזרמי פואסון בלתי תלויים, כאשר קצב ההגעה של צרכנים l k α l l =,, חדשים לצומת הוא כאשר צרכן מסיים שרות בצומת הוא עובר לצומת Pk, l l= בהסתברות P k, l ומצטרף שם לתור, או שהוא עוזב את המערכת בהסתברות כדי לנתח את המערכת אנו רוצים קודם כל לחשב כמה צרכנים יעברו דרך כל צומת משואות התנועה l = l + Pk, l k, l =,, k = λ α λ כאן λ k הוא קצב הכניסה במצב יציב שהוא שווה לקצב היציאה) לצומת k והוא מורכב מכניסות של צרכנים חדשים ומצרכנים שמגיעים לאחר שרות בצמתים אחרים בכתיב מטריצות, המשואות ופתרונן הם: 8

9 µ l λ = α + P λ I P ) λ = α λ = I P ) α 3 = I + P + P + P + ) תנאי הכרחי ומספיק לכך שהמערכת תהיה יציבה הוא שלכל הצמתים קצב השרות עולה על קצב הכניסה α l = λl µ l l והיציאה λ l ואז העומס לצומת הוא Q t), Q נסמן ב t) t),, Q מהמצב את מספר הצרכנים בצמתים זהו תהליך מרקוב בזמן רציף: אפשר לעבור למצבים קרובים: או שצרכן מגיע l k Q t) = n, Q t) = n,, Q t) = n l לתור l המערכת או שצרכן מסיים שרות בתור מרחב המצבים הוא כל הוקטורים ועובר לתור או שצרכן מסיים שרות בתור ועוזב את S = { n,, nl ), nl = 0,, } למרבה הפלא ניתן לחשב את ההסתברויות הסטציונריות גם כאן: n ) =, ) =,, ) ) ) l = = l l l= P Q t n Q t n Q t n תור נראה כי מספרי הצרכנים בתורים השונים ברגע t הם בלתי תלויים הערה: תהליכי התורים הם כן תלויים, t s Ql והתור s) עבור הם תלויים אי תלות קיימת במצב יציב רק לגבי אורכי התור Qk t ) באותו זמן תרגיל : 3 עבור רשת ג'קסון שבציור פתור את משואות התנועה, חשב את מספר הצרכנים הממוצע ברשת וחשב את ההסתברות שבאף אחד מהתורים אין יותר מ 3 צרכנים 9

10 א ב ג א ב ג ד לימודי מוסמך בלוגיסטיקה סיכום התרגילים תרגיל : חישוב תוחלות של זמן המתנה וזמן שהיה חשב את זמן ההמתנה הממוצע ואת זמן השהיה הממוצע בתור M/M/ עם = 05 µ =, λ = 05, חזור על החישוב עבור תור M/D/ עם אותם פרמטרים, ועבור תור M/E / חזור על החישוב של א) כאשר זמן השרות נותר כשהיה, וקצב המופעים גדל ל ולתור /M/ E = 5, 8, 9, 95, 99 חשב זמן המתנה ממוצע וזמן שהיה ממוצע מקורבים לתור D/M/ וכמו כן לתור D/D/ ולתור E /E / עם µ =, = 08, 09, 095, 099 תרגיל : צרכנים מגיעים למערכת שרות עם שלושה שרתים בטור בזרם פואסון עם קצב השרות אכספוננציאליים, עם קצבים λ = 6 µ µ µ = 0, = 8, 3 = 9 תוחלת זמן השהיה, תוחלת מספר הצרכנים בכל אחד מהתורים כולל השרת) P Q t) = 4, Q t) = 3, Q3 t) = ) P Q t) + Q t) + Q3 t) 3) במצב יציב חשב את : זמני תרגיל : 3 עבור רשת ג'קסון שבציור פתור את משואות התנועה, חשב את מספר הצרכנים הממוצע ברשת וחשב את ההסתברות שבאף אחד מהתורים אין יותר מ צרכנים 3 מקורות: - תיאור הכי טוב של תורים בתור ורשתות ג'קסון הוא בפרק בספר של Kelly - פרק 8 בספר של קולקרני על תורים - רשימות מקורס קצר שהעברתי בתאילנד וסינגפור בדף הקורס באתר שלי - רשימות הרצאות של פרופסור משה חביב מירושלים, ב 0

הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד

הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד א ב ג ד ה לימודי מוסמך בלוגיסטיקה הרצאה 0: תורת התורים נוסחאות כלליות ותורים של שרת יחיד תרגיל בתחנת מוניות יש מקום ל מוניות ויש מקום לשלושה נוסעים ממתינים. כאשר נוסע מגיע ויש מוניות ממתינות הוא עוזב מיד,

Διαβάστε περισσότερα

הרצאה 9: CTMC מבוא לתורת התורים

הרצאה 9: CTMC מבוא לתורת התורים הרצאה 9: CTMC מבוא לתורת התורים תורת התורים למערכת תורים שלושה מרכיבים עיקריים: -- זרם של צרכנים שזמני המופע שלהם הם תהליך נקודות T1, T1 + T2,, T1 + + T, -- דרישות שרות של הצרכנים, שהם סדרה של משתנים מקריים

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P... שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה

Διαβάστε περισσότερα

תורת התורים תור לקוחות

תורת התורים תור לקוחות תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת: A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות 1" (80420) באוניברסיטה העברית,

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס תורת ההסתברות 1 (80420) באוניברסיטה העברית, תורת ההסתברות יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות " (80420) באוניברסיטה העברית, 8 2007. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B בת, אזי: A, B ב ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n. Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים.

אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים. תרגילים בשרשראות מרקוב. + תרגילים מבחינות עבר אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים..תהי Xn שרשרת מרקוב סופית עם מטריצת מעבר דו-סטוכסטית )סכום של כל עמודה

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 8

אלגברה ליניארית 1 א' פתרון 8 אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג (

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( עד כה עסקנו במערכות צירופיות בהן ערכי המוצא נקבעים לפי ערכי המבוא הנוכחיים בלבד. במערכות אלו אסורים מסלולים מעגליים. כעת נרחיב את הדיון למערכות עם מעגלים. למשל

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

תורת ההסתברות 2: (או הסתברות ותהליכים סטוכסטים)

תורת ההסתברות 2: (או הסתברות ותהליכים סטוכסטים) תורת ההסתברות : או הסתברות ותהליכים סטוכסטים סוכם על ידי תום חן tomhen@gmail.com בדצמבר 04 שימו לב יתכנו שגיאות בטקסט עידכונים יתבצעו במהלך הסמסטר נא לדווח שגיאות ל gidi.amir@gmail.com או לחלופין שלשמור

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

מס' סטודנט מועד א' פתרון

מס' סטודנט מועד א' פתרון ס הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת תעשייה וניהול מרצה : מתרגלת: פרופסור אבישי מנדלבאום גלית יום-טוב 11.2.2010 מס' סטודנט תאריך הבחינה: שם הנדסת מערכות שירות 096324 מועד א' מסטר חורף תש"ע 2010

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

c ארזים 15 במרץ 2017

c ארזים 15 במרץ 2017 הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

5.1.1 מבוא. .(process X X רציף). n n 1 0.5

5.1.1 מבוא. .(process X X רציף). n n 1 0.5 09 פרק הה' תהליכים מקריים 5. תהליכים מקריים 5.. מבוא בפרקים הקודמים עסקנו במשתנים מקריים בודדים או בקבוצות קטנות של משתנים מקריים. בפרק הנוכחי נרחיב את הדיון לטיפול בסדרות של משתנים מקריים, סדרה כזאת נקראת

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

םירותה תאות לש םייטמתמ םילדומ םושיי רותה

םירותה תאות לש םייטמתמ םילדומ םושיי רותה יישום מודלים מתמטיים של תואת התורים לאיפיון תופעת התור, ולניהול מערכות שירות. משתני החלטה בניהול מערכות שירות (דרגות חופש): מספר שרתים, טכנולוגיה זמן שירות, משטר התור (תור משותף \ תור מפוצל). - - - שתי

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

מדדים מכונה. .served) Time)

מדדים מכונה. .served) Time) מדדים עמידה בלוחות זמנים מזעור רמת המלאי בתהליך (WIP) מזעור זמן הזרימה הממוצע במערכת מזעור זמן המתנה (חשוב כאשר נותנים שירות לאדם) מזעור זמן בטלה ניצולת גבוה הקטנת זמן הכינון מזעור עלויות דפוסי זרימה זרימה

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 11

אלגברה ליניארית 1 א' פתרון 11 אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

אלגברה לינארית 1 יובל קפלן

אלגברה לינארית 1 יובל קפלן אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק ראשון

אלגוריתמים בתורת הגרפים חלק ראשון גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N ROBABILITY A STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר ugee Kazieer All rights reserved 005/06 כל הזכויות שמורות 005/06 הרצאה 5 התפלגויות בדידות מיוחדות התפלגות אחידה ניסוי והתפלגות ברנולי התפלגות

Διαβάστε περισσότερα

מערכות בקרה 1 סיכום ( ) ( ) 1 *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס.

מערכות בקרה 1 סיכום ( ) ( ) 1 *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס. מערכות בקרה 1 סיכום *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס. f1 f1... f x1 x n u f f A=.. B= x x= xe u x= xe u= ue f u ue n f = n f... x1 x n u g h h

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

הסקה סטטיסטית/תקציר/תלמה לויתן

הסקה סטטיסטית/תקציר/תלמה לויתן הסקה סטטיסטית/תקציר/תלמה לויתן בניסוי אקראי נמדד ערכו של משתנה כמותי משתנה המחקר ואולם התפלגות המשתנה אינה ידועה החוקר מעוניין לענות על שאלות הנוגעות לערכי הנחות: - משפחת ההתפלגות של ידועה (ניווכח שזה

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X D FF-0 q 0 q 1 Z D FF-1 output clk 424 מצב המכונה מוגדר על ידי יציאות רכיבי הזיכרון. נסמן את המצב הנוכחי q

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 7

מודלים חישוביים תרגולמס 7 מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα