הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "הרצאה 10: תורת התורים נוסחאות כלליות ותורים של שרת יחיד"

Transcript

1 א ב ג ד ה לימודי מוסמך בלוגיסטיקה הרצאה 0: תורת התורים נוסחאות כלליות ותורים של שרת יחיד תרגיל בתחנת מוניות יש מקום ל מוניות ויש מקום לשלושה נוסעים ממתינים. כאשר נוסע מגיע ויש מוניות ממתינות הוא עוזב מיד, עם אחת המוניות. אם אין מונית ויש מקום להמתין הוא ממתין בתור. אם אין מקום להמתין הוא לא נכנס לתחנה הולך לאיבוד). אם מונית מגיעה לתחנה ויש נוסעים היא עוזבת מיד עם אחד הנוסעים. אם אין נוסעים ויש מקום המונית ממתינה לנוסעים. אחרת המונית עוזבת בלי להיכנס כלל לתחנה. המוניות מגיעות לתחנה בתהליך פואסון בקצב = 9 λ מוניות לשעה. הנוסעים מגיעים לתחנה בתהליך פואסון בקצב = 6 µ נוסעים לשעה. הצג מערכת זו על ידי תהליך מרקוב בזמן רציף t X וענה על השאלות הבאות: צייר דיאגרמה של המצבים ושל קצבי המעבר. השתמש בשיטות של ניתוח תהליכי לידה ומוות כדי לחשב את ההסתברויות הסטציונריות של התהליך. מה ההסתברות שנוסע שמגיע לתחנה ימצא מיד מונית. איזה חלק מהמוניות לא ייכנסו כלל לתחנה. מהו זמן ההמתנה הממוצע של נוסע שמגיע ונכנס לתחנה כאשר אין בה מוניות. מספר נוסחאות כלליות: הדינמיקה של התור: זמן שהיה = זמן המתנה + זמן שרות: אורך התור = הגעות עזיבות: נוסחת לינדלי: ההמתנה של הצרכן הבא = המתנה ועוד שרות של הנוכחי פחות הזמן בין המופעים, או 0 נוסחת ליטל:

2 במילים: אם מתחילים וגומרים במערכת ריקה, אז במשך זמן T שבו משרתים צרכנים ניתן לסכם או את מספר הצרכנים בכל יחידת זמן בזמן רציף זה חישוב אינטגרל), או את זמני השהיה של הצרכנים. אותו שויון קיים בקירוב עבור זמן ארוך כל עוד המערכת יציבה וזמני השהיה של הצרכנים הם יציבים. m : שימוש בנוסחת ליטל: אחוז הזמן שהשרת עסוק הוא נכנסים בקצב λ שוהים זמן ממוצע אז אבל זה ממוצע של או 0 צרכנים או צרכן ולכן = L = 0 P server empty) + P server busy) L = λm = תרגיל : בדוק את נוסחת ליטל עבור כל אחת מהסימולציות שביצעת בתרגיל הקודם.

3 תורים נוצרים בגלל שונות בתהליך המופעים ובזמני השרות: בדוגמא הראשונה והשניה העומס זהה, והשרת עסוק 0.9 מהזמן, אבל בדוגמא הראשונה אין בכלל המתנה,.9 E Q t)) = ובדוגמא השניה יש בממוצע כפי שחישבנו לתור M/M/ 9 =.9 = חישוב זמן המתנה בתור M/M/ זמן השהיה של צרכן מורכב מזמן המתנה ועוד זמן שרות. זמן ההמתנה הוא משך השרות של כל הצרכנים שנמצאים בתור לפניו. לכן, הסיכוי שהוא ישהה זמן x יש לו צפיפות לפי נוסחת הסתברות שלמה: fw x) = P Q t ) = n) fs ) + + Sn + S x n= 0 n+ n n µ x x ) e µ = n= 0 n! µ λ) x = µ λ) e התוצאה הזו נכונה אבל עשינו הנחה לא מוצדקת בקבלת התוצאה. 3

4 בדוגמא הראשונה המספר הממוצע של נסתכל שוב בדוגמאות ו שבהן ראינו שתור נוצר בגלל שונויות. כלומר: צרכנים שמגיעים לא רואים 0.9 אבל כל צרכן שמגיע רואה מערכת ריקה. צרכנים במערכת הוא בהכרח את המצב הממוצע של המערכת לפי ההגיון הם צריכים אולי לראות פחות מהממוצע ומיד אחרי ההגעה צריך אולי לראות יותר מהממוצע. זהו ממוצע על פני כל הזמנים ) T גדול) T E Q t)) Q t) dt T 0 הממוצע במצב יציב הוא: לעומת זאת tn)) E Q tm)) Q ממוצע על פני כל הצרכנים ) גדול) n = מה שרואים הצרכנים המגיעים הוא: בדרך כלל אין שום סיבה לחשוב ששני הגדלים שוים. אם צרכנים מגיעים לתור בזמנים שהם משפט: average) : PASTA poisson arrivals see time ממוצע על פני כל הצרכנים שוה תהליך פואסון אז הם רואים בממוצע בדיוק את הממוצע לאורך זמן ארוך. לממוצע על פני כל הזמנים. לפי PASTA בתור M/M/ הממוצעת שיש בתור בממוצע כל פני כל הזמנים. מוצדק. כמות העבודה הממוצעת שיש בתור ברגע שמגיע צרכן שוה לכמות העבודה לכן החישוב שעשינו לזמן ההמתנה בתור היה M/M/ עוד דוגמא לשימוש ב : PASTA אמרנו שבתחנת הדלק, או בתור M/M/K/K הסיכוי שצרכן שמגיע מוצא שאין מקום עבורו במערכת הוא בדיוק PASTA π. K זה נכון בגלל שהמופעים הם בתהליך פואסון ולכן יש לנו חוק שימור עבודה n כמות העבודה במערכת קופצת ב S n כאשר מגיע צרכן ויורדת כל הזמן בקצב כל עוד יש צרכנים במערכת. שימו לב כמות העבודה לא תלויה במשטר השרות: FCFS או LCFS או sharing) PS processor או מדיניות עדיפויות כלשהי. בכולם סה"כ העבודה במערכת זהה לתמונה. 4

5 : תור M/G/ ). W t n t n נחשב את זמן השהיה הממוצע בתור. צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז זהו זמן ההמתנה שלו, T FCFS זמן ההמתנה הממוצע: עבור גדולים מקבלים T V = Vn = W tn) = W t) dt n= n= PASTA T 0 נסתכל בתמונה ונראה כי: T W t) dt = VnSn + Sn ) 0 n= לכן נקבל: נוסחת חינצ'ין פולטשק T V = W t) dt VnSn Sn ) T = 0 T + n= + c = λ Vm + E S )) = λ Vm + m s ) + c = V + m s ) + c V = m s זמן שהיה ממוצע: + c W = m s + m + c E Q ) s V = λv = מספר צרכנים ממוצע בתור ממתינים) לפי ליטל ומספר צרכנים ממוצע במערכת, לפי ליטל 5

6 n במערכת + c E Q) = W = V + = s + λ λ טרנספורם לפלאס: אין לנו נוסחה עבור ההתפלגות של המשתנה הרצף שהוא התפלגות זמן ההמתנה של הצרכן ה M/G/ במצב יציב, אבל יש נוסחה מפורשת לטרנספורם לפלאס שלה: sx sx Ψ X s) = E e ) = e f X x) dx 0 µ x sx µ x µ X exp µ ), f X x) = µ e, Ψ X s) = e µ e dx = 0 µ + s נוסחת חינצ'ין פולטשק עבור טרנספורם לפלאס של זמן ההמתנה בתור: Vn : Ψ V s) = n s λ + λ Ψ S n s) זה מאפשר לחשב נומרית כל הסתברות שרוצים עבור התור M/G/ תור GI/M/ זמני השרות אכספוננציאליים חסרי זכרון. הזמנים הבין מופעיים הם בלתי תלויים שוי התפלגות מהתפלגות H עם צפיפות. h אורך התור וכמות העבודה כבר אינם תהליכי מרקוב. אבל ניתן להסתכל על התהליך ברגעי ההגעה של הצרכנים, ואז לפי חוסר הזכרון התהליך ברגעים אלה הוא כן מרקובי. זה נקרא תהליך מרקוב משוכן process).embedded Markov. n מספר הצרכנים לפני רגע ההגעה של הצרכן ה Qn = Q tn נגדיר: אז Q n הוא שרשרת מרקוב בזמן בדיד. נגדיר: ν k µ t) µ t k = P Qn+ = i + k Qn = i) = e h t) dt 0 k! ν ν 0 ν ν ν 0 ν P = ν0 ν k ν אז מטריצת המעבר עבור התהליך Q n היא מכאן מקבלים כי ההתפלגות הסטציונרית של מספר הצרכנים שרואה צרכן שמגיע היא גאומטרית עם: 6

7 k P Qn = k) = uk = α ) α, α = ΨT µ α )) < למשואה עבור α יש פתרון יחיד בין 0 ל אם ורק אם למערכת קיים ההתפלגות הסטציונרית של אורך התור בזמן כלשהו לא רק ברגע הגעה) היא: π0 = P Q t) = k) = k πk = α ) α k =,, תור GI/G/ לתור GI/G/ אין נוסחאות מפורשות לשום מדד של ביצועי התור. פתרון משואות מסובכות או על ידי קירובים. נניח כי קצב המופע והזמן הבינמופעי מתפלג H עם צפיפות כל חישוב דורש הערכה נומרית על ידי h g הוא λ נניח כי קצב השרות הוא µ וזמן השרות מתפלג G עם צפיפות חסם קינגמן וקירוב במצב של : heavy traffic ca + c V = m s שימו לב לתור GI/G/ בעומס כבד זמן ההמתנה הוא בקירוב: 7

8 V + c = m s + V = m = a c לבין מופעי אכספוננציאלי) M/G/ זמן המתנה הוא ) M/M/ זמן המתנה הוא = s c לשרות אכספוננציאלי) בתור בתור קירובי נוזלים וקירובי דיפוזיה אם נסתכל בתהליך ההגעות t )A ונסתכל על הזמן ביחידות של ונספור את מספר המגיעים ביחידות A t) = A t) λt של אז לפי חוק המספרים הגדולים נקבל בקירוב כי: באותו אופן, אם השרת עובד ברציפות במשך זמן t שרות שנסמנו ב אז כאשר סופרים זמן ביחידות של ואנחנו סופרים את מספר הצרכנים המצטבר שיקבלו וצרכנים ביחידות של מקבלים: S t) A t) = λ t, S t) = µ t. S t) = S t) µ t קירוב הנוזלים של תהליך ההגעות ותהליך השרותים הוא: אם מתחילים עם כמות נוזלים התחלתית 0)Q אז קירוב נוזלים של התור הוא : ) λ µ ) + + Q t) = Q0) + A t) S t) = Q0) + ) t קירוב הנוזלים מבוסס על החוק החזק של המספרים הגדולים ומתעלם לגמרי מהאקראיות. 8

9 שימוש במשפט הגבול המרכזי נותן לנו קירוב לסטיות האקראיות מקירוב הנוזלים. אם נסתכל בתהליך ההגעות ביחידות זמן של ונחסיר ממנו את קירוב הנוזלים ונחלק בשורש של נקבל לפי משפט הגבול המרכזי הגירסה הפונקציונלית) כי: ˆ A t) A t) A t) = BM t), BM t) 0, λcat). λc a כאשר t) BM הוא תנועה בראונית עם ממוצע 0 ועם פרמטר דיפוזיה ˆ S t) S t) S t) = BM t), BM t) 0, µ cst) באותו אופן לתהליך השרות λ =, µ אז ההפרש בין ) = d אם קצב המופע וקצב השרות קרובים מאוד זה לזה כך ש מספר המופעים ומספר השרותים הוא בקירוב: ˆ ˆ ) ) ˆ Z t = A t S t) BM t), BM t) dt, λcat) אבל חלק מהזמן התור ריק ואז לא עוזבים צרכנים. ˆ התהליך t Z הוא אורך תור אם עובדים כל הזמן. קירוב דיפוזיה של תור כאשר קצב מופע קרוב מאוד לקצב השרות הוא: ˆ ) ˆ ) ˆ Q t = Z t + Y t) 0, ˆ Y 0) = 0, ˆ ), ˆ ) ˆ Y t Y t increases only when Q t) = 0 RBM reflected Brownian motion or ˆ לתהליך t Q קוראים תנועה בראונית משוקפת או מבוקרת regulated Brownian motion 9

10 א ב ג ה ד לימודי מוסמך בלוגיסטיקה תרגיל 3: סימולציה בנושא של שיתוף משאבים. צרכנים מגיעים בתהליך פואסון עם קצב. λ לכל צרכן יש דרישת לשרות אכספוננציאלי עם קצב µ ממוצע. µ רוצים להשוות בין מספר צורות שרות. יש שני תורים נפרדים כל אחד עם שרת יחיד, וצרכן שמגיע בוחר להצטרף לאחד מהם בהסתברות. יש שני תורים נפרדים, וצרכנים נשלחים לתור האחד או השני לסירוגין. יש שני תורים נפרדים, וצרכן שמגיע מצטרף לתור הקצר יותר. יש שני שרתים עם תור יחיד. יש שרת יחיד שעובד במהירות כפולה זמן השרות אצלו הוא חצי מדרישת השרות. השוה על ידי סימולציה שבה אתה יוצר 00 צרכנים עם זמני הגעה ודרישות שרות לכל אחד מהם, ואחר כך אתה מעביר את אותם הצרכנים דרך כל אחת מחמש מערכות השרות האלה. בנה היסטוגרמה של זמני השהיה במערכת לכל אופציה. רבעון תחתון, רבעון עליון ובנה דיאגרמת קופסה עבורם plot).box הנתונים לסימולציה: λ µ = 0.5, λ = 0., = = 0.8 µ חשב ממוצע, סטית תקן, מקסימום, מינימום, חציון, 0

11 א ב ג ד ה א ב ה ג ד לימודי מוסמך בלוגיסטיקה סיכום התרגילים תרגיל בתחנת מוניות יש מקום ל מוניות ויש מקום לשלושה נוסעים ממתינים. כאשר נוסע מגיע ויש מוניות ממתינות הוא עוזב מיד, עם אחת המוניות. אם אין מונית ויש מקום להמתין הוא ממתין בתור. אם אין מקום להמתין הוא לא נכנס לתחנה הולך לאיבוד). אם מונית מגיעה לתחנה ויש נוסעים היא עוזבת מיד עם אחד הנוסעים. אם אין נוסעים ויש מקום המונית ממתינה לנוסעים. אחרת המונית עוזבת בלי להיכנס כלל לתחנה. המוניות מגיעות לתחנה בתהליך פואסון בקצב = 9 λ מוניות לשעה. הנוסעים מגיעים לתחנה בתהליך פואסון בקצב = 6 µ נוסעים לשעה. הצג מערכת זו על ידי תהליך מרקוב בזמן רציף t X וענה על השאלות הבאות: צייר דיאגרמה של המצבים ושל קצבי המעבר. השתמש בשיטות של ניתוח תהליכי לידה ומוות כדי לחשב את ההסתברויות הסטציונריות של התהליך. מה ההסתברות שנוסע שמגיע לתחנה ימצא מיד מונית. איזה חלק מהמוניות לא ייכנסו כלל לתחנה. מהו זמן ההמתנה הממוצע של נוסע שמגיע ונכנס לתחנה כאשר אין בה מוניות. : תרגיל בדוק את נוסחת ליטל עבור כל אחת מהסימולציות שביצעת. תרגיל 3: סימולציה בנושא של שיתוף משאבים. צרכנים מגיעים בתהליך פואסון עם קצב. λ לכל צרכן יש דרישת לשרות אכספוננציאלי עם קצב µ ממוצע. µ רוצים להשוות בין מספר צורות שרות.. יש שני תורים נפרדים כל אחד עם שרת יחיד, וצרכן שמגיע בוחר להצטרף לאחד מהם בהסתברות יש שני תורים נפרדים, וצרכנים נשלחים לתור האחד או השני לסירוגין. יש שני תורים נפרדים, וצרכן שמגיע מצטרף לתור הקצר יותר. יש שני שרתים עם תור יחיד. יש שרת יחיד שעובד במהירות כפולה זמן השרות אצלו הוא חצי מדרישת השרות. השוה על ידי סימולציה שבה אתה יוצר 00 צרכנים עם זמני הגעה ודרישות שרות לכל אחד מהם, ואחר כך אתה מעביר את אותם הצרכנים דרך כל אחת מחמש מערכות השרות האלה. בנה היסטוגרמה של זמני השהיה במערכת לכל אופציה. רבעון תחתון, רבעון עליון ובנה דיאגרמת קופסה עבורם plot).box הנתונים לסימולציה: λ µ = 0.5, λ = 0., = = 0.8 µ חשב ממוצע, סטית תקן, מקסימום, מינימום, חציון, מקורות: פרק 8 בספר של קולקרני על תורים - פרק בספר של Kelly - רשימות מקורס קצר שהעברתי בתאילנד וסינגפור בדף הקורס באתר שלי - רשימות הרצאות של פרופסור משה חביב מירושלים, ב

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז

Διαβάστε περισσότερα

הרצאה 9: CTMC מבוא לתורת התורים

הרצאה 9: CTMC מבוא לתורת התורים הרצאה 9: CTMC מבוא לתורת התורים תורת התורים למערכת תורים שלושה מרכיבים עיקריים: -- זרם של צרכנים שזמני המופע שלהם הם תהליך נקודות T1, T1 + T2,, T1 + + T, -- דרישות שרות של הצרכנים, שהם סדרה של משתנים מקריים

Διαβάστε περισσότερα

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P... שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)

Διαβάστε περισσότερα

תורת התורים תור לקוחות

תורת התורים תור לקוחות תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת: A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

םירותה תאות לש םייטמתמ םילדומ םושיי רותה

םירותה תאות לש םייטמתמ םילדומ םושיי רותה יישום מודלים מתמטיים של תואת התורים לאיפיון תופעת התור, ולניהול מערכות שירות. משתני החלטה בניהול מערכות שירות (דרגות חופש): מספר שרתים, טכנולוגיה זמן שירות, משטר התור (תור משותף \ תור מפוצל). - - - שתי

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

תרגול #14 תורת היחסות הפרטית

תרגול #14 תורת היחסות הפרטית תרגול #14 תורת היחסות הפרטית 27 ביוני 2013 עקרונות יסוד 1. עקרון היחסות חוקי הפיסיקה אינם משתנים כאשר עוברים ממערכת ייחוס אינרציאלית (מע' ייחוס שאינה מאיצה) אחת למערכת ייחוס אינרציאלית אחרת. 2. אינווריאנטיות

Διαβάστε περισσότερα

מדדים מכונה. .served) Time)

מדדים מכונה. .served) Time) מדדים עמידה בלוחות זמנים מזעור רמת המלאי בתהליך (WIP) מזעור זמן הזרימה הממוצע במערכת מזעור זמן המתנה (חשוב כאשר נותנים שירות לאדם) מזעור זמן בטלה ניצולת גבוה הקטנת זמן הכינון מזעור עלויות דפוסי זרימה זרימה

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

מס' סטודנט מועד א' פתרון

מס' סטודנט מועד א' פתרון ס הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת תעשייה וניהול מרצה : מתרגלת: פרופסור אבישי מנדלבאום גלית יום-טוב 11.2.2010 מס' סטודנט תאריך הבחינה: שם הנדסת מערכות שירות 096324 מועד א' מסטר חורף תש"ע 2010

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים.

אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים. תרגילים בשרשראות מרקוב. + תרגילים מבחינות עבר אם לא דברנו בסוף מספיק על שרשראות עם מספר מצבים אינסופי פשוט תתעלמו מהתרגילים המתאימים..תהי Xn שרשרת מרקוב סופית עם מטריצת מעבר דו-סטוכסטית )סכום של כל עמודה

Διαβάστε περισσότερα

הרצאה 12: מימון ותמחור אופציות מרטינגלים ונוסחת Black-Scholes

הרצאה 12: מימון ותמחור אופציות מרטינגלים ונוסחת Black-Scholes הרצאה : מימון ותמחור אופציות מרטינגלים ונוסחת Black-Scholes המודל הבינומי: נייר ערך מסוים שמחירו היום הוא 00 יכול לעלות או לרדת בכל אחד מהימים הבאים. נתאר זאת על ידי עץ אופציה אירופית יכולה להיות: expiry

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X D FF-0 q 0 q 1 Z D FF-1 output clk 424 מצב המכונה מוגדר על ידי יציאות רכיבי הזיכרון. נסמן את המצב הנוכחי q

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות 1" (80420) באוניברסיטה העברית,

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס תורת ההסתברות 1 (80420) באוניברסיטה העברית, תורת ההסתברות יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות " (80420) באוניברסיטה העברית, 8 2007. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

א הקיטסי ' טטסל אובמ רלדנ הינור בג '

א הקיטסי ' טטסל אובמ רלדנ הינור בג ' מבוא לסטטיסטיקה א' נדלר רוניה גב' מדדי פיזור Varablty Measures of עד עתה עסקנו במדדים מרכזיים. אולם, אחת התכונות החשובות של ההתפלגות, מלבד מיקום מרכזי, הוא מידת הפיזור של ההתפלגות. יכולות להיות מספר התפלגויות

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

5.1.1 מבוא. .(process X X רציף). n n 1 0.5

5.1.1 מבוא. .(process X X רציף). n n 1 0.5 09 פרק הה' תהליכים מקריים 5. תהליכים מקריים 5.. מבוא בפרקים הקודמים עסקנו במשתנים מקריים בודדים או בקבוצות קטנות של משתנים מקריים. בפרק הנוכחי נרחיב את הדיון לטיפול בסדרות של משתנים מקריים, סדרה כזאת נקראת

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B בת, אזי: A, B ב ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n. Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

רשימת בעיות בסיבוכיות

רשימת בעיות בסיבוכיות ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

בית הספר הגבוה לטכנולוגיה ירושלים אותות ומערכות הרצאות #2-3 ההערות מבוססות על אתר הקורס הפתוח של MIT 1

בית הספר הגבוה לטכנולוגיה ירושלים אותות ומערכות הרצאות #2-3 ההערות מבוססות על אתר הקורס הפתוח של MIT 1 בית הספר הגבוה לטכנולוגיה ירושלים אותות ומערכות הרצאות #2-3 ההערות מבוססות על אתר הקורס הפתוח של MIT 1 סקירת המצגת אותות ומערכות בזמן בדיד )DT( פונקצית מדרגה ופונקצית "הלם" )דגימה( a. ייצוג אותות בדידים

Διαβάστε περισσότερα

ניהול סיכום הרבון ""ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i

ניהול סיכום הרבון ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i הקשר בין אחזקה לבין אמינות: דד// אחזקה כדי למצוא משך פעולה בטרם יש צורך לבצע אחזקה במערכת בעלת אמינות או MTBF באמינות נדרשת (בין ל- ) יש לבצע את החישוב הבא: ln r( ln r( MTBF MTBF s MTTR s ( T ) זמן ממוצע

Διαβάστε περισσότερα

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג (

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( עד כה עסקנו במערכות צירופיות בהן ערכי המוצא נקבעים לפי ערכי המבוא הנוכחיים בלבד. במערכות אלו אסורים מסלולים מעגליים. כעת נרחיב את הדיון למערכות עם מעגלים. למשל

Διαβάστε περισσότερα

מערכות בקרה 1 סיכום ( ) ( ) 1 *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס.

מערכות בקרה 1 סיכום ( ) ( ) 1 *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס. מערכות בקרה 1 סיכום *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס. f1 f1... f x1 x n u f f A=.. B= x x= xe u x= xe u= ue f u ue n f = n f... x1 x n u g h h

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

השאלות..h(k) = k mod m

השאלות..h(k) = k mod m מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( ) : מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן מעגלי קבל בנוי כך שמטען איננו יכול לעבור מצידו האחד לצידו האחר (אחרת לא היה יכול להחזיק מטען בצד אחד ומטען בצד השני) ולכן זרם קבוע לא יכול לזרום דרך הקבל.עניינינו

Διαβάστε περισσότερα

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן - פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",

Διαβάστε περισσότερα