t H = sec Rg sv
|
|
- ŌΣίμων Αβραμίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 t H sec t H : sec Rg sv : t H c Ovde sam pokusao da pronadjem tacne cifre magicnih brojeva sa Vajnbergove skale.moja istrazivanja su dovela do zakljucka da su magicni brojevi samo koeficijenti srazmernosti izmedju clanova na skali.kad je rec o koincidenciji velikih brojeva to,cini se, nema neko dublje znacenje. Rec je,naime, samo o blizini clanova na skali.sve su to razliciti brojevi kad vodimo racuna o tacnosti. Hablovo vreme n : t H : gm π G gm π G ( ) ( cm) cm a 0 Md ( a 0 Rg sv ) t e Rg sv t H t H sec Veliki magicni brojevi su kolicnici energije svemira i energija sa kvantnim brojevima 0^n gde je nod 0 do 40 u deseticama.
2 ( t H ) sec ρ sv4 : 4 t H π G ( ) ( t H ) 4 π G ρ sv4 0 sec Temperatura svemira.koeficijenti proporcionalnosti na Vajnbergovoj skali iz knjige "Gravitacija i kosmologija" na ruskom,str.577 Tablica 5.4 n : K n : n : n 4 : n 5 : n 6 : n 7 : n 8 : n 9 : n 0 : n :
3 n : n : n 4 : n 5 : n 6 : n 7 : n 8 : n 9 : ( t H ) 8 π G ρ sv4 Rg sv Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n.00 0 K H )) 8 π G ρ sv4 Rg sv k b n.00 0 K H )) 8 π G ρ sv4 Rg sv k b n 4 0 K H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K
4 H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K ( ( t H )) 8 π G ρ sv4 Rg sv k b n 9 00 K a :.. 0 H )) 8 π G ρ sv4 Rg sv n 0 k b K H )) 8 π G ρ sv4 Rg sv k b n 0 9 K H )) 8 π G ρ sv4 Rg sv k b n 0 9 K
5 H )) 8 π G ρ sv4 Rg sv k b n 0 8 K H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K H )) 8 π G ρ sv4 Rg sv k b n K Iz skalarne Fridmanove jednacine kosmosa izracunati energije vodonika, to jest mini-crne rupe sa masom Md (a to je identicno). ρ H : Md 4 π a 0 a 0 t HH : a c α vo :.. n vod :
6 HH )) 8 π G ρ H a 0. m e.607ev H )) 8 π G ρ sv4 Rg sv ev n vod a vo En HH (( t HH )) 8 π G ρ H a 0 : (( )) 8. m e ( ) En H : t H π G ρ sv4 Rg sv En H 5.7 En HH 0 87 Koeficijent proporcionalnosti R 0 : cm a :.. 8 r : cm
7 H )) 8 M π G ρ sv4 sv Rg sv n vod ev (( )) 8 t H π G ρ sv4 Rg sv a vo n vod t voda : a 0 a c α a 0 4 c α sec a kvant :.. 8 H )) 8 π G ρ sv4 n t a kvant t voda sec n t : sec
8 ( sec sec ) a 0 ( ) m e.04ev H )) 8 π G ρ sv4 4 n t a 0 m e.40ev t H 8 ( + π G ρ sv4 t H ) sec t H ( + 8 π G ρ sv4 t H ) sec n mkr : a mkr :.. 4 H )) 8 π G ρ sv4 Rg sv.7 K n mkr a mkr k b
9 H )) 8 π G ρ sv4 Rg sv n mkr k b.7 K ev k b.7 K n mkr : H )) 8 π G ρ sv4 Rg sv n mkr k b K 8 0 9
10 n naj : H )) 8 π G ρ sv4 Rg sv n naj k b K n sunce : H )) 8 π G ρ sv4 Rg sv n sunce k b K n zemlja : H )) 8 π G ρ sv4 Rg sv n zemlja k b K H )) 8 π G ρ sv4 Rg sv n zemlja erg Svemirska skala vremena a V : π G ρ sv4 a vodonik : sec a 0 4 c α sec ( ) 8
11 n V : ( ) sec (( )) sec Nize je postignuta potpuna analogija sa Vajnbergovom jednacinom a V n V 4 π sec G ρ sv4 n V 4 π G ρ sv4 a 0 a c α V a 0 c α sec ( π G) β ρ sv ( π G) β ρ sv4 ( π G) c α a 0 ρ sv4
12 4 6 ( π G) c α a 0 ρ sv4 a :.. 8 n ρ : ρ vod : 4 π G ( t vod ) a 0 t vod : c α ( ) ρ sv n.59 0 gm cm 4 π Md ( ) a 0 a gm cm ρ vod n :.77 0 a :.. 8 gm cm a 0 c α a n 8 π G sec ρ sv4 n 8 π G ρ sv4 a 0 a t voda : c α t voda sec
13 a sec 8 π G ρ sv4 ρ sv ( π G) ( ) c α.77 0 a 0 ρ sv4 a 0 4 c α π sec G n 9 ρ sv yr a 0 c α a 0 ( c α) sec
14 ( ) ( ) ρ vod sec 8 π G a :.. 8 ρ 4 π vod sec G ( ) ρ vod 8 π G a ( ) ρ vod sec 8 π G a 0 c α a 0 c α sec a 0 c α a sec ( a) ( ) ρ vod sec 4 π G
15 ρ vod gm cm ρ vod gm cm 8 π G ρ sv4 8 π G ρ sv4 0 sec Ovo je za me*c^ n e : n e : Negde oko mikrotalasne temperature ( ( t H )) 8 π G ρ sv4 Rg sv n e m h.9 0 cm sec
16 n e : 0 80 c α a 0 m cm ( t H ) 8 π G ρ sv4 Rg sv K cm n e m k b ( t H ) 8 π G ρ sv4 Rg sv 0 80 k b ( K) K k b ( ) ev m e c k b K n dejstvo :.76 0 H )) 8 π G ρ sv Rg sv n α c Rg sv r e H )) 8 π G ρ sv4 Rg sv cm sec
17 H )) 4 π G ρ ( sv4 ) 0 sec sec ρ sv : 4 π G t H ( ) H )) 4 π G ρ ( sv4 ) Rg sv 0 erg Veliki magicni brojevi povezuju gravitaciju, elektromagnetizam,kvantnu mehaniku i kvantnu elektrodinamiku ω : c α r e 4 π G n Md : ( ρ sv ) Rg sv n Md c gm Rg sv r e Md gm erg 8 π G ( ρ sv ) n Md c Rg sv gm el Rg sv n Md erg n novo : n novo n Md Md c erg 8 π G ( ρ sv ) Rg sv.8 0 n novo erg ω : c α a 0 n novo : π G ( ρ sv4 ) n novo Rg sv.606ev 8 G M Rg sv
18 π G ρ sv ( ω h) 8 π G ρ sv4 Rg sv ( ω h) erg erg ( ) ( m e c ). 0 6 sec gmcm c H )) 8 Gρ sv4 Rg sv π n n : 0 0 c H )) 8 Gρ sv4 Rg sv π n n : 0 0 c
19 H )) 8 π G ρ sv4 sv Rg sv r e n : 0 40 H )) 8 π G ρ sv4 Rg sv k r e b Rg sv K Md c erg ( + 8 π G t H ) ρ sv4 r e K ( ) t H k b Ovo su bili samo zaokrugljeni stepeni.u stvari postoji onoliko velikih magicnih brojeva koliko je veliki niz. Oni se sve vise smanjuju i prelaze u male brojeve da bi porasle do velikih negativnih. n : 0 9 c H )) 8 Gρ sv4 Rg sv π n n : 0 8 c H )) 8 Gρ sv4 Rg sv π n n : c H )) 8 Gρ sv4 Rg sv π n n :
20 c a 0 H )) 8 Gρ sv4 Rg sv π n cm 4 π Md ( ) 4 a gm cm H )) 8 Md c a 0 πg ρ sv4 n Rg sv 4 π gm cm H )) 8 π G ρ sv4 Rg sv k b ( ) 8 πg ρ sv4 t H t H k b 8 πg ρ sv4 ( ) k b 0 K n Rg sv Rg sv 5 0 K 0 K 0 K 0 K Ovo je temperatura prva po redu na Vajnbergovoj skali istorije svemira.pre ove temperature Vajnberg analizira najraniji svemir. n : K
21 0 K K 0 5 K K 0 K K 0 K m e c k b K K 0 0 K K 0 K c k b ( K) cm cm
22 cm r e Ja cu sada da nadjem neke clanove u nizu temperaturne istorije svemira od temperature 5..75*0^ do.7k na Vajnbergovoj skali, to jest od trenutka anihilacije parova µ+µ- do trenutka iskljucenja interakcije izmedu materije i zracenja gm n :.. 8 Rg sv cm ρ sv gm cm ( t H ) 8 π G ρ sv4 Rg sv k b K c k b K ( t H ) 8 π G ρ sv4 k b n Rg sv K M
23 . + t H K π G ρ sv4 Rg sv 0.86 n 70 ( k b ) A sada energija : H )) 8 π G ρ sv4 Rg sv erg (( t H )) 8 π G ρ sv4 Rg sv n 89 c gm.0 0 9
24 A sada vreme : H )) 8 π G ρ sv4 n sec gm c h yr m µ c h Masa muona yr ( m µ ) gm h gmcm sec K.4 0 K 0
25 h gm cm sec c r e cm sec h h π h c 5 G. 0 8 ev h gmcm sec E kr :. 0 8 ev G m p h c G m p α g : h c Rg sv L Pl K sec K gmcm ev v 0 : cm sec R 0 :.7 K ( k b ) el r e R 0 el R 0
26 R 0 v gm m e v 0 n k b.7 K Mikrotalasno zracenje m e ( c ) m e ( c α ) n k b n k b K m e v 0 n k b nah : ( t H ) 8 π G ρ sv4 nah r e c c v 0 α 0 : ( ) t H h c + 8 π G ρ sv4 t H ( ) t H c + 8 π G ρ sv4 t H ( r e m e c α) a 0 r e h gmcm sec
27 Md ( + 8 π G t H ) ρ sv4 Rg sv c ( t H ) BASIC SCIENCE REFERENCES Fundamental Physical Constants Universal Constants c m sec Velocity of light in vacuum r e π t e c µ 0 4 π 0 7 newton amp Permeability of vacuum ε Permittivity of vacuum farad m G m kg sec
28 ev G cm gmsec Newtonian constant of gravitation M s gm joule h Rg s G M s c Planck's constant (h) joule sec Electromagnetic Constants el Elementary charge coul Φ Φ Magnetic flux quantum M Bor joule stattesla Bohr magneton M Bor joule 4 stattesla joule 7 stattesla Nuclear magneton
29 Atomic Constants α Fine structure constant Ryd m Rydberg constant a m Bohr radius E h joule Hartree energy Quantum of circulation m sec Electron m e kg Electron mass Electron specific charge (electron charge to mass ratio) coul kg Electron Compton wavelength m
30 ECw m ECw cm r e m Classical electron radius joule 6 tesla Electron magnetic moment Muon m µ kg Muon mass
31 Proton m p kg Proton mass Ratio of proton mass to electron mass Proton Compton wavelength m joule tesla Proton magnetic moment Proton gyromagnetic ratio rad sec tesla Neutron m n kg Neutron mass Neutron Compton wavelength m Physico-Chemical Constants N l
32 N A mole Avogadro constant Atomic mass constant AMU kg coul mole Faraday constant joule mole K Molar gas constant
33 k b Boltzmann's constant joule K Molar volume of ideal gas at STP.440 liter mole σ watt m K 4 Stefan-Boltzmann constant watt m First radiation constant m K Second radiation constant M s gm M z gm m Pl h c G m Pl gm L Pl G h c cm r e.88 0 cm L Pl ( ) el m e c α a 0 Md gm r s km
34 Rg sv cm r z km Md el m e G G cm gmsec r e α a 0 t H sec c Rg sv G Rg sv cm t H gm Rg sv cm sec Rg sv t H c t H yr gm Md : c r e G a 0 t e c α gm Data from CRC Handbook of Chemistry and Physics, 7nd edition edited by David R. Lide, CRC Press (99).
35 8
36 m sec
37
38
39
40
41 n,
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 (exact) magnetic constant µ 0 4π 10 7 NA 2 = 12.566 370614... 10 7 NA 2 (exact) electric constant 1/µ 0 c 2 ε 0 8.854 187 817... 10 12 Fm 1 (exact)
Some Resources, Data Tables etc.
Some Resources, Data Tables etc. Primary SI Units Meter m Kilogram kg Second s Ampere A Kelvin K Mol mol Candela cd Newton N Farad F Joule J Coulomb C Tesla T Hertz Hz Watt W Prefixes for SI Units 10 10
MATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
arxiv: v1 [physics.atom-ph] 21 Jul 2015
CODATA Recommended Values of the Fundamental Physical Constants: 2014 Peter J. Mohr, David B. Newell, Barry N. Taylor National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420,
THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT PHYSICS FORMULAE AND DATA BOOKLET This booklet is not to be removed from the examination room or marked in any way. THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
Elektron u magnetskom polju
Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)
STEAM TABLES. Mollier Diagram
STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables
Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1
Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Μεγέθη & μονάδες 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with
2. Chemical Thermodynamics and Energetics - I
. Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]
Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ
Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΡΓΙΚΩΝ ΚΑΙ ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΓΕΩΡΓΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Δρ. Μενέλαος Θεοχάρης Πολιτικός Μηχανικός
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Βαρύτητα και Ισχυρή Δύναμη: Ενα ημικλασικό μοντέλο τύπου Bohr χωρίς άγνωστες παραμέτρους για την δομή των πρωτονίων και των νετρονίων
Βαρύτητα και Ισχυρή Δύναμη: Ενα ημικλασικό μοντέλο τύπου Bohr χωρίς άγνωστες παραμέτρους για την δομή των πρωτονίων και των νετρονίων Κώστας Γ. Βαγενάς Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών 6500
Ακτινοβολίες και Ακτινοπροστασία Ενότητα 2η: Απορρόφηση ραδιενεργών ακτινοβολιών, επιπτώσεις στην υγεία, δοσιμετρία
Ακτινοβολίες και Ακτινοπροστασία Ενότητα 2η: Απορρόφηση ραδιενεργών ακτινοβολιών, επιπτώσεις στην υγεία, δοσιμετρία Μιχάλης Φωτάκης και Τσικριτζής Λάζαρος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
Available online at shd.org.rs/jscs/
J. Serb. Chem. Soc. 78 (1) S1 S8 (2013) Supplementary material SUPPLEMENTARY MATERIAL TO Metal complexes of N'-[2-hydroxy-5-(phenyldiazenyl)- benzylidene]isonicotinohydrazide. Synthesis, spectroscopic
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Butadiene as a Ligand in Open Sandwich Compounds
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Butadiene as a Ligand in Open Sandwich Compounds Qunchao Fan, a Jia Fu, a Huidong
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4
ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Η παρατήρηση. Η παρατήρηση. Το πείραμα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ.
Γενική Φυσική Μεγέθη & μονάδες Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
PETROSKILLS COPYRIGHT
Contents Solution Gas-Oil Ratio... 2... 2... 2... 2 Formation Volume Factor... 3... 3... 3... 3 Viscosity... 4... 4... 4... 4 Density... 5 Bubble Point Pressure... 5... 6... 6... 6 Compressibility... 6
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *9172174829* PHYSICS 9702/04 Paper 4 A2 Structured Questions October/November 2008 1 hour 45 minutes Candidates
Exercises in Electromagnetic Field
DR. GYURCSEK ISTVÁN Exercises in Electromagnetic Field Sources and additional materials (recommended) Gyurcsek I. Elmer Gy.: Theories in Electric Circuits, Globe Edit 206, ISBN:97833307343 Simonyi K.:
ΚΕΦΑΛΑΙΟ 1 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1
ΚΕΦΑΛΑΙΟ 1 ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΦΥΣΙΚΕΣ ΠΟΣΟΤΗΤΕΣ (ΜΟΝΑΔΕΣ) Μονόμετρα (ή βαθμωτά) (σχέση με συστήματα μονάδων μέτρησης) Διανυσματικά Τανυστικά (περισσότερα παρακάτω) ΜΕΤΡΗΣΗ Σύγκριση μιας ποσότητας με τη μονάδα
ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό ΕΙΣΑΓΩΓΗ. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά
ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ Να έχετε: Τετράδιο εργαστηρίου (Physics book) File για φυλλάδια Απλό υπολογιστή (calculator) Οι σηµειώσεις του µαθήµατος βρίσκονται στην προσωπική µου ιστοσελίδα:http://www.pantelis.net
PETROSKILLS COPYRIGHT
Contents Dew Point... 2 SI Conversions... 2 Output... 2 Input... 2 Solution Condensate-Oil Ratio... 3 SI Conversions... 3 Output... 3 Input... 3 Gas Density... 4 SI Conversions... 5 Output... 5 Input...
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
PHYSICS 9702/41 Paper 4 A2 Structured Questions May/June hours Candidates answer on the Question Paper. No Additional Materials are required.
www.xtremepapers.com Cambridge International Examinations Cambridge International Advanced Level *6592581051* PHYSICS 9702/41 Paper 4 A2 Structured Questions May/June 2015 2 hours Candidates answer on
Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο
Ιατρική Φυσική Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr PHYS215 Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level
www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *9048802011* PHYSICS 9702/22 Paper 2 AS Structured
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
APPENDIX A. Summary of the English Engineering (EE) System of Units
Appendixes A. Summary of the English Engineering (EE) System of Units B. Summary of the International System (SI) of Units C. Friction-Factor Chart D. Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) E.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.
Electric Forces and Fields Section Review, p. 633 Givens Chapter 17 3. q 10.0 C q 10.0 C N 6.5 10 19 electrons 1.60 10 19 C/electron 1.60 10 19 C/electron Practice 17A, p. 636 1. q 1 8.0 C q 8.0 C r 5.0
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides
Supplementary Material for Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides Christopher L. Moss, a Thomas W. Chung, a Jean A. Wyer, b Steen Brøndsted Nielsen,
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2003 Chem. Eur. J. 2003 Supporting Information for Generation and Coupling of [Mn(dmpe) 2 (C CR)(C C)] Radicals Producing Redox-active C 4 -Bridged
Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.
Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel
Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa
Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής
Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ