About the controllability of y t εy xx + My x = 0 w.r.t. ε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "About the controllability of y t εy xx + My x = 0 w.r.t. ε"

Transcript

1 About the controllability of y t εy xx + My x = w.r.t. ε YOUCEF AMIRAT and ARNAUD MÜNCH Nancy - IECN - November 7th 217

2 Introduction - The advection-diffusion equation Let T >, M R, ε > and Q T := (, 1) (, T ). >< L εy ε := yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), (1) Well-poseddness: y ε H 1 (, 1), v ε L 2 (, T ),! y ε L 2 (Q T ) C([, T ]; H 1 (, 1)) Null control property: From (Russel 7), T >, y H 1 (, 1), v ε L 2 (, T ) such that y ε (, T ) = in H 1 (, 1). Main concern: Behavior of the controls v ε as ε Controllability of conservation law system; Toy model for fluids when Navier-Stokes Euler.

3 Introduction - The advection-diffusion equation Let T >, M R, ε > and Q T := (, 1) (, T ). >< L εy ε := yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), (1) Well-poseddness: y ε H 1 (, 1), v ε L 2 (, T ),! y ε L 2 (Q T ) C([, T ]; H 1 (, 1)) Null control property: From (Russel 7), T >, y H 1 (, 1), v ε L 2 (, T ) such that y ε (, T ) = in H 1 (, 1). Main concern: Behavior of the controls v ε as ε Controllability of conservation law system; Toy model for fluids when Navier-Stokes Euler.

4 Cost of control We note the non empty set of null controls by C(y, T, ε, M) := {v L 2 (, T ); y = y(v) solves (5) and satisfies y(, T ) = } For any ε >, we define the cost of control by the following quantity : K (ε, T, M) := sup y L 2 (,1) =1 j ff min u L u C(y,T,ε,M) 2 (,T ). We denote by T M the minimal time for which the cost K (ε, T, M) is uniformly bounded with respect to ε. In other words, (5) is uniformly controllable with respect to ε if and only if T T M.

5 Cost of control We note the non empty set of null controls by C(y, T, ε, M) := {v L 2 (, T ); y = y(v) solves (5) and satisfies y(, T ) = } For any ε >, we define the cost of control by the following quantity : K (ε, T, M) := sup y L 2 (,1) =1 j ff min u L u C(y,T,ε,M) 2 (,T ). We denote by T M the minimal time for which the cost K (ε, T, M) is uniformly bounded with respect to ε. In other words, (5) is uniformly controllable with respect to ε if and only if T T M.

6 Reminds Remark Let v ε the control of minimal L 2 -norm for the initial data y ε : then v ε L 2 (,T ) K (ε, T, M) y ε L 2 (,1) Thus, K (ε, T, M) is the norm of the (linear) operator y ε v HUM where v HUM is the control of minimal L 2 -norm. Remark By duality, the controllability property is related to the existence of C > such that ϕ(, ) L 2 (,1) C εϕx (, ) L 2 (,T ), ϕ T H 1 (, 1) H2 (, 1) (2) The quantity C obs (ε, T, M) = sup ϕ T H 1 (,1) ϕ(, ) L2(,1). εϕ x (, ) L 2 (,T ) is the smallest constant for which (2) holds true and K (ε, T, M) = C obs (ε, T, M).

7 Reminds Remark Let v ε the control of minimal L 2 -norm for the initial data y ε : then v ε L 2 (,T ) K (ε, T, M) y ε L 2 (,1) Thus, K (ε, T, M) is the norm of the (linear) operator y ε v HUM where v HUM is the control of minimal L 2 -norm. Remark By duality, the controllability property is related to the existence of C > such that ϕ(, ) L 2 (,1) C εϕx (, ) L 2 (,T ), ϕ T H 1 (, 1) H2 (, 1) (2) The quantity C obs (ε, T, M) = sup ϕ T H 1 (,1) ϕ(, ) L2(,1). εϕ x (, ) L 2 (,T ) is the smallest constant for which (2) holds true and K (ε, T, M) = C obs (ε, T, M).

8 The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

9 The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

10 The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

11 M - Direct problem - Behavior of y ε as ε Theorem (Coron- Guerrero) Let T >, M R, y L 2 (, 1). Let (v ε ) (ε) be a sequence of functions in L 2 (, T ) such that for some v L 2 (, T ) v ε v in L 2 (, T ), ε +. For ε >, let us denote by y ε C([, T ]; H 1 (, 1)) the weak solution of >< yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y (, 1), (3) Let y C([, T ]; L 2 (, 1)) be the weak solution of y t + My x = Q T, >< y(, ) = v(t) if M > (, T ), y(1, ) = if M < (, T ), >: y(, ) = y (, 1), (4) Then, y ε y in L 2 (Q T ) as ε +.

12 First consequence Theorem If T < 1 M, lim ε K (ε, T, M). Consequently, T M 1 M. PROOF. Assume that K (ε, T, M) +. There exists (ε n) (n N) positive tending to such that (K (ε n, T, M)) (n N) is bounded. Let v εn the optimal control driving y to at time T and y εn the corresponding solution. Let T (T, 1/ M ). We extend y εn and v εn by on (T, T ). From the inequality v εn L 2 (,T ) = v εn L 2 (,T ) K (εn, T, M) y L 2 (,1), we deduce that (v εn ) (n N) is bounded in L 2 (, T ), so we extract a subsequence (v εn ) (n N) such that v εn v in L 2 (, T ). We deduce that y εn y in L 2 (Q T ) solution of the transport equation. Necessarily, y on (, 1) (T, T ). Contradiction.

13 M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

14 M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

15 M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

16 Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (2 TM) π2 εt

17 Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (2 TM) π2 εt

18 Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (2 TM) π2 εt

19 Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (2 TM) π2 εt

20 Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (2 TM) π2 εt

21 Upper bounds for T M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε when ε for T 4.3 M. If M <, then K (ε, T, M) Ce c/ε when ε for T 57.2 M.

22 Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2( )] M if M <. ( ) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

23 Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2( )] M if M <. ( ) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

24 Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2( )] M if M <. ( ) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

25 Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2( )] M if M <. ( ) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

26 Objective Objective: estimate the uniform minimal control time T M!!?? We can try the following two approaches : Numerical estimation of K (ε, T, M) with respect to ε and T 1 M (for M > and M < ) Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

27 Objective Objective: estimate the uniform minimal control time T M!!?? We can try the following two approaches : Numerical estimation of K (ε, T, M) with respect to ε and T 1 M (for M > and M < ) Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

28 Attempt 1 : Numerical estimation of K (ε, T, M)

29 Reformulation of the cost of control K 2 (ε, T, M) = sup y L 2 (,1) (A εy, y ) L 2 (,1) (y, y ) L 2 (,1) where A ε : L 2 (, 1) L 2 (, 1) is the control operator defined by A εy := ˆϕ() where ˆϕ solves the adjoint system < : ϕ t εϕ xx Mϕ x = in Q T, ϕ(, ) = ϕ(1, ) = on (, T ), ϕ(, T ) = ϕ T in (, 1), (6) associated to the initial condition ϕ T H 1 (, 1), solution of the extremal problem inf ϕ T H 1 (,L) J (ϕ T ) := 1 2 Z T (εϕ x (, )) 2 dt + (y, ϕ(, )) L 2 (,T ). REFORMULATION - K (ε, T, M) is solution of the generalized eigenvalue problem : ff λ supj R : y L 2 (, 1), y, s.t. A εy = λy in L 2 (, 1).

30 The generalized eigenvalue problem by the power iterated method In order to get the largest eigenvalue of the operator A ε, we may employ the power iterate method (Chatelain 9): y L2 (, 1) given such that y L 2 (,1) = 1, >< ỹ k+1 = A εy k, k, >: y k+1 ỹ k+1 = ỹ k+1, k. L 2 (,1) (7) The real sequence { ỹ k L 2 (,1) } k> converges to the eigenvalue with largest module of the operator A ε: q ỹ k L 2 (,1) K (ε, T, M) as k. () The L 2 sequence {y k } k then converges toward the corresponding eigenvector. The first step requires to compute the image of A ε: this is done by determining the control of minimal L 2 norm by minimizing J with y k as initial condition for (5).

31 Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

32 Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

33 Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

34 Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

35 Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

36 Picture of controls with respect to ε, y fixed y (x) = sin(πx); T = 1; M = t t t Control of minimal L 2 (, T )-norm v ε (t) [, T ] for ε = 1 1, 1 2 and 1 3

37 Picture of controls with respect to ε, y fixed y (x) = sin(πx); T = 1; M = t t t Control of minimal L 2 (, T )-norm v ε (t) [, T ] for ε = 1 1, 1 2 and 1 3

38 Cost of control K (ε, T, M) w.r.t. ε - M = Cost of control w.r.t. ε for T =.95 1 M, T = 1 M and T = M In agreement with Coron-Guerrero 26, ε 3/2 T 1/2 M 2 «M K (ε, T, M) C M 3 ε 3 exp 2ε (1 TM) π2 εt (1)

39 Corresponding worst initial condition x Figure: T = 1 - M = 1 - The optimal initial condition y in (, 1) for ε = 1 1 (full line), ε = 1 2 (dashed line) and ε = 1 3 (dashed-dotted line). = y is close to e Mx 2ε sin(πx)/ e Mx 2ε sin(πx) L 2 (,1)

40 Cost of control K (ε, T, M) w.r.t. ε - M = 1 x x t Left: Cost of control w.r.t. ε for T = 1 M ; Right: Corresponding control v ε in the neighborhood of T for ε = 1 3

41 Corresponding worst initial condition for M = x Figure: T = 1 - M = 1 - The optimal initial condition y in (, 1) for ε = 1 1 (full line), ε = 1 2 (dashed line) and ε = 1 3 (dashed-dotted line).

42 Part 2 Attempt 2 : Asymptotic analysis w.r.t. ε We take M >. Optimality system : L εy ε =, L ε ϕε =, (x, t) Q T, y ε (, ) = y ε, x (, 1), >< v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =,. t (, T ), ϕ >: ε (, t) = ϕ ε (1, t) =, t (, T ), βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (11) β > - Regularization parameter

43 Part 2 Attempt 2 : Asymptotic analysis w.r.t. ε We take M >. Optimality system : L εy ε =, L ε ϕε =, (x, t) Q T, y ε (, ) = y ε, x (, 1), >< v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =,. t (, T ), ϕ >: ε (, t) = ϕ ε (1, t) =, t (, T ), βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (11) β > - Regularization parameter

44 Direct problem - Asymptotic expansion yt ε εyxx ε + Myx ε =, (x, t) (, 1) (, T ), >< y ε (, t) = v ε (t), t (, T ), y >: ε (1, t) =, t (, T ), y ε (x, ) = y (x), x (, 1), (12) y and v ε are given functions. We assume that mx v ε = ε k v k, k= the functions v, v 1,, v m being known. We construct an asymptotic approximation of the solution y ε of (12) by using the matched asymptotic expansion method.

45 Direct problem - Asymptotic expansion Let us consider two formal asymptotic expansions of y ε : the outer expansion mx ε k y k (x, t), (x, t) (, T ), the inner expansion k= mx ε k Y k (z, t), k= z = 1 x ε (, ε 1 ), t (, T ).

46 Direct problem - Outer expansion Putting mx ε k y k (x, t) into equation (12) 1, the identification of the powers of ε yields k= ε : y t + My x =, ε k : y k t + My k x = y k 1 xx, for any 1 k m. Taking the initial and boundary conditions into account we define y and y k (1 k m) as functions satisfying the transport equations, respectively, y >< t + Myx =, (x, t) Q T, y (, t) = v (t), t (, T ), >: y (x, ) = y (x), x (, 1), (13) and > y < t k + Myx k = y xx k 1, (x, t) Q T, y k (, t) = v k (t), t (, T ), >: y k (x, ) =, x (, 1). (14)

47 Direct problem - Outer expansion < y (x Mt) x > Mt, y (x, t) = : v t x, x < Mt. M Using the method of characteristics we find that, for any 1 k m, Z t >< yxx k 1 (x + (s t)m, s)ds, x > Mt, y k (x, t) = >: v k t x Z x/m + yxx k 1 (sm, t x + s)ds, x < Mt. M M Remark < t y y 1 (x Mt), x > Mt, (x, t) = : v 1 t x + x M M 3 (v ) t x, x < Mt, M >< y 2 (x, t) = v 2 t x M >: t 2 2 y (4) (x Mt), x > Mt, + x M 3 (v 1 ) t x M 2x M 5 (v ) (3) t x + x 2 M 2M 6 (v ) (4) t x, x < Mt. M

48 Direct problem - Outer expansion < y (x Mt) x > Mt, y (x, t) = : v t x, x < Mt. M Using the method of characteristics we find that, for any 1 k m, Z t >< yxx k 1 (x + (s t)m, s)ds, x > Mt, y k (x, t) = >: v k t x Z x/m + yxx k 1 (sm, t x + s)ds, x < Mt. M M Remark < t y y 1 (x Mt), x > Mt, (x, t) = : v 1 t x + x M M 3 (v ) t x, x < Mt, M >< y 2 (x, t) = v 2 t x M >: t 2 2 y (4) (x Mt), x > Mt, + x M 3 (v 1 ) t x M 2x M 5 (v ) (3) t x + x 2 M 2M 6 (v ) (4) t x, x < Mt. M

49 Direct problem - Inner expansion mx Now we turn back to the construction of the inner expansion. Putting ε k Y k (z, t) k= into equation (12) 1, the identification of the powers of ε yields ε 1 : Yzz (z, t) + MY z (z, t) =, ε k 1 : Yzz k (z, t) + MY z k k 1 (z, t) = Yt (z, t), for any 1 k m. We impose that Y k (, t) = for any k m and use the asymptotic matching conditions Y (z, t) y (1, t), as z +, Y 1 (z, t) y 1 (1, t) yx (1, t)z, as z +, Y 2 (z, t) y 2 (1, t) y 1 x (1, t)z y xx (1, t)z2, as z +, Y m (z, t) y m (1, t) y m 1 x as z +. (1, t)z y xx m 2 (1, t)z m! (y ) (m) x (1, t)( z) m,

50 Direct problem - Inner expansion Lemma Y (z, t) = y (1, t) 1 e Mz, (z, t) (, + ) (, T ). For any 1 k m, the solution of reads where Y k (z, t) = Q k (z, t) + e Mz P k (z, t), (z, t) (, + ) (, T ), (15) P k (z, t) = kx i= 1 i y k i i! x i (1, t)z i, Q k (z, t) = kx ( 1) i i y k i i! x i (1, t)z i. i=

51 Asymptotic approximation Let X : R [, 1] denote a C 2 cut-off function satisfying ( 1, s 2, X (s) =, s 1, 1 X ε(x) 1 2ε γ 1 ε γ Figure: The function X ε. 1 x We define, for γ (, 1), the function X ε(x) = X 1 x ε γ, then introduce the function mx mx «1 x wm(x, ε t) = X ε(x) ε k y k (x, t) + (1 X ε(x)) ε k Y k, t, (16) ε k= k= defined to be an asymptotic approximation at order m of the solution y ε of (12).

52 Compatibility conditions - Regularity Lemma (i) Assume that y C 2m+1 [, 1], v C 2m+1 [, T ] and the following C 2m+1 -matching conditions are satisfied M p (y ) (p) () + ( 1) p+1 (v ) (p) () =, p 2m + 1. (17) Then the function y belongs to C 2m+1 ([, 1] [, T ]). (ii) Additionally, assume that v k C 2(m k)+1 [, T ], and the following C 2(m k)+1 -matching conditions are satisfied, respectively, (v k ) (p) () = X ( 1) i M i p+1 y k 1 x i+2 t j (, ), p 2(m k) + 1. (1) i+j=p 1 Then the function y k belongs to C 2(m k)+1 ([, 1] [, T ]).

53 Compatibility conditions - example with m = 2 Lemma (i) Assume that y C 5 [, 1], v C 5 [, T ] and the following C 5 -matching conditions are satisfied M p (y ) (p) () + ( 1) p+1 (v ) (p) () =, p 5. (19) Then the function y belongs to C 5 ([, 1] [, T ]). (ii) Additionally, assume that v 1 C 3 [, T ], v 2 C 1 [, T ] and the following C 3 and C 1 -matching conditions are satisfied, respectively, >< >: v 1 () =, (v 1 ) (1) () = M 2 (v ) (2) () = y (2) (), (v 1 ) (2) () = 2M 2 (v ) (3) () = 2My (3) (), (v 1 ) (3) () = 3M 2 (v ) (4) () = 3M 2 y (4) (), (2) v 2 () =, (v 2 ) (1) () =. (21) Then the function y 1 belongs to C 3 ([, 1] [, T ]), and the function y 2 belongs to C 1 ([, 1] [, T ]).

54 Estimate of L ε w ε m Lemma Let wm ε be the function defined by (16). Assume the previous regularity and compatibility. Then there is a constant c m independent of ε such that L ε(w ε m)(x, t) = P 5 i=1 Ji ε(x, t), L ε(w ε m ) C([,T ];L 2 (,1)) Jε(x, 1 t) = ε m+1 yxx m (x, t)x ε(x), «1 x Jε 2 (x, t) = εm (1 X ε(x))yt m, t, «1 x Jε(x, 3 t) = MX ε γ ε γ «1 x Jε(x, 4 t) = X ε γ ε 1 2γ «1 x Jε 5 (x, t) = 2X ε γ ε m X k= m X cm ε (2m+1)γ 2. (22) «1 x ε k Y k, t ε «1 x ε k Y k, t ε! mx ε k y k (x, t), k=! mx ε k y k (x, t), k= k= X m «! 1 x mx ε 1 γ ε 1 ε k Yz k, t + ε k yx k ε (x, t). k= k=

55 Asymptotic approximation- Convergence Theorem Let y ε be the solution of problem (12) and let w ε m be the function defined by (16). Assume that the assumptions of Lemma 6 hold true. Then there is a constant c m independent of ε such that y ε w ε m C([,T ];L 2 (,1)) 2m+1 cmε 2 γ. (23) Introduce the function z ε = y ε wm ε. It satisfies >< L ε(z ε ) = L ε(wm ε ), (x, t) (, 1) (, t), z ε (, t) = z ε (1, t) =, t (, T ), (24) >: z ε (x, ) = z ε (x), x (, 1), Using the Gronwall Lemma it holds that z ε (, t) 2 L 2 (,1) L ε(wm) ε 2 L 2 (Q T ) + zε 2 L 2 e t, t (, T ]. (25) (,1) We have z ε (x) = (1 Xε(x)) y (x) mx k= 1 x ε k Y k, «!, ε

56 Convergence with respect to m Theorem Let, for any m N, y ε m denote the solution of problem (12). We assume that the initial condition y belongs to C [, 1] and there are c, b R such that y (m) C[,1] c b m, m N. (26) We assume that (v k ) k is a sequence of polynomials of degree p 1, p 1, uniformly bounded in C p 1 [, T ]. We assume in addition that, for any k N, for any m N, the functions v k and y satisfy the matching conditions. Let wm ε be the function defined by (16). Then, there is ε > such that, for any fixed < ε < ε, we have consequently y ε m w ε m in C([, T ], L2 (, 1)), as m +, lim w ε m + m (x, t) = Xε(x) X X «1 x ε k y k (x, t) + (1 X ε(x)) ε k Y k, t ε k= k= = y ε (x, t) a.e. in (, 1) (, T ), where y ε is the solution of problem (12) with y ε (, t) = P k= εk v k (t), t (, T ).

57 First approximate controllability result Proposition Let m N, T > 1 M and a ], T 1 M [. Assume regularity and matching conditions on the initial condition y and functions v k, k m. Assume moreover that T > L M t = L M v k (t) =, k m, t [a, T ]. Then, the solution y ε of problem (12) satisfies the following property y ε (, T ) L 2 (,1) cm ε (2m+1)γ 2, γ (, 1) for some constant c m > independent of ε. The function v ε C([, T ]) defined by v ε := P m k= εk v k is an approximate null control for (5). t = T L M x L

58 m? Remark For ε > small enough, we can not pass to the limit as m in order to get a null-controllability result. Let y (x) = 1. The functions v k, k defined as follows v (t) = X (t), v k (t) =, k > (27) with X = {f C [, T ], f () = 1, f (a) =, f (p) () = f (p) (a) =, p N }, a [, T ] satisfy the matching conditions. If a ], T 1/M[, then wm ε (, T ) L 2 (,T ) = m N. If lim m c mε (2m+1)γ 2 =, then the function v ε = P k= εk v k = v is a null control for y ε as time T. Contradiction.

59 Picture y (x) = 1, v (t) = X (t), v k (t) =, k > (2) X (t) = e kt2m+2, with k > so that X p ()) = for all p 2m + 1. M = 1, k = 1 2, T = 1 and m = 2. Y (z, t) = (1 e z ) independent of t while Y 1 and Y 2 are identically zero x.2.4 t x.2.4 t x x.2.4 t.6. 1

60 The case T = 1/M 1 x w ε (x, T ) = Xε(x)y (x, T ) + (1 X ε(x)) Y ε = X ε(x)v (T (1 x)) + (1 X ε(x)) y () «, T, (x, t) Q T, 1 e M(1 x) ε «If supp(v ) [, T ε γ ], T = L M Lε γ w ε (, T ) L 2 (,1) y () ε γ/2 and y ε (, T ) L 2 (,1) w ε (, T ) L 2 (,1) + (y ε w ε )(, T ) L 2 (,1) y () ε γ/2 + ε v L 2 (,ε γ T ) y () (cε τ(γ) + ε γ/2 ), t = Tε γ x L

61 The case of initial condition y ε of the form y ε Mx (x) = e 2ε f (x) Let us consider the case of the C ([, 1]) initial data (with L = 1): y ε Mx (x) := Kε sin(πx)e 2ɛ, K ε = O(ε 3/2 ). (29) Taking m =, the function L ε(w ε) involves the term εy xx (x, t)x ε(x). For points in C := {(x, t) Q T, x > Mt}, we obtain y (x, t) = y ε (x Mt); this leads, to (writing that X ε = 1 on (, 1 2ε γ )) Z 1 2ε γz x/m «2 «1/2 ε yxx Xε L 2 (C ) εkε (sin(π(x Mt))e M(x Mt) 2ε ) xx dtdx = εk εo(1) = O(ε 1/2 ). (3)

62 The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

63 The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

64 The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

65 L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

66 L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

67 L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

68 L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

69 L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

70 L ε y ε m C([,T ],L 2 (,1)) T 1 M t 2 M(2 α) Thus, the corresponding control is given >< v (t) = e γm2 t 4ε v (t) 1 [,β] (t), γ = α(2 α), >: v (t) = kc 1 2C 2 + kc 2 t k 3 e kt η + α(2 α)m + C 3 t + C 4, k := 4ε (34) C β 1 M(1 α) x 1 Figure: (, 1) (, T ) = D + β (D β C α ) (D β C+ α ). Figure: Control v (t) for ε = 1 2 and ε = 1 3 associated to y ε Mx (x) = e 2ε sin(πx).

71 Optimality condition For any ε > and β >, the optimality system associated to the extremal problem min v ε 2 v ε L 2 L (,T ) 2 (,T ) + β 1 y ε (, T ) 2 L 2 (,1) (35) where the pair (v ε, y ε ) solves (5) is given by L εy ε =, L εϕ ε =, (x, t) Q T, >< y ε (, ) = y ε, x (, 1), v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =, ϕ ε (, t) = ϕ ε (1, t) =, t (, T ), >: βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (36)

72 Optimality condition v (t) + εv 1 (t) + = Φ z(, t) + εφ 1 z(, t) +, t (, T ). At the zero order, we get therefore v (t) = Φ z (, t) leading simultaneously, to v (t) = Mϕ (, t) = ( Mϕ T (M(T t)), t ]T 1/M, T ],, t [, T 1/M] The last equality contradicts the matching conditions (17). Jε (ϕ ε T ) = 1 Z T (εϕ ε x 2 (, ))2 dt + (y, ϕ ε (, )) L 2 (,1), = 1 Z T (Φ 2 z(, t)) 2 dt + (y, ϕ (, )) + ε..., Z = M2 T «2 ϕ T 2 (M(T t)) dt + ε... T 1/M

73 Optimality condition v (t) + εv 1 (t) + = Φ z(, t) + εφ 1 z(, t) +, t (, T ). At the zero order, we get therefore v (t) = Φ z (, t) leading simultaneously, to v (t) = Mϕ (, t) = ( Mϕ T (M(T t)), t ]T 1/M, T ],, t [, T 1/M] The last equality contradicts the matching conditions (17). Jε (ϕ ε T ) = 1 Z T (εϕ ε x (, )) 2 dt + (y, ϕ ε (, )) 2 L 2 (,1), = 1 Z T (Φ 2 z(, t)) 2 dt + (y, ϕ (, )) + ε..., Z = M2 T «2 ϕ T 2 (M(T t)) dt + ε... T 1/M

74 Final remarks Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C 2 cut-off X function to take into account the discontinuity of the solutions y k on the characteristic line. This allows to deal with the initial optimality system. The negative case is very similar except that the control v ε lives in the boundary layer. (still in progress! )

75 Final remarks Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C 2 cut-off X function to take into account the discontinuity of the solutions y k on the characteristic line. This allows to deal with the initial optimality system. The negative case is very similar except that the control v ε lives in the boundary layer. (still in progress! )

76 Easier case >< ytt ε + ε 2 y ε y ε =, in Q T, y ε =, νy ε = v ε 1 ΓT, on Σ T, >: (y ε (, ), yt ε (, )) = (y, y 1 ), on Ω. Theorem (Lions) Assume (y, y 1 ) L 2 (Ω) H 1 (Ω). Assume that (Ω, Γ T, T ) satisfies a geometric control condition. For any ε >, let v ε be the control of minimal L 2 (Γ T ) for y ε. Then, ( εv ε, y ε ) (v, y) in L 2 (Γ T ) L (, T ; L 2 (Ω)), as ε where v is the control of minimal L 2 (Γ T )-norm for y, solution in C ([, T ]; L 2 (Ω)) C 1 ([, T ]; H 1 (Ω)) of : >< y tt y =, in Q T, y = v1 ΓT, on Σ T, >: (y(, ), y t (, )) = (y, y 1 ), in Ω.

77 Fin A. Münch : Numerical estimations of the cost of boundary controls for the equation y t εy xx + My x = with respect to ε. Y. Amirat, A. Münch : Asymptotic analysis of the equation y t εy xx + My x = and controllability results. MERCI DE VOTRE ATTENTION

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Mixed formulations for the direct approximation of L 2 -weighted nul. equation

Mixed formulations for the direct approximation of L 2 -weighted nul. equation Mixed formulations for the direct approximation of L 2 -weighted null controls for the linear heat equation ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Hammamet, PICOF, 2014 joint

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

On the local exact controllability of micropolar fluids with few controls

On the local exact controllability of micropolar fluids with few controls On the local exact controllability of micropolar fluids with few controls Sergio Guerrero & Pierre Cornilleau December 8, 2015 Abstract In this paper, we study the local exact controllability to special

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation Hui Cao joint work with Michael Klibanov and Sergei Pereverzev

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

A bound from below for the temperature in compressible Navier-Stokes equations

A bound from below for the temperature in compressible Navier-Stokes equations A bound from below for the temperature in compressible Navier-Stokes equations Antoine Mellet, Alexis Vasseur September 5, 7 Abstract: We consider the full system of compressible Navier-Stokes equations

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Phase-Field Force Convergence

Phase-Field Force Convergence Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα