No Fermionic Wigs for BPS Attractors in 5 Dimensions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "No Fermionic Wigs for BPS Attractors in 5 Dimensions"

Transcript

1 No Fermionic Wigs for BPS Attractors in 5 Dimensions DFPD-1/TH/0 Lorenzo G. C. Gentile 1,, Pietro A. Grassi 1,, Alessio Marrani, Andrea Mezzalira 5, and Wafic A. Sabra 6 arxiv: v1 [hep-th] 0 Mar 01 1 DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria, I-1510, Italy, pgrassi@mfn.unipmn.it Dipartimento di Fisica U01cGalileo GalileiU01d, Università di Padova, via Marzolo 8, I-511 Padova, Italy and INFN, Sezione di Padova, via Marzolo 8, I-511, Padova, Italy, lgentile@pd.infn.it INFN - Gruppo Collegato di Alessandria - Sezione di Torino Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 00D, B-001 Leuven, Belgium, alessio.marrani@fys.kuleuven.be 5 Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 1, B-1050 Bruxelles, Belgium, andrea.mezzalira@ulb.ac.be 6 Centre for Advanced Mathematical Sciences and Physics Department, American University of Beirut, Lebanon, ws00@aub.edu.lb Abstract We analyze the fermionic wigging of 1/ BPS electric extremal black hole attractors in N =, D = 5 ungauged Maxwell Einstein supergravity theories, by exploiting anti Killing spinors supersymmetry transformations. Regardless of the specific data of the real special geometry of the manifold defining the scalars of the vector multiplets, and differently from the D = case, we find that there are no corrections for the near horizon attractor value of the scalar fields; an analogous result also holds for 1/ BPS magnetic extremal black string. Thus, the attractor mechanism receives no fermionic corrections in D = 5 at least in the BPS sector.

2 Contents 1 Introduction 1 Ungauged N =, D = 5 MESGT Fermionic Wigging.1 Second Order Evaluation on Purely Bosonic Background 6.1 First Order Second Order Third Order Fourth Order Wigging of BPS Extremal Black Hole First Order Second Order Third Order Fourth Order Conclusion 10 A Notation and Identities 1 B Third Order 1 C Fourth Order 16 1 Introduction The question concerning the presence or absence of hairs of any kind around a black hole is very compelling and, of course, it has been studied from several points of view. Nonetheless, recently some of the authors of the present work re-posed the question by considering possible fermionic hairs first in [1], and then in a series of papers [] for non-extremal, as well as BPS black holes. The first paper on the subject is due to Aichelburg and Embacher []. They considered asymptotically flat black hole solution in N =, D = supergravity without vector multiplets and computed iteratively the supersymmetric variations of the background in terms of the flat-space Killing spinors. In that paper, they were able to compute some of the physical quantities such as the corrections to the angular momentum, while other interesting properties cannot be seen at that order of the expansion. Afterwards, the works [1] and [] applied their technique to some examples of BPS black hole, up to the fourth order in the supersymmetry transformation. In particular, for extremal black hole solutions, the attractor mechanism [5] is a very interesting and important physical property; essentially, it states that the solution at the horizon depends only on the conserved charges of the system, and is independent of the value of the matter fields at infinity. This is related to the no-hair theorem, under which, for example, a BPS black hole solution depends only upon its mass, its angular momentum and other conserved charges. As said, the authors of 1

3 [] addressed the question whether the attractor mechanism has to be modified in the presence of fermions. The conclusion was that, at the level of approximation of their computations, in the case of double-extremal BPS solutions, the mechanism is unchanged. In [1] N =, D = 5 AdS black holes were investigated, and it was found that the solution, as well as its asymptotic charges, get modified at the second order due to fermionic contributions. However, in [1] the attractor mechanism and its possible modifications was not considered. In [6], the fermionic wig for asymptotically flat BPS black holes in N =, D = supergravity coupled to matter was investigated. There, it has been shown that the attractor mechanism gets modified at the fourth order even in the case of double extremal solutions in the simplest example of N = supergravity coupled to a single matter field minimally coupled vector multiplet. The surprising result is that to the lower orders all corrections vanish for the BPS solution, while at the fourth order, despite several cancellations due to special geometry identities, some terms do survive, and thus the attractor gets modified. It has also been noticed that there are situations in which some combinations of charges render the attractor modifications null; this led to the conjecture that, in those D = models admitting an uplift to 5 dimensions, the attractor mechanism is unmodified by the fermionic wig. That motivated us to study in full generality the D = 5 case, by means of the same techniques; we found that there is no modification to the attractor mechanism up to forth order for all the ungauged N =, D = 5 supergravity models coupled to vector multiplets. This is a rather strong result, and it has been obtained for a generic real special geometry of the manifold defined by the scalars of the vector multiplets. The cancellations appear to be due to identities of the special geometry, as well as to the extremal black hole solutions taken into account cfr. Eq We should point out that the wigging is computed by performing a perturbation of the unwigged purely bosonic BPS extremal black hole solution keeping the radius of the event horizon unchanged. The complete analysis, including the study of the fully-backreacted wigged black hole metric, will be presented elsewhere. The plan of the paper is as follows. In Sec. we recall some basics of N =, D = 5 ungauged Maxwell-Einstein supergravity. The fermionic wigging is then presented in Sec., and its evaluation on the purely bosonic background of an extremal BPS black hole is performed in Sec.. The nearhorizon conditions are applied in Sec. 5, obtaining the universal result of vanishing wig corrections to the attractor value of the scalar fields of the vector multiplets in the near-horizon geometry. The universality of this result resides in its independence on the data of the real special geometry endowing the scalar manifold of the supergravity theory. Comments on this result and further remarks and future directions are given in Sec. 6. Three Appendices, specifying notations and containing technical details on the wigging procedure, are presented. Ungauged N =, D = 5 MESGT Following [7] [9], we consider N =, D = 5 ungauged Maxwell Einstein supergravity theory MESGT, in which the N = gravity multiplet { e a µ, ψ i µ, A µ } is coupled to nv Abelian vector

4 multiplets 1 { A µ,λ xi,φ x}, with neither hyper nor tensor multiplets : where δe µ a = 1 ǫγa ψ µ, δψ i µ =D µ ˆωǫ i i 6 h I F I γ µ δ ν µγ ρ ǫ i 1 6 ǫ j λ ix γ µ λ j x 1 1 γ µνǫ j λix γ ν λ j x.1a 1 8 γ µǫ j λix γ λ j x 1 1 γν ǫ j λix γ µν λ j x,.1b δh I = 1 i ǫλ x h I x, 6.1c δφ x = 1 i ǫλx,.1d δa I µ = 1 ǫγ µλ x h I x 6 ihi ǫψ µ,.1e δλ xi = /Dφ i x ǫ i δφ y Γ x yz λzi 1 γ F I h x I ǫi 1 Txyz[ ǫ 6 j λi y λ j z γµ ǫ j λi y γ µ λ j z 1 γµν ǫ j λi y γ µν λ j ] z,.1f F I µν = [µa I ν],.a F µν I =Fµν I ψ [µ γ ν] λ x h I x i 6 ψ µ ψ ν h I,.b T xyz =C IJK h I x hj y hk z,.c Γ w xy =hw I hi x,y T xyzg zw..d From the Vielbein postulate, the N = spin connection reads ˆω µ ab = 1 [ e cµ Ω abc Ω bca Ω cab] K a µ b,. where Ω abc : = e µa e νb µ e c ν νe c µ and K a b µ := 1 ψ [b γ a] ψ µ 1 ψ b γ µ ψ a. The covariant derivatives are defined as D µ φ x = µ φ x 1 i ψ µ λ x,.a D µ h I = µ h I = hi x µφ x = hi x D µφ x,.b D µ λ xi = µ λ xi µ φ y Γ x yzλ zi 1 ω µ ab γ ab λ xi, D µ ψν i = µ 1 ω µ ab γ ab ψν i,.c.d 1 i = 1, of the fundamental of USp SU R symmetry, x = 1,...,n V and I = 0,1,...,n V, where the 0 index pertains to the D = 5 graviphoton. Note that γ µ denote the D = 5 gamma matrices. Moreover, we adopt the convention κ = 1 cfr. e.g. App. C of [9]. When not indicated, spinor indices are contracted using the standard SU metric ε ij see appendix A.

5 and [7]; see also e.g. Eq. C.10 of [9] y h I x = h I g xy T xyz h Iz,.5a y h Ix = h Ig xy T xyz h z I..5b Note that only ω ab µ and not ˆω ab µ occurs in the covariant derivative of the gravitino. Furthermore, it holds that see also e.g. [10, 11, 1] h I x xh I, h Ix a IJ h J x,.6a a IJ = C IJK h K h I h J,.6b C IJK h I h J h K =1, h I h I = 1..6c It is worth pointing out that in D = 5 Lorentzian signature no chirality is allowed, and the smallest spinor representation of the Lorentz group is given by symplectic Majorana spinors; for further details, see App. A. Fermionic Wigging We now proceed to perform the fermionc wigging, by iterating the supersymmetry transformations of the various fields generated by the anti-killing spinor ǫ for a detailed treatment and further details, cfr. e.g. [1, 6]; schematically denoting all wigged fields as Φ and the original bosonic configuration by Φ, the following expansion holds: Φ = e δ Φ = ΦδΦ 1 δ Φ 1! δ Φ 1! δ Φ,.7 where, as in [], the expansion truncates at the fourth order because of the -Grassmannian degrees of freedom that ǫ contains..1 Second Order In order to give an idea on the structure of the iterated supersymmetry transformations on the massless spectrum of the theory under consideration, we present below the second order transformation rules 5 general results on supersymmetry iterations at the third and fourth order are given in Apps. B and In the present treatment, C IJK denotes the C IJK of [1], their difference being just a rescaling factor. In the present paper we will deal with a BPS background so just half of the supersymmetries are preserved. 5 By exploiting Eq..16 of [1], both tt xyz and tγ x yz can be related to the covariant derivative of the Riemann tensor R xyzt; this latter is known to satisfy the the so called real special geometry constraints see e.g. Eq..1 of [1].

6 C, respectively : with δ e a µ = ǫγa 1 δ 1 ψ µ, δ ψµ i = δ 1 D µ ǫ i 1 6 ǫ j λ ix γ µ δ 1 λ j x 1 1 γ µνǫ j λix γ ν δ 1 λ j x 1 8 γ µǫ j λix γ δ 1 λ j x 1 1 γν λix γ µν δ 1 λ j x 1 6 ǫ j λ ix γ a λ j x δ 1 e a µ 1 6 ǫ j δ 1 λix γ µ λ j x 1 1 γ abǫ j λix γ b λ j x δ 1 e a µ 1 1 γ µνǫ j δ 1 λix γ ν λ j x 1 8 γ abcǫ j λix γ bc λ j x δ 1 e a µ 1 8 γ µǫ j δ 1 λix γ λ j x 1 1 γb ǫ j λix γ ab λ j x δ 1 e a µ 1 1 γν ǫ j δ 1 λix γ µν λ j x i 6 h I F [ I δ 1 e a µ e ν b eρ c ea µ δ 1 e ν b e ρ c ea µ eν b δ 1 e ρ c i 1 h Iz δ 1 φ z F I γ µ δµ ν γρ ǫ i i 6 h I δ φ x = ǫ i δ 1 λ x, δ A I µ = 1 ǫγ µ ] γ bc a δ b a γc ǫ i.8 δ 1 FI γ µ δ ν µγ ρ ǫ i,.9 δ 1 λ x h I x 1 ǫhi δ 1 ψ µ δ 1 e a µ ǫγ a λ x h I x δ 1 φ x ǫψ µ.10 i i hi x 1 ǫγ µλ x y h I x δ 1 φ y,.11 δ λ ix = i δ 1 e µ a γ a Dµ φ x ǫ i i γµ δ 1 Dµ φ x ǫ i 1 6 Txyz γ µ ǫ j λi y γ µ δ 1 λ j z 1 Txyz ǫ j λi y δ 1 λ j z Txyz γ µν ǫ j λi y γ µν δ 1 λ j z δ 1 φ y Γ x yz δ 1 λ zi δ φ y Γ x yzλ zi 1 Txyz ǫ j δ 1 λi y λ j z Txyz γ µν ǫ j δ 1 λi y γ µν λ j z 1 6 Txyz γ µ ǫ j δ 1 λi y γ µ λ j z 1 6 tt xyz δ 1 φ t [ ǫj λi y λ j z γ µ ǫ j λi y γ µ λ j z 1 γµν ǫ j λi y γ µν λ j ] z δ 1 φ y t Γ x yz δ 1 φ t λ zi 1 γ F I t h x I δ 1 e µ a e ν b eµ a δ 1 e ν b 1 δ 1 φ t ǫ i 1 γ δ 1 FI h x Iǫ i γ ab FI µν h x I ǫi..1 5

7 δ 1 FI µν = δ 1 Fµν I δ γ 1 ψ[µ ν] λ x h I x ψ [µ γ ν] δ 1 λ x h I x ψ [µ γ ν] λ x y h I x δ 1 φ y i 6 δ 1 ψµ ψ ν h I i 6 ψ µ δ 1 ψ ν h I ψ [µ δ 1 e a ν] γ a λ x h I x i ψ µ ψ ν h I x δ 1 φ x,.1 δ 1 D µ = 1 δ 1 ωµ ab γ ab,.1 δ 1 ωµ ab = 1 [ δ 1 e cµ Ω abc Ω bca Ω cab] 1 [ e cµ δ 1 Ω abc δ 1 Ω bca δ 1 Ω cab] δ 1 K a µ b,.15 δ 1 Ω abc [ = δ 1 e µa e νb e µa δ 1 e νb] µ e c ν νe c µ e µa e νb[ ] µ δ 1 e c ν ν δ 1 e c µ,.16 δ 1 K a µ b = 1 [δ 1 ψρ e ρ[a γ b] ψ µ ψ ρ δ 1 e ρ[a γ b] ψ µ ψ [a γ b] δ 1 ψ µ 1 δ 1 ψρ e ρa γ µ ψ b 1 ψ ρ δ 1 e ρa γ µ ψ b 1 ψ a γ a δ 1 e a µ ψ b 1 ψ a γ µ ψ ρ δ 1 e ρb 1 ψ ] a γ µ δ 1 ψ ρ e ρb,.17 δ 1 Dµ φ x = µ δ 1 φ x i δ 1 ψµ λ x i ψ µ δ 1 λ x..18 Evaluation on Purely Bosonic Background Next, we proceed to evaluate the fermionic wigging on a purely bosonic background characterized by setting ψ = λ = 0identically, anddenoted by bg throughout. Thisresultsin adramaticsimplification of previous formulæ; in particular, all covariant quantities, such as the Ẽ tensor [1], characterizing the real special geometry of the scalar manifold cfr. Apps. B and C, do not occur anymore after evaluation on such a background..1 First Order At the first order, the non-zero supersymmetry variations are: δ 1 ψµ i bg =D µˆωǫ i i 6 h IF I δ 1 λ xi bg = i / φ x ǫ i 1 γ FI h x I ǫi. γ µ δ ν µ γρ ǫ i,.1a.1b Moreover, the supercovariant field strength collapses to the ordinary field strength and the covariant derivative on φ x reduces to an ordinary flat derivative. 6

8 . Second Order δ eµ a bg =1 ǫγa δ 1 bg ψ µ,.a δ φ x bg = ǫ i δ 1 λ x bg,.b δ A I bg µ = i ǫhi δ 1 bg ψ µ ǫγ 1 µ δ 1 λ x bg h I x..c The supercovariant field strength, the covariant derivative on φ x and the variation of the spin connection ωµ ab all collapse to zero.. Third Order At the third order, one obtains the following results : δ ψµ i bg = δ bg D µ ǫ i 1 ǫ j δ 1 λix bg γ µ δ 1 λx j bg 1 6 γ µν δ 1 λix bg γ ν δ 1 λx j bg 1 γ µǫ j δ 1 λix bg γ δ 1 λx j bg 1 6 γ µνǫ j δ 1 λix bg γ ν δ 1 λx j bg i [ 6 h IF I δ eµ a bg eν b eρ c ea µ γa bc δa b γc ǫ i i δ e ν b bg eρ c ea µ eν b δ φ z bg F I γ µ δµ ν γρ ǫ i bg] δ e ρ c 1 h Iz i 6 h I δ bg FI γ µ δµ ν γρ ǫ i,.a δ λ ix bg = i δ e µ bg a γa µ φ x ǫ i i γµ δ Dµ φ x bg ǫi δ φ y bg Γ x yz δ 1 λ zi bg 1 Txyz ǫ j δ 1 λi y bg δ 1 λ j z bg 1 6 Txyz γ µν ǫ j δ 1 λi y bg γ µν δ 1 λ j z bg 1 6 Txyz γ µ ǫ j δ 1 λi bg y γ µ δ 1 λz j bg 1 γ FI t h x I δ φ t bg ǫ i 1 γ δ FI bg h x I ǫi 1 [ γab δ e a µ bg bg] eν b eµ a δ e ν b Fµν I hx I ǫi..b 7

9 For the supercovariant field strength, the covariant derivative on φ x, and the spin connection ω ab µ, it holds that: δ FI µν bg = [µ bg δ 1 ψ[µ bg γ ν] δ 1 λ x bg h I x δ A I ν] i δ 1 ψν bg δ 1 bg ψ µ h I, δ Dµ φ x bg = µ δ φ x bg i 1 δ 1 ψµ bg δ 1 λ x bg, δ ωµ ab bg δ =1 bg e cµ Ω abc Ω bca Ω cab 1 [ δ Ω abc bg δ Ω bca bg δ Ω abc bg =[ δ e µa bg eνb e µa δ e νb bg [ e µa e νb µ δ eν c bg ν δ K a µ b bg = δ 1 ψρ bg e ρ[a γ b] δ 1 bg ψ µ δ 1 bg ψρ γ µ δ 1 bg ψ ν e ρa e νb. ] δ Ω cab bg ] µ e c ν νe c µ δ K a b µ.a.b bg,.c bg] δ e c µ,.d.e. Fourth Order Finally, at the fourth order, one achieves the following expressions : δ eµ a bg =1 ǫγa δ bg ψ µ,.5a δ φ x bg = ǫ i δ λ x bg,.5b δ Aµ I bg = ǫγ 1 µ δ λ x bg h I x i i hi x ǫγ µ ǫhi δ bg ψ µ δ φ x bg ǫ δ 1 bg ψ µ δ e a µ bg ǫγ a δ 1 λ x bg h I x δ 1 λ x bg y h I x δ φ y bg..5c Again, the supercovariant field strength, the covariant derivative on φ x and the spin connection ω ab µ all vanish. 8

10 5 Wigging of BPS Extremal Black Hole Following the treatment of the D = 5 attractor mechanism given in [16, 17] and [18], we consider the 1/ BPS near horizon conditions for extremal electric black hole with near-horizon geometry AdS S : µ h I = 0 = µ φ x = 0, h Ix F I µν = 0, 5.6 and we evaluate the results for purely bosonic background computed in the previous section onto such conditions denoted by BPS, and always understood on the r.h.s. of equations, throughout the following treatment. 5.1 First Order At the first order, the gravitino variation is non zero, while the gaugino variation vanishes : 5. Second Order At the second order, one obtains : 5. Third Order At the third order, it holds that : δ BPS ψ µ = δ BPS D µ ǫ δ 1 ψµ i BPS =D µˆωǫ i i 6 h IF I δ 1 λ xi BPS = 0. γ µ δ ν ργ ρ ǫ i 0, 5.7a 5.7b δ eµ a BPS =1 ǫγa δ 1 BPS ψ µ 0, 5.8a δ φ x BPS = 0, 5.8b δ Aµ I BPS = c [ δ e a µ BPS eν b eρ c ea µ i 6 h IFbc I γa bc δa b γc ǫ i i 6 h I δ e ν b BPS eρ c ea µ eν b BPS] δ e ρ c δ FI BPS γ µ δ ν µ γρ ǫ i, 5.9a and δ λ ix BPS = b 9

11 Concerning the supercovariant field strength, the covariant derivative on φ x and the spin connection ω ab µ, the following expressions hold: δ BPS FI µν = [µ δ A I ν] δ BPS i 1 BPS ψν δ 1 BPS ψ µ h I, 5.10a δ Dµ φ x BPS = µ δ φ x BPS i δ 1 ψµ BPS δ 1 λ x BPS = 0, 5.10b δ ωµ δ ab BPS =1 BPS e cµ Ω abc Ω bca Ω cab 1 [ δ Ω abc BPS δ Ω bca BPS δ Ω cab ] BPS δ K a µ b BPS, 5.10c δ Ω abc [ BPS = δ e µa BPS e νb e µa δ e νb ] µ BPS e c ν ν e c µ e µa e νb[ µ δ eν c BPS BPS] ν δ e c µ, 5.10d δ K a b µ 5. Fourth Order BPS = δ 1 BPS ψρ e ρ[a γ b] δ 1 BPS ψ µ δ 1 ψρ BPS γ µ δ 1 BPS ψ ν e ρa e νb. 1 Finally, at the fourth order, by using the identity [7] one achieves the following results : h I h Ix = 0, 5.10e δ eµ a BPS =1 ǫγa δ BPS ψ µ 0, 5.11a δ φ x BPS = 0, 5.11b δ A I µ BPS = i ǫhi δ BPS ψ µ c Once again, the supercovariant field strength, the covariant derivative on φ x and the spin connection ω ab µ all vanish. 6 Conclusion The general structure of the fermionic wigging.7 along a -component anti-killing spinor, as well as the results reported in Secs. 5. and 5., do imply that the attractor values of the real scalar fields φ x in the near horizon AdS S geometry of the 1/ BPS extremal electric black hole are not corrected by the fermionic wigging itself; an analogous result holds for extremal magnetic black string with a near horizon geometry AdS S cfr. e.g. [18] and [11]. 10

12 Thus, the attractor values of the scalar fields φ x are still fixed purely in terms of the black hole electric charges : φ x BPS = e φ δ BPS = = φ x BPS δ 1 φ x BPS 1 δ φ x BPS! 1 δ φ x BPS 1 δ φ x BPS!! = φ BPS, 6.1 as it holds for the attractor mechanism on the purely bosonic background cfr. e.g. [16, 17, 18]. It should also be stressed that the result 6.1 does not depend on the specific data of the real special geometry of the manifold defined by the scalars of the vector multiplets. We would like to stress once again that we adopted the approximation of computing the fermionic wig by performing a perturbation of the unwigged, purely bosonic BPS extremal black hole solution while keeping the radius of the event horizon unchanged. The complete analysis of the fully-backreacted wigged black hole solution, including the study of its thermodynamical properties and the computation of its Bekenstein-Hawking entropy is left for future work. This study can also be generalized to the non-supersymmetric non-bps case 6. It should also be remarked that in D =, the attractor mechanism receives a priori non-vanishing corrections from bilinear terms in the anti-killing spinor ǫ [6]. Further investigation of such an important difference concerning wig corrections to the attractor mechanism in D = and D = 5 is currently in progress, and results will be reported elsewhere. Here, we confine ourselves to anticipate that the aforementioned non-vanishing wig corrections in D = can be related to the intrinsically dyonic nature of the four-dimensional large charge configurations, namely to the fact that charge configurations giving rise to a non-vanishing area of the horizon, and thus to a well-defined attractor mechanism for scalar dynamics, contain both electric and magnetic charges. As further venues of research, we finally would like to mention that fermionic wigging techniques could also be applied to other asymptotically flat D = 5 solutions, such as black rings [19, 18] and black Saturns [0], as well to extended N > supergravity theories in five dimensions. Acknowledgments We would like to thank Anna Ceresole and Gianguido Dall Agata for useful discussions on black holes in supergravity and on real special geometry. The work of LGCG is partially supported by MIUR grant RBFR10QS5J String Theory and Fundamental Interactions. The work of PAG is partially supported by the MIUR-PRIN contract 009-KHZKRX. The work of A. Marrani is supported in part by the FWO - Vlaanderen, Project No. G , and in part by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy P7/7. 6 Note that in this case the series.7 truncates at the 8 th order 11

13 The work of A. Mezzalira is partially supported by IISN - Belgium conventions and.51.08, by the Communauté Française de Belgique through the ARC program and by the ERC through the SyDuGraM Advanced Grant. A Notation and Identities We follow the notations in [7]. We adopt the Lorentzian D = 5 metric signature,,,, and we consider symplectic Majorana spinors satisfying λ i = λ i γ 0 = λ it C, A.1 where the charge conjugation matrix C fulfills the condition and C T = C = C 1, C = 1, A. Cγ µ C 1 = γ µ T = Cγ µ T C = γ µ, Cγ µν T C = γ µν, A. from which one obtains Cγ µ T = Cγ µ, Cγ µν T = Cγ µν. Notice that C and Cγ µ are antisymmetric matrices, while Cγ µν is a symmetric one. Spinorial indices i = 1, are raised and lowered as follows with V i = ε ij V j, V i = V j ε ji, ε 1 = ε 1 = 1. From these relations, one can derive the following identities : λ i χ i = λ i χ j ε ji = χ i λ i = χ i λ i, λ i γ µ χ i = λ i γ µ χ j ε ji = χ j γ µ λ j = χ i γ µ λ i, λ i γ µν χ i = λ i γ µν χ j ε ji = χ j γ µν λ j = χ i γ µν λ i, A. A.5 A.6 yielding λ i λ i = 0, λ i γ µ λ i = 0, λ i γ µν λ i 0. A.7 A.8 A.9 1

14 B Third Order At third order in N =, D = 5 supersymmetry iterated transformations, one finds 7 δ e a µ = ǫγa 1 δ ψ µ, δ ψµ i = δ D µ ǫ i 1 6 ǫj λ ix γ µ δ λ j x 1 1 γµνǫj λ ix γ ν δ λ j x 1 8 γµǫj λ ix γ δ λ j x 1 1 γν ǫ j λix γ µν δ λ j x 1 δ 1 e a µ ǫ j λix γ a δ 1 λ j x 1 δ ǫj 1 λix γ µ δ 1 λ j x 1 δ 1 e a µ γ ab ǫ 6 j λix γ b δ 1 λ j x 1 6 γµνǫj δ 1 λix γ ν δ 1 λ j x 1 δ 1 e a µ γ abc ǫ j λix γ bc δ 1 λ j x 1 γµǫj δ 1 λix γ δ 1 λ j x 1 δ 1 e a µ γ ab ǫ 6 j λix γ b δ 1 λ j x 1 6 γµνǫj δ 1 λix γ ν δ 1 λ j x 1 6 ǫj λ ix γ aλ j x δ e a µ 1 δ 1 e a µ ǫ j δ 1 λix γ aλ j x 1 δ ǫj λix γ µλ j x 1 1 γ abǫ j λix γ b λ j x δ e a µ 1 6 γ abǫ j δ 1 λix γ b λ j x δ 1 e a µ 1 1 γµνǫj δ λix γ ν λ j x 1 8 γ abcǫ j λix γ bc λ j x δ e a µ 1 γ abcǫ j δ 1 λix γ bc λ j x δ 1 e a µ 1 8 γµǫj δ λix γ λ j x 1 1 γν ǫ j δ λix γ µνλ j x 1 1 γb ǫ j λix γ ab λ j x δ e a µ 1 6 γb ǫ j δ 1 λix γ ab λ j x δ 1 e a µ i 6 hi F [ I δ e a µ ǫ ν be ρ c e a µ δ ǫ ν b e ρ c e a µǫ ν b δ e ρ c ] δ 1 e a µ δ 1 ǫ ν b e ρ c δ 1 e a µ ǫ ν b δ 1 e ρ c e a µ δ 1 ǫ ν b δ 1 e ρ c γa bc δaγ b c ǫ i i 6 hiz δ 1 φ z ] FI [δ 1 e a µ e ν be ρ c e a µ δ 1 e ν b e ρ c e a µe ν b δ 1 e ρ c γa bc δaγ b c ǫ i i 1 hiz δ φ z FI γ µ δ ν µγ ρ ǫ i i 1 yhiz δ 1 φ z δ 1 φ y FI γ i 6 hi δ 1 FI [δ 1 e a µ µ δµγ ν ρ ǫ i e ν be ρ c e a µ δ 1 e ν b e ρ c e a µe ν b ] δ 1 e ρ c γa bc δaγ b c ǫ i i 6 hiz δ 1 φ z γ δ 1 FI µ δµγ ν ρ ǫ i i γ 6 hi δ FI µ δµγ ν ρ ǫ i, B. δ φ x = ǫ i δ λ x, B. δ A I µ = 1 ǫγµ δ λ x h I x 1 i δ e a µ ǫγ aλ x h I x ǫhi δ ψ µ i hi x δ φ x ǫψ µ 7 t yh I x can be elaborated by exploiting Eq..5. Furthermore, w ut xyz = 1Ẽxyz wu, where the rank 5 completely symmetric tensor Ẽxyz wu is the real special geometry analogue [1] of the so called E tensor of special Kähler geometry [15]; by using the last of.a, a similar result holds for u tγ x yz. B.1 1

15 1 ǫγµλx yh I x δ φ y ih I x δ 1 φ x ǫ δ 1 ψ µ i yhi x δ 1 φ y δ 1 φ x ǫψ µ δ 1 e a µ ǫγ a δ 1 λ x h I x δ 1 e a µ ǫγ aλ x yh I x δ 1 φ y ǫγ µ δ 1 λ x yh I x δ 1 φ y 1 ǫγµλx t yh I x δ 1 φ y δ 1 φ t, δ λ ix = δ 1 e µ a γ a δ 1 Dµφ x ǫ i i δ e µ a γ a Dµφ x ǫ i i γµ δ Dµφ x ǫ i 1 6 Txyz γ µ ǫ j λi y γ µ δ λ j z 1 Txyz ǫ j λi y δ λ j z Txyz γ µν ǫ j λi y γ µν δ λ j z δ φ y Γ x yz δ 1 λ zi 1 Txyz ǫ j δ 1 λi y δ 1 λ j z 1 6 Txyz γ µν ǫ j δ 1 λi y γ µν δ 1 λ j z δ 1 φ y Γ x yz 1 1 δ λ zi δ φ y Γ x yzλ zi Txyz ǫ j δ λi y λ j z 1 utxyz δ 1 φ u ǫ j λi y δ 1 λ i z 1 6 utxyz δ 1 φ u γ µ ǫ j λi y γ µ δ 1 λ j z 1 6 utxyz δ 1 φ u γ µ ǫ j δ φ y tγ x yz Txyz γ µ ǫ j δ 1 λi y γ µ δ 1 λ j z 8 6 Txyz γ µν ǫ j δ λi y γ µνλ j z 1 6 utxyz δ 1 φ u γ µν ǫ j δ 1 λi y γ µνλ j z 1 utxyz δ 1 φ u ǫ j δ 1 λi y λ j z δ 1 λi y γ µλ j z δ 1 φ y tγ x yz δ 1 φ t λ zi 1 utxyz δ φ u ǫ j λi y λ j z w utxyz δ 1 φ u δ 1 φ w ǫ j λi y λ j z w utxyz δ 1 φ u δ 1 φ w γ µν ǫ j λi y γ µνλ j z 1 6 w utxyz δ 1 φ u δ 1 φ w γ µ ǫ j λi y γ µλ j z δ 1 φ y u tγ x yz δ 1 φ t δ 1 φ u λ zi 1 γ F I th x I δ φ t ǫ i 1 γ δ 1 FI th x I δ 1 φ t ǫ i 1 γ δ F I h x Iǫ i 1 γ F I u th x I δ 1 φ t δ 1 φ u ǫ i 1 γab[ δ e µ a e ν b δ 1 e µ a δ 1 e ν b e µ a δ eb] ν Fµνh x I γ ab δ 1 e µ a e ν b δ 1 Fµν h x I γ ab δ 1 e µ a e ν F b µν th x I δ 1 φ t δ 1 φ y tγ x yz δ φ t λ zi 1 6 utxyz δ φ u γ µ ǫ j λi y γ µλ j z δ 1 φ t δ 1 λ zi B utxyz δ φ u γ µν ǫ j λi y γ µνλ j z, B.5 1

16 with δ FI µν = δ Fµν I δ 1 ψ[µ γ ν] ψ [µ γ ν] δ 1 λ x yh I x δ 1 φ y δ 1 λ x h I x δ 1 ψ[µ γ ν] λ x yh I x δ ψ[µ γ ν] λ x h I x δ 1 φ y δ 1 φ z δ 1 φ y ψ [µ γ ν] δ λ x h I x ψ [µ γ ν] λ x z yh I x ψ [µ γ ν] λ x yh I x δ φ y i δ ψµ ψ νh I i ψ µ δ ψ ν h I i δ 1 ψµ δ 1 ψ ν h I i ψ µ δ 1 ψ ν h I x δ 1 φ x i ψ µψ νh I x δ φ x i δ 1 ψµ ψ νh I x δ 1 φ x i ψ µψ ν yh I x δ 1 φ x δ 1 φ y δ 1 ψ[µ δ 1 e a ν] γ aλ x h I x ψ [µ δ e a ν] γ aλ x h I x ψ [µ δ 1 e a ν] γ a δ 1 λ x h I x ψ [µ δ 1 e a ν] γ aλ x th I x δ 1 φ t, B.6 δ D µ = 1 δ ωµ ab γ ab, B.7 δ ωµ ab = 1 δ e cµ Ω abc Ω bca Ω cab [ δ 1 e cµ δ 1 Ω abc δ 1 Ω bca δ 1 Ω cab] 1 [δ ecµ Ω abc δ Ω bca δ Ω cab] δ K a µ b, B.8 δ Ω abc [ = δ e µa e νb δ 1 e µa δ 1 e νb e µa δ e νb] µe c ν νe c µ [δ 1 e µa e νb e µa δ 1 e νb][ ] µ δ 1 e c ν ν δ 1 e c µ e µa e νb[ ] µ δ e c ν ν δ e c µ, B.9 δ K a µ b = 1 [δ ψρ e ρ[a γ b] ψ µ δ 1 ψρ δ 1 e ρ[a γ b] ψ µ δ 1 ψρ e ρ[a γ b] δ 1 ψ µ ψ ρ δ e ρ[a γ b] ψ µ ψ ρ δ 1 e ρ[a γ b] δ 1 ψ µ ψ [a γ b] δ ψ µ 1 δ ψρ e ρa γ µψ b δ 1 ψρ γ µ δ 1 ψ ν e ρa e νb δ 1 ψρ γ µψ b δ 1 e ρa δ 1 ψρ γ cψ b e ρa δ 1 e c µ δ 1 ψρ γ µψ νe ρa δ 1 e νb 1 ψ a γ µ δ ψ ν e νb ψ ργ µ δ 1 ψ ν δ 1 e ρa e νb ψ a γ c δ 1 ψ ν δ 1 e c µ e νb ψ a γ µ δ 1 ψ ν δ 1 e νb 1 ψ ργ µψ b δ e ρa ψ ργ cψ b δ 1 e ρa δ 1 e c µ ψ ργ µψ ν δ 1 e ρa δ 1 e νb 1 ψ a γ cψ b δ e c µ ψ a γ cψ ν δ 1 e c µ δ 1 e νb 1 ψ a γ µψ ν δ e νb], B.10 δ Dµφ x = µ δ φ x i δ ψµ λ x i δ 1 ψµ δ 1 λ x i ψ µ δ λ x. B.11 15

17 C Fourth Order Finally, at the fourth order we find 8 δ e a µ = 1 ǫγa δ ψ µ, δ ψµ i = δ D µ ǫ i 1 6 ǫj λ ix γ µ δ λ j x 1 1 γµνǫj λ ix γ ν δ λ j x 1 8 γµǫj λ ix γ δ λ j x 1 1 γν ǫ j λix γ µν δ λ j x 1 6 ǫj λ ix γ aλ j x δ e a µ 1 δ ǫj λix γ µλ j x 1 1 γ abǫ j λix γ b λ j x δ e a µ C.1 1 δ 1 γµνǫj λix γ ν λ j x 1 8 γ abcǫ j λix γ bc λ j x δ e a µ 1 8 γµǫj δ λix γ λ j x 1 1 γν ǫ j δ λix γ µνλ j x 1 1 γb ǫ j λix γ ab λ j x δ e a µ i 6 hi F [ I δ e a µ e ν be ρ c e a µ δ e ν b e ρ c e a µe ν b δ e ρ c e a µ δ e ν b δ 1 e ρ c e a µ δ 1 e ν b δ e ρ c δ e a µ e ν b δ 1 e ρ c δ e a µ δ 1 e ν b e ρ c δ 1 e a µ δ e ν b e ρ c δ 1 e a µ e ν b δ e ρ c ] 6 δ 1 e a µ δ 1 e ν b δ 1 e ρ c γa bc δaγ b c ǫ i i thix F [ I δ 1 e a µ e ν be ρ c e a µ e ρ c δ 1 e ν b ] e a µe ν b δ 1 e ρ c δ 1 φ x δ 1 φ t γa bc δaγ b c ǫ i i hix δ 1 FI [δ 1 e a µ e ν be ρ c e a µ δ 1 e ν b e ρ c ] e a µe ν b δ 1 e ρ c δ 1 φ x γa bc δaγ b c ǫ i i hix F [ I δ e a µ e ν be ρ c e a µ δ e ν b e ρ c e a µe ν b δ e ρ c e a µ δ 1 e ν b δ 1 e ρ c δ 1 e a µ e ν b δ 1 e ρ c ] δ 1 e a µ δ 1 e ν b e ρ c δ 1 φ x γa bc δaγ b c ǫ i i hix F [ I δ 1 e a µ e ν be ρ c e a µ δ 1 e ν b e ρ c e a µe ν b δ 1 e ρ c i hi δ FI [δ 1 e a µ i hi δ 1 FI [δ e a µ e ν be ρ c e a µ δ e ν b e ρ c e a µe ν b δ e ρ c e a µ δ 1 e ν b δ 1 e ρ c δ 1 e a µ e ν b δ 1 e ρ c δ 1 e a µ δ 1 e ν b e ρ c i 1 hiz δ φ z FI γ µ δµγ ν ρ ǫ i i γ 6 hi δ FI µ δµγ ν ρ ǫ i ] δ φ x γ bc a δ b aγ c ǫ i ] e ν be ρ c e a µ δ 1 e ν b e ρ c e a µe ν b δ 1 e ρ c γa bc δaγ b c ǫ i ] γ bc a δ b aγ c ǫ i 8 Note that w t ut xyz = 1 w Ẽ xyz tu [1]; similarly, t z yh I x can be related to Ẽ tensor cfr. footnote 7. 16

18 1 δ 1 e a µ ǫ j λix γ a δ λ j x 1 δ ǫj 1 λix γ µ δ λ j x 1 δ 1 e a µ γ ab ǫ j λix γ b δ λ j x 1 γµνǫj δ 1 λix γ ν δ λ j x 1 δ 1 e a µ γ abc ǫ 16 j λix γ bc δ λ j x 1 16 γµǫj δ 1 λix γ δ λ j x 1 γb ǫ j λix γ ab δ λ j x δ 1 e a µ 1 γν ǫ j δ 1 λix γ µν δ λ j x 1 ǫj λ ix γ a δ 1 λ j x δ e a µ ǫ j δ 1 λix γ a δ 1 λ j x δ 1 e a µ 1 ǫj δ λix γ µ δ 1 λ j x 1 δ e a µ γ ab ǫ j λix γ b δ 1 λ j x 1 δ 1 e a µ γ ab ǫ j δ 1 λix γ b δ 1 λ j x 1 γµνǫj δ λix γ ν δ 1 λ j x 1 δ e a µ γ abc ǫ 16 j λix γ bc δ 1 λ j x 1 δ 1 e a µ γ abc ǫ j δ 1 λix γ bc δ 1 λ j x 8 1 δ 16 γµǫj λix γ δ 1 λ j x 1 γb ǫ j λix γ ab δ 1 λ j x δ e a µ 1 γb ǫ j δ 1 λix γ ab δ 1 λ j x δ 1 e a µ 1 γν ǫ j δ λix γ µν δ 1 λ j x 1 δ e a µ ǫ j δ 1 λix γ aλ j x 1 δ 1 e a µ ǫ j δ λix γ aλ j x 1 δ e a µ γ ab ǫ j δ 1 λix γ b λ j x 1 δ 1 e a µ ǫ jγ ab δ λix γ b λ j x 1 δ e a µ γ abc ǫ j δ 1 λix γ bc λ j x 1 δ 1 e a µ γ abc ǫ j δ λix γ bc λ j x 1 δ e a µ γ b ǫ j δ 1 λix γ ab λ j x 1 δ 1 e a µ γ b ǫ j δ λix γ ab λ j x i [h Iz δ φ z yh Iz δ 1 φ z δ 1 φ y] FI δ 1 e a µ γa δaγ ν ρ ǫ i [ yh Iz δ 1 φ z δ φ y yh Iz δ φ z δ 1 φ y i 1 t yh Iz i δ 1 φ z δ 1 φ y δ 1 φ t] FI γ µ δµγ ν ρ [h Iz δ φ z yh Iz δ 1 φ z δ 1 φ y] γ δ 1 FI i δ hiz 1 φ z δ F I δ φ x = ǫ i δ λ x, δ A I µ = 1 ǫγµ δ λ x h I x 1 i µ δ ν µγ ρ ǫ i γ µ δ ν µγ ρ ǫ i, C. δ e a µ ǫγ aλ x h I x ǫhi δ ψ µ i hi x δ φ x ǫψ µ 1 ǫγµλx yh I x δ φ y i hi x δ 1 φ x ǫ i δ ψ µ i hi x δ φ x ǫ δ 1 ψ µ yhi x δ 1 φ x δ 1 φ y ǫ δ 1 ψ µ i yhi x δ φ y δ 1 φ x ǫψ µ i yh I x δ φ x δ 1 φ y ǫψ µ i z yhi x δ 1 φ x δ 1 φ y δ 1 φ z ǫψ µ δ 1 e a µ ǫγ a δ λ x h I x δ e a µ ǫγ a δ 1 λ x h I x δ ǫγµ λ x yh I x δ 1 φ y δ 1 e a µ ǫγ a δ 1 λ x yh I x δ 1 φ y δ e a µ ǫγ aλ x yh I x δ 1 φ y ǫγµ δ 1 λ x[ yh I x δ φ y C. 17

19 z yh I x δ 1 φ y δ 1 φ z] δ 1 e a µ ǫγ aλ x[ yh I x δ φ y z yh I x δ 1 φ y δ φ z z yh I x 1 ǫγµλx[ z yh I x t z yh I x δ 1 φ y δ 1 φ z δ 1 φ t], δ λ ix = i γµ δ Dµφ x ǫ i i δ 1 φ y δ 1 φ z] δ φ y δ 1 φ z δ 1 Dµφ x ǫ i i γa δ e µ a Dµφ x 1 6 Txyz γ µ ǫ j λi y γ µ δ λ j z γa δ 1 e µ a i γa δ e µ a 1 Txyz ǫ j λi y δ λ j z Txyz γ µν ǫ j λi y γ µν δ λ j z Txyz ǫ j δ 1 λi y δ λ j z 1 8 Txyz γ µν ǫ j δ 1 λi y γ µν δ λ j z 1 Txyz γ µ ǫ j δ 1 λi y γ µ δ λ j z δ φ y Γ x yz δ λ zi δ φ y Γ x yz δ 1 λ zi Txyz ǫ j δ λi y δ 1 λ j z 1 8 Txyz γ µν ǫ j δ λi y γ µν δ 1 λ j z 1 Txyz γ µ ǫ j δ λi y γ µ δ 1 λ j z δ 1 φ y Γ x yz δ λ zi δ φ y Γ x yzλ zi 1 Txyz ǫ j δ λi y λ j z Txyz γ µν ǫ j δ λi y γ µνλ j z 1 6 Txyz γ µ ǫ j δ λi y γ µλ j z ttxyz δ 1 φ t ǫ j δ λi y λ j z 1 8 ttxyz δ 1 φ t γ µν ǫ j λi y γ µν δ λ j z 1 ttxyz δ 1 φ t γ µ ǫ j λi y γ µ δ λ j z ttxyz δ 1 φ t ǫ j δ 1 λi y δ 1 λ j z 1 ttxyz δ 1 φ t γ µν ǫ j δ 1 λi y γ µν δ 1 λ j z 1 ttxyz δ 1 φ t γ µ ǫ j δ 1 λi y γ µ δ 1 λ j z ttxyz δ 1 φ t ǫ j δ λi y λ j z 1 8 ttxyz δ 1 φ t γ µν ǫ j δ λi y γ µνλ j z 1 ttxyz δ 1 φ t γ µ ǫ j δ λi y γ µλ j z 6 δ φ y tγ x yz δ 1 φ t δ 1 λ zi δ φ y tγ x yz δ 1 φ t λ zi δ 1 φ y tγ x yz δ Dµφ x ǫ i δ 1 φ t δ λ zi C. 18

20 [ ǫj λ i y δ 1 λ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] 1 [ 8 γµν ǫ j λi y γ µν δ 1 λ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] 1 [ γµ ǫ j λi y γ µ δ 1 λ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] [ ǫj δ 1 λi y λ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] 1 [ 8 γµν ǫ j δ 1 λi y γ µνλ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] 1 [ γµ ǫ j δ 1 λi y γ µλ j z tt xyz δ φ t u tt xyz δ 1 φ t δ 1 φ u] δ 1 φ y[ tγ x yz δ φ t u tγ x yz δ 1 φ t δ 1 φ u] δ 1 λ zi δ φ y[ tγ x yz δ φ t u tγ x yz δ 1 φ t δ 1 φ u] λ zi 1 [ ut xyz δ φ u t ut xyz δ 1 φ u δ φ t t ut xyz δ φ u δ 1 φ t w t ut xyz δ 1 φ u δ 1 φ t δ 1 φ w] ǫ j λi y λ j z 1 [ 8 6 γµν ǫ j λi y γ µνλ j z ut xyz δ φ u t ut xyz δ 1 φ u δ φ t t ut xyz δ φ u δ 1 φ t w t ut xyz δ 1 φ u δ 1 φ t δ 1 φ w] 1 [ 6 γµ ǫ j λi y γ µλ j z ut xyz δ φ u t ut xyz δ 1 φ u δ φ t t ut xyz δ φ u δ 1 φ t w t ut xyz δ 1 φ u δ 1 φ t δ 1 φ w] δ 1 φ y[ uγ x yz δ φ u u tγ x yz δ 1 φ t δ φ u u tγ x yz δ φ t δ 1 φ u w u tγ x yz δ 1 φ t δ 1 φ u δ 1 φ w] λ zi 1 γ F [ I th x I δ φ t u th x I δ 1 φ t δ φ u u th x I δ φ t δ 1 φ u ǫ i w u th x I δ 1 φ t δ 1 φ u δ 1 φ w] ǫ i [ γ δ 1 FI th x I δ φ t u th x I δ 1 φ t δ 1 φ u] γ δ FI th x I δ 1 φ t 1 γ δ FI h x I 1 γab[ δ e µ a e ν b δ e µ a δ 1 eb] ν F µνh I x I γab[ δ e µ a e ν b δ 1 e µ a δ 1 e ν b ]δ 1 FI µν h x I γab[ δ e µ a e ν b δ 1 e µ a δ 1 eb] ν FI µν th x I δ 1 φ t γab δ 1 e µ a e ν b δ FI µν h x I γ ab δ 1 e µ a e ν b δ 1 FI µν th x I δ 1 φ t γab δ 1 e µ a e ν F b µν I t uh x I δ 1 φ t δ 1 φ u γab δ 1 e µ a e ν F b µν I th x I δ 1 φ t, C.5 with 19

21 δ FI µν = δ Fµν I δ 1 ψ[µ γ ν] δ ψ[µ δ λ x h I x δ ψ[µ γ ν] δ 1 λ x h I x ψ [µ γ ν] δ λ x h I x γ ν] λ x h I x i ψ µ δ ψ ν h I i δ 1 ψµ δ ψ ν h I i δ ψµ δ 1 ψ ν h I i δ ψµ ψ νh I i ψ µ δ ψ ν h I x δ 1 φ x i ψ µ δ 1 ψ ν h I x δ φ x i δ 1 ψµ δ 1 ψ ν h I x δ 1 φ x i ψ µ δ 1 ψ ν yh I x δ 1 φ x δ 1 φ y i ψ µψ νh I x δ φ x i δ 1 ψµ ψ νh I x δ φ x i δ ψµ ψ νh I x δ 1 φ x i ψ µψ ν yh I x δ 1 φ x δ φ y i ψ µψ ν yh I x δ φ x δ 1 φ y i δ 1 ψµ ψ ν yh I x δ 1 φ x δ 1 φ y i ψ µψ ν z yh I x δ 1 φ x δ 1 φ y δ 1 φ z ψ [µ γ ν] δ 1 λ x yh I x δ φ y ψ [µ γ ν] δ λ x yh I x δ 1 φ y 6 δ 1 ψ[µ γ ν] δ 1 λ x yh I x δ 1 φ y ψ [µ γ ν] λ x yh I x δ φ y δ φ y δ 1 φ y δ 1 ψ[µ γ ν] λ x yh I x δ ψ[µ γ ν] λ x yh I x ψ [µ γ ν] δ 1 λ x z yh I x δ 1 φ y δ 1 φ z ψ [µ γ ν] λ x z yh I x δ 1 φ y δ φ z ψ [µ γ ν] λ x z yh I x δ φ y δ 1 φ z δ 1 ψ[µ γ ν] λ x z yh I x δ 1 φ y δ 1 φ z ψ [µ γ ν] λ x w z yh I x δ 1 φ y δ 1 φ z δ 1 φ w δ ψ[µ δ 1 e a ν] γ aλ x h I x δ 1 ψ[µ δ e a ν] γ aλ x h I x 6 δ 1 ψ[µ δ 1 e a ν] γ a δ 1 λ x h I x 6 δ 1 ψ[µ δ 1 e a ν] ψ [µ δ e a ν] γ aλ x h I x ψ [µ δ e a ν] γ a δ 1 λ x h I x ψ [µ δ e a ν] γ aλ x th I x δ 1 φ t ψ [µ δ 1 e a ν] γ a δ λ x h I x 6 ψ [µ δ 1 e a ν] ψ [µ δ 1 e a ν] γ aλ x u th I x δ 1 φ t δ 1 φ u γ aλ x th I x γ a δ 1 λ x th I x δ 1 φ t δ 1 φ t ψ [µ δ 1 e a ν] γ aλ x th I x δ φ t, C.6 δ D µ = 1 δ ωµ ab γ ab, C.7 δ ωµ ab = 1 δ e cµ Ω abc Ω bca Ω cab [ δ e cµ δ 1 Ω abc δ 1 Ω bca δ 1 Ω cab] [ δ 1 e cµ δ Ω abc δ Ω bca δ Ω cab] 1 [δ ecµ Ω abc δ Ω bca δ Ω cab] δ K a µ b, C.8 0

22 δ Ω abc [ = δ K a µ b = δ e µa e νb δ e µa δ 1 e νb δ 1 e µa δ e νb e µa δ e νb] µe c ν νeµ c [δ 1 e µa e νb e µa δ 1 e νb][ ] µ δ e c ν ν δ e c µ [ δ e µa e νb δ 1 e µa δ 1 e νb e µa δ e νb][ ] µ δ 1 e c ν ν δ 1 e c µ e µa e νb[ ] µ δ e c ν ν δ e c µ, C.9 δ 1 ψρ δ 1 e ρa γ c δ 1 e c µ ψ b δ ψρ e ρa γ c δ 1 e c µ ψ b δ ψρ δ 1 e ρa γ µψ b δ 1 ψρ e ρa γ c δ e c µ ψ b ψ ρ δ 1 e ρa γ c δ e c µ ψ b δ 1 ψρ δ e ρa γ µψ b ψ ρ δ e ρa γ c δ 1 e c µ ψ b 1 δ ψρ e ρa γ µψ b 1 ψ a γ c δ e c µ ψ b 1 ψ ρ δ e ρa γ µψ b 1 ψ [a γ b] δ ψ µ 1 ψ a γ µ δ ψ σ e σb δ 1 ψρ e ρ[a γ b] δ ψ µ δ 1 ψρ e ρa γ µ δ ψ σ e σb ψ a γ c δ 1 e c µ δ ψ σ e σb ψ ρ δ 1 e ρ[a γ b] δ ψ µ ψ ρ δ 1 e ρa γ µ δ ψ σ e σb ψ a γ µ δ ψ σ δ 1 e σb δ 1 ψρ e ρa γ c δ 1 e c µ δ 1 ψ σ e σb δ 1 ψρ δ 1 e ρ[a γ b] δ 1 ψ µ δ 1 ψρ δ 1 e ρa γ µ δ 1 ψ σ e σb ψ ρ δ 1 e ρa γ c δ 1 e c µ δ 1 ψ σ e σb δ 1 ψρ e ρa γ µ δ 1 ψ σ δ 1 e σb ψ a γ c δ 1 e c µ δ 1 ψ σ δ 1 e σb ψ ρ δ 1 e ρa γ µ δ 1 ψ σ δ 1 e σb δ ψρ e ρ[a γ b] δ 1 ψ µ δ ψρ e ρa γ µ δ 1 ψ σ e σb ψ a γ c δ e c µ δ 1 ψ σ e σb ψ ρ δ e ρ[a γ b] δ 1 ψ µ ψ ρ δ e ρa γ µ δ 1 ψ σ e σb ψ a γ µ δ 1 ψ σ δ e σb δ 1 ψρ e ρa γ c δ 1 e c µ ψ σ δ 1 e σb δ 1 ψρ δ 1 e ρa γ µψ σ δ 1 e σb ψ ρ δ 1 e ρa γ c δ 1 e c µ ψ σ δ 1 e σb δ ψρ δ 1 e ρ[a γ b] ψ µ δ ψρ e ρa γ µψ σ δ 1 e σb ψ a γ c δ e c µ ψ σ δ 1 e σb δ 1 ψρ δ e ρ[a γ b] ψ µ ψ ρ δ e ρa γ µψ σ δ 1 e σb δ 1 ψρ e ρa γ µψ σ δ e σb ψ a γ c δ 1 e c µ ψ σ δ e σb ψ ρ δ 1 e ρa γ µψ σ δ e σb 1 δ ψρ e ρ[a γ b] ψ µ 1 ψ ρ δ e ρ[a γ b] ψ µ 1 ψ a γ µψ σ δ e σb, C.10 δ Dµφ x = µ δ φ x i δ ψµ λ x i δ ψµ δ 1 λ x i δ 1 ψµ δ λ x i ψ µ δ λ x. C.11 1

23 References [1] B. A. Burrington, J. T. Liu and W. A. Sabra, AdS5 black holes with fermionic hair, Phys. Rev. D , hep-th/ [] L. G. C. Gentile, P. A. Grassi and A. Mezzalira, Fluid Super-Dynamics from Black Hole Superpartners, Phys. Lett. B , arxiv: L. G. C. Gentile, P. A. Grassi and A. Mezzalira, Fermionic Wigs for AdS-Schwarzschild Black Holes, arxiv: [hep-th]. L.G.C.Gentile, P.A. GrassiandA. Mezzalira, Fermionic Wigs for BTZ Black Holes, Nucl. Phys. B , arxiv: [hep-th]. L. G. C. Gentile, P. A. Grassi and A. Mezzalira, Fermionic Corrections to Fluid Dynamics from BTZ Black Hole, arxiv: [hep-th]. [] P. C. Aichelburg and F. Embacher, The Exact Superpartners of N = Supergravity Solitons, Phys. Rev. D [] R. Kallosh and A. D. Linde, Black hole superpartners and fixed scalars, Phys. Rev. D , hep-th/ [5] S. Ferrara, R. Kallosh and A. Strominger, N= extremal black holes, Phys. Rev. D , hep-th/ A. Strominger, Macroscopic entropy of N = extremal black holes, Phys. Lett. B , hep-th/ S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D , hep-th/ S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D , hep-th/ S. Ferrara, G. W. Gibbons and R. Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B , hep-th/ [6] L. G. C. Gentile, P. A. Grassi, A. Marrani and A. Mezzalira, Fermions, Wigs, and Attractors, arxiv: [hep-th]. [7] M. Günaydin, G. Sierra and P. K. Townsend, The Geometry of N = Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B 198. [8] A. Ceresole and G. Dall Agata, General matter coupled N=, D = 5 gauged supergravity, Nucl. Phys. B , hep-th/ [9] E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and A. Van Proeyen, N = supergravity in five-dimensions revisited, Class. Quant. Grav [Class. Quant. Grav ], hep-th/0005. [10] S. Ferrara and M. Günaydin, Orbits and Attractors for N = Maxwell-Einstein Supergravity Theories in Five Dimensions, Nucl. Phys. B , hep-th/ [11] A. Ceresole, S. Ferrara and A. Marrani, d/5d Correspondence for the Black Hole Potential and its Critical Points, Class. Quant. Grav , arxiv: [hep-th]. [1] B. L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Charge Orbits of Extremal Black Holes in Five Dimensional Supergravity, Phys. Rev. D , arxiv: [hep-th].

24 [1] A. Van Proeyen, Tools for supersymmetry, hep-th/ [1] L. G. C. Gentile, P. A. Grassi and A. Mezzalira, Fermionic Wigs for AdS-Schwarzschild Black Holes, JHEP , arxiv: [hep-th]. [15] B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B , hep-th/ [16] A. H. Chamseddine, S. Ferrara, G. W. Gibbons and R. Kallosh, Enhancement of supersymmetry near 5-d black hole horizon, Phys. Rev. D , hep-th/ [17] A. H. Chamseddine and W. A. Sabra, Calabi-Yau black holes and enhancement of supersymmetry in five-dimensions, Phys. Lett. B , hep-th/ [18] P. Kraus and F. Larsen, Attractors and black rings, Phys. Rev. D , hep-th/ [19] R. Emparan, H. S. Reall, A Rotating black ring solution in five-dimensions, Phys. Rev. Lett , hep-th/ [0] H. Elvang, P. Figueras, Black Saturn, JHEP , hep-th/

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2 PiTP Study Guide to Spinors in D and 0D S.J.Gates Jr. John S. Toll Professor of Physics Director Center for String and Particle Theory University of Maryland Tel: 30-405-6025 Physics Department Fax: 30-34-9525

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Non-Abelian Gauge Fields

Non-Abelian Gauge Fields Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Micro-Note on solving super p=2 form A MN

Micro-Note on solving super p=2 form A MN Micro-Note on solving super p=2 form A MN Sunny Guha April 10, 2016 1 Introduction Superforms are extended versions of differential forms which include superspace coordinates. For example a one-form superform

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα