> 2, pripada intervalu: ; 3)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "> 2, pripada intervalu: ; 3)"

Transcript

1 30. jun Test iz MTEMTIKE Grupa: Test iz matematike ima 15 zadataka na dve strane. Svi zadaci imaju samo jedan taqan odgovor i on vredi 2 poena. Pogrexan odgovor donosi 10% od broja poena za taqan odgovor, dakle 0, 2 poena. Odgovor N donosi 0 poena. U sluqaju vixe odgovora, kao i u sluqaju nijednog odgovora, dobija se 0, 3 poena. 1. Vrednost izraza je: 1) ; 2) ; 3) ; 4) ; 5) ; N) Ne znam. 2. Realan broj k, za koji rexe a x 1, x 2 kvadratne jednaqine (4k + 3)x 2 + (3k + 1)x + k = 0 zadovo avaju nejednakost 1 x x 2 > 2, pripada intervalu: 1) (, ( 2); 2) 2, 3 ( 4) ; 3) 3 4, 1 ) ( 5 ; 4) 1 5, 0) ( 1 ; 5) 5, + ) ; N) Ne znam. 3. Kozmetiqki salon nabav a hidrogen u boqicama zapremine 125ml. Radi promocije nove ambalae proizvoaq je uveao zapreminu boqice za 20% koju prodaje po istoj ceni. Da bi se nabavilo 3l hidrogena u novim boqicama potrebno je: 1) 19 novih boqica; 2) 20 novih boqica; 3) 22 nove boqice; 4) 24 nove boqice; 5) 29 novih boqica; N) Ne znam. 4. Broj rexe a jednaqine cos x + sin x = 1, na intervalu (0, 2π), je: 1) 1; 2) 2; 3) 3; 4) 4; 5) 5; N) Ne znam. 5. Rexe e nejednaqine 5 x x je: 1) 1 x 3; 2) x 3; 3) 1 < x < 5; 4) x 1 ili x 3; 5) x 5; N) Ne znam. 6. Rexe e jednaqine ( ) 1, 75 : , 75 8 : 7 ( , 0325) : x je: = ) x = 100; 2) x = 200; 3) x = 300; 4) x = 400; 5) x = 500; N) Ne znam. 7. Jednaqina 1 + (x 2) 2 = (x 3) 2 : 1) nema rexe a; 2) ima taqno jedno rexe e; 3) ima taqno dva rexe a; 4) ima taqno tri rexe a; 5) ima beskonaqno mnogo rexe a; N) Ne znam.

2 Test iz MTEMTIKE Grupa: 8. Rexe e jednaqine pripada intervalu: 1 3 log(x + 4) = log 2 3 x 1 log(4x 8) 3 1) (0, 2]; 2) (2, 4]; 3) (4, 6]; 4) (6, 8]; 5) (8, 10]; N) Ne znam. 9. Duina tetive kruga (x 3) 2 + (y 2) 2 = 5, koja pripada pravoj x + 2y 7 = 0, je: 1) 2 5; 2) 5; 3) 2 2; 4) 3; 5) 2; N) Ne znam. 10. ko je f(x) = x 7 i g(x) = x+1, vrednost nepoznate x za koju vai f 1 (g(x)) = 2g 1 (f(x)) je: 1) 2; 2) 6; 3) 8; 4) 18; 5) 24; N) Ne znam. 11. ko je tg 4 x + ctg 4 x = 2 za x (0, π 2 ), onda je tg x + ctg x jednako: 1) 2; 2) 2; 3) 4; 4) 6; 5) 8; N) Ne znam. 12. Proizvod prvog i posled eg qlana je xest puta vei nego proizvod svih ostalih qlanova binomnog razvoja (1 + x) 4. Pozitivan broj x za koji ovo vai je: 1) 24; 2) 12; 3) 6; 4) 1 12 ; 5) 1 24 ; N) Ne znam. 13. Prava p je normalna na pravu 4x + 3y 3 = 0 i sadri taqku (2, 4). Jednaqina prave p je: 1) 3x 4y + 10 = 0; 2) 3x y 2 = 0; 3) 4x + 3y 20 = 0; 4) 3x 4y 4 = 0; 5) 3x + 4y 22 = 0; N) Ne znam. 14. ko je f(x) = arcsin x, g(x) = 1 1+x 2 i h(x) = 2 log 2 x, tada je f (g(h(8))) jednako: 1) 1; 2) 2 2 ; 3) π 6 ; 4) π 4 ; 5) π 3 ; N) Ne znam. 15. Zbir geometrijskog reda sin 2x + sin 2x cos 2x + sin 2x cos 2 2x +... (x kπ 2, k Z), je: sin 2x 1) 1; 2) cos x ; 3) ctg x; 4) tg x; 5) ctg 2x; N) Ne znam.

3 Тест из ХЕМИЈЕ има 15 питања на 4 стране. Сва питања вреде по 2 поена. Нема негативних поена. N = mol -1 ; Vm = 22,4 dm 3 mol -1 ; r: C-12; H-1; Na-23; O-16; P-31; Mn-55; K-39; Cl-35,5. 1. Електронска конфигурација атома елемента А је 1s 2 2s 2 2p 6 3s 1, а елемента Е је 1s 2 2s 2 2p 6 3s 2 3p 5. У једињењу АЕ веза је: 1) ковалентна 2) јонска 3) метална 4) водонична 2. Помешан је раствор који садржи 6 g CH3COOH са раствором који садржи 6 g NaOH. У насталом раствору налази се: 1) 0,1 mol CH3COOH и 0,15 mol NaOH 2) 0,25 mol NaCH3COO 3) 0,05 mol NaOH и 0,1 mol NaCH3COO 4) 0,1 mol NaCH3COO 3. Колико се OH - јона налази у 100 cm 3 воденог раствора H2SO4 чије је ph = 2? 1) ) ) ) 1, грама 40 % раствора H3PO4 има запремину 40 cm 3. Количинска концентрација H3PO4 у раствору је: 1) 0,5 mol dm -3 2) 4,1 mol dm -3 3) 5,1 mol dm -3 4) 6,4 mol dm -3 3/6

4 5. У реакцији оксидо-редукције између калијум-перманганата и хлороводоничне киселине настају елементарни хлор, манган(ii)-хлорид, калијум-хлорид и вода. Колико је cm 3 раствора оксидационог средства концентрације 1 mol dm -3 потребно за издвајање 11,2 dm 3 елементарног хлора (под нормалним условима)? 1) ) ) 500 4) Да би се добио пуфер, у водени раствор који садржи 0,2 mol NH3 треба додати: 1) 1 mol HCl 2) 0,5 mol HCl 3) 0,2 mol HCl 4) 0,1 mol HCl 7. Изабрати пар супстанци између којих долази до хемијске реакције. 1) Cu и HCl 2) SO2 и NaOH 3) Ca(OH)2 и NaOH 4) CO2 и H2SO4 4/6

5 8. У којој групи алкохола се налазе само они који ће оксидацијом дати кетоне: 1) циклохексанол, 2-метил-2-пропанол, 1-бутанол 2) изопропил-алкохол, 2-бутанол, циклохексанол 3) етанол, 2-метил-1-пропанол, 1-пентанол 4) метанол, етанол, 2-пропанол 9. У којој реакцији настаје естар сулфатне киселине : 1) у реакцији бензена и концентроване сулфатне киселине 2) у реакцији амина и сулфатне киселине 3) у реакцији алкохола и сулфатне киселине 4) у реакцији анилина и сулфатне киселине уз загревање 10. У којој реакцији се може добити 2,4,6-тринитрофенол: 1) у реакцији 1,3,5-тринитробензена и натријум-хидроксида 2) у реакцији нитробензена и разблажене нитратне киселине 3) у реакцији фенола и раствора калијум-перманганата 4) у реакцији фенола и концентроване нитратне киселине 11. У којој реакцији може настати фенол: 1) у реакцији етил-фенил-етра и бромоводоничне киселине 2) у реакцији циклохексанона и литијум-алуминијум-хидрида 3) у реакцији бензена и сулфатне киселине 4) у реакцији толуена и концентрованог раствора калијум-перманганата 5/6

6 12. Адицијом водоник-сулфида на етен у присуству светлости настаје: 1) етантиол 2) диметил-сулфид 3) диметил-дисулфид 4) диетил-сулфид 13. У реакцији 2-бутанамина са нитритном киселином настаје: 1) N-нитрозоамин 2) 2-нитробутан 3) нестабилна диазонијум со која се разлаже уз ослобађање азота 4) 2-бутанимин 14. У стварању гликозидне везе учествује: 1) хидроксилна група у положају 5 код алдохексоза и кетохексоза 2) алдехидна (кето) група ацикличног облика моносахарида 3) аномерна хидроксилна група цикличног облика моносахарида 4) примарна алкохолна група у положају 1 код кетоза 15. У којем низу сва једињења реагују лакше од бензена (под блажим реакционим условима) у реакцијама ароматичне електрофилне супституције: 1) пиридин, пирол, фуран 2) фенол, пирол, тиофен 3) нитробензен, пиридин, пирол 4) никотинска киселина, бензоева киселина, пиримидин 6/6

30. jun Test iz MATEMATIKE Grupa: A. 1. Vrednost izraza [ (1 ) 2 ] (0, 5) 1. je: 1) 4, 5; 2) 0, 25; 3) 5; 4) 0, 5; 5) 2; N) Ne znam.

30. jun Test iz MATEMATIKE Grupa: A. 1. Vrednost izraza [ (1 ) 2 ] (0, 5) 1. je: 1) 4, 5; 2) 0, 25; 3) 5; 4) 0, 5; 5) 2; N) Ne znam. 30. jun 015. Test iz MTEMTIKE Grupa: Test iz matematike ima 15 zadataka na dve strane. Svi zadaci vrede po poena. Pogrexan odgovor donosi 10% od broja poena za taqan odgovor, dakle 0, poena. Zaokruжivanje

Διαβάστε περισσότερα

, 0325) : 4. ; N) Ne znam. ; 5)

, 0325) : 4. ; N) Ne znam. ; 5) 29. jun 2016. Test iz MATEMATIKE Grupa: A Test iz matematike ima 15 zadataka na dve strane. Svi zadaci imaju samo jedan taqan odgovor i on vredi 2 poena. Pogrean odgovor donosi 10% od broja poena za taqan

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 21.05.2005. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Задаци за пријемни испит из хемије

Задаци за пријемни испит из хемије Задаци за пријемни испит из хемије 1. Који сребро-халогенид има хемијску везу највише ковалентног карактера? а) AgF б) AgCl ц) AgBr д) AgI (Електронегативност: Ag = 2,0; F = 4,0; Cl = 3,0; Br = 2,8; I

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 20.05.2006. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

Питања и задаци за пријемни испит из хемије

Питања и задаци за пријемни испит из хемије Питања и задаци за пријемни испит из хемије 1. Атоми неког хемијског елемента имају следећу електронску конфигурацију: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5. У којој групи и којој периоди ПСЕ се наведени

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 2.05.2005. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 21.05.2005. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Glava 1. Trigonometrija

Glava 1. Trigonometrija Glava 1 Trigonometrija 1.1 Teorijski uvod Neka su u ravni Oxy dati krug k = {x, y) R R : x +y = 1} i prava p = {x, y) R R : x = 1}. Predstavimo skup realnih brojeva na pravoj p, kao brojevnoj pravoj, tako

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије Суботица, 22.мај 2004. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 31.03.2007. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 31.03.2007. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

РЕГИОНАЛНО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ АПРИЛ, ГОДИНЕ ТЕСТ ЗА VIII РАЗРЕД

РЕГИОНАЛНО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ АПРИЛ, ГОДИНЕ ТЕСТ ЗА VIII РАЗРЕД МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУЛИКЕ СРБИЈЕ СРПСКО ХЕМИЈСКО ДРУШТВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ АПРИЛ, 2005. ГОДИНЕ ТЕСТ ЗА VIII РАЗРЕД Шифра ученика: Пажљиво прочитајте текстове задатака. У прилогу

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 20.05.2006. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 3. април 24. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 21.03.2009. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени материјал

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 21.03.2009. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ниш, 24.05.2003. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Тест за 8. разред. Шифра ученика

Тест за 8. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Републичко такмичење из хемије 16. мај 2009. године Тест за 8. разред Шифра ученика Пажљиво прочитај текстове задатака. Празне странице теста

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 20.05.2006. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

26. фебруар године ТЕСТ ЗА 8. РАЗРЕД. Шифра ученика

26. фебруар године ТЕСТ ЗА 8. РАЗРЕД. Шифра ученика Република Србија Министарство просвете, науке и технолошког развоја ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ 26. фебруар 2017. године ТЕСТ ЗА 8. РАЗРЕД Шифра ученика (три слова и три броја) Тест има 20 задатака.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ниш, 24.05.2003. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ниш, 24.05.2003. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

РЕЗУЛТАТЕ ОБАВЕЗНО УПИШИТЕ У МЕСТА КОЈА СУ ЗА ТО ПРЕДВИЂЕНА КОД СВАКОГ ЗАДАТКА! Заокружене вредности које треба употребити код решавања задатака:

РЕЗУЛТАТЕ ОБАВЕЗНО УПИШИТЕ У МЕСТА КОЈА СУ ЗА ТО ПРЕДВИЂЕНА КОД СВАКОГ ЗАДАТКА! Заокружене вредности које треба употребити код решавања задатака: Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 16.04.2011. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени материјал

Διαβάστε περισσότερα

МОДУЛ 2. Методе Које се користе у фармацеутској анализи. УВ-ВИС спектроскопија

МОДУЛ 2. Методе Које се користе у фармацеутској анализи. УВ-ВИС спектроскопија ФАРМАЦЕУТСКА АНАЛИЗА И СПЕКТРОСКОПИЈА МОДУЛ. Методе Које се користе у фармацеутској анализи. УВ-ВИС спектроскопија 1. Колико се грама чистог NaCl добија упаравањем раствора грама раствора чији је масени

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Суботица, 19.05.2007. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте

Διαβάστε περισσότερα

Универзитет у Kрагујевцу ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

Универзитет у Kрагујевцу ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Универзитет у Kрагујевцу ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ И Н Ф О Р М А Т О Р ЗА ШКОЛСКУ 2016/17 ГОДИНУ ИНСТИТУТА ЗА ХЕМИЈУ Крагујевац, 2016. годинe Овај информатор је намењен будућим студентима Природноматематичког

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Министарство просвете Републике Србије Српско хемијско друштво. Општинско такмичење из хемије 6. Март године. Тест за 8. разред.

Министарство просвете Републике Србије Српско хемијско друштво. Општинско такмичење из хемије 6. Март године. Тест за 8. разред. Министарство просвете Републике Србије Српско хемијско друштво Општинско такмичење из хемије 6. Март 2011. године Тест за 8. разред Шифра ученика Пажљиво прочитај текстове задатака. Празне странице теста

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ужице, 23.05.2009. Тест за I разред средње школе Име и презиме Место и школа Разред Име и презиме професора

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 21.05.2005. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ужице, 23.05.2009. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Име и презиме професора

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq) Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Тест за III и IV разред средње школе

Тест за III и IV разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 05.04.2008. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 05.04.2008. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени материјал

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -068 0 8464 0 847670 www.irakleitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΙΟΥ 06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 1.04.2006 Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Суботица, 19.05.2007. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

СТРУКТУРА АТОМА УГЉЕНИКА

СТРУКТУРА АТОМА УГЉЕНИКА СТРУКТУРА АТОМА УГЉЕНИКА Органска хемија је хемија угљеникових једињења. Име органска је погрешно и потиче из оних дана када су хемијска једињења била подељена на неорганска и органска према њиховом пореклу.

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ

KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ 3.1. Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-46 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Ιοντισµός µιας µοριακής ένωσης ονοµάζεται:

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Суботица, 19.05.2007. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

РЕЗУЛТАТЕ ОБАВЕЗНО УПИШИТЕ У МЕСТА КОЈА СУ ЗА ТО ПРЕДВИЂЕНА КОД СВАКОГ ЗАДАТКА!

РЕЗУЛТАТЕ ОБАВЕЗНО УПИШИТЕ У МЕСТА КОЈА СУ ЗА ТО ПРЕДВИЂЕНА КОД СВАКОГ ЗАДАТКА! Министарство просветe Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 24.04.2010. Тест за III и IV разред средње школе Име и презиме Место и школа Разред Име и презиме професора

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Θέµα 2ο 2.1 Α) Να υπολογιστεί ο αριθµός οξείδωσης του αζώτου στις παρακάτω χηµικές ενώσεις:

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα