MODELI ZA IZRAČUN ODDALJENOSTI ISTOKANALNIH CELIC V CELIČNIH RADIJSKIH

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MODELI ZA IZRAČUN ODDALJENOSTI ISTOKANALNIH CELIC V CELIČNIH RADIJSKIH"

Transcript

1 STRATEGJA BREZŽČNEGA RENOSA ODATKOV NA ODROČJU VARSTVA RED NARAVNM N DRUGM NESREČAM MODEL ZA ZRAČUN ODDALJENOST STOKANALNH CELC V CELČNH RADJSKH OMREŽJH Ljubljana, nvember 000 1

2 Bštjan Tavčar 1. CELČNA RADJSKA OMREŽJA ri eličnih radijskih mrežjih eltn bmčje, ki ga želim pkriti z radijskim signalm, razdelim na elie. ri tem je v penstavljeni idealni elični strukturi velikst in razpreditev vseh eli enaka. Obmčje psamezne elie pkriva ena bazna pstaja pstavljena pravilma v središču elie. Okrg vsake elie je razprejenih šest istkanalnih eli, t je eli ki delujej na isti frekveni. Minimalna ddaljenst med istkanalnimi eliami je dlčena z največjim dvljenim razmerjem med kristnim radijskim signalm elie in vst mtilnih signalv istkanalnih eli v klii. ri tem pravilma upštevam le mtilne signale najbližjih šestih istkanalnih eli, medtem k stale ddaljene elie zanemarim. Slika 1: enstavljena idealna elična struktura eličnega radijskega mrežja Razdalja med istkanalnimi eliami v eličnem radijskem mrežju je pmemben pdatek, saj nepsredn vpliva na ptrebn števil frekven v mrežju. Osnva za izračun minimalne dpustne razdalje med istkanalnimi eliami je mdel za izračun jaksti radijskega signala v prstru. V praksi se v ta namen uprabljaj različni mdeli. V strkvni literaturi se v ta namen zaradi enstavnsti mdela največkrat uprablja enstaven teretični mdel, ki je pisan pd tčk 3. Za izračun jaksti radijskega signala v sistemih zvez TETRA sta v tehničnem prčilu Evrpskega telekmunikaijskega inštituta za standardizaij ETR z maja 1997 priprčena mdela HATA za pdeželsk in urban klje. Mdel HATA za pdeželsk klje je pisan pd tčk 4. Na snvi enstavnega teretičnega mdela in mdela HATA sta izpeljana mdela za nepsredni izračun ptrebne minimalne ddaljensti med istkanalnimi eliami v penstavljenem idealnem eličnem mrežju. V beh mdelih je upštevan krekijski faktr, ki upšteva dejansk ddaljenst ssednjih istkanalnih eli d rba mtene elie. Bštjan Tavčar, univ. dipl. inž. el., Ministrstv za bramb, Uprava RS za zaščit in reševanje

3 . RAZMERJE MED MOČJO KORSTNEGA SGNALA N VSOTO MOČ STOKANALNH NTERFERENČNH SGNALOV Razmerje med mčj kristnega signala C in vst mči istkanalnih interferenčnih signalv ne sme nikjer v elii preseči minimaln dvljen vrednst, ki še zagtavlja nrmaln delvanje radijskih pstaj. gju bm zadstili, če bm na rbu elie zagtvili minimaln dvljen razmerje vrednsti mči kristnega signala C in vste mči istkanalnih interferenčnih signalv. Mč kristnega signala na rbu elie je: C = L( R) 1.1 ri tem je mč kristnega ddajnika v elii. L (R) je slabljenje signala na razdalji R, ki je plmer elie. Vsta mči interferenčnih signalv na rbu elie je: = 6 i= 1 L( x ) i 6 = pri x 1 = x = = x 6 = D L ( D ) 1. ri tem je mč psameznega interferenčnega ddajnika in je p predpstavki enaka za vse ddajnike. L (xi) je slabljenje signala na razdalji x i, ki je ddaljenst psameznega interferenčnega ddajnika d izbrane tčke na rbu mtene elie. V enačbi sm upštevali le šest kliških intreferenčnih eli. Vpliv stalih interferenčnih eli lahk zaradi zanemarljivega vpliva zanemarim. Če predpstavim enak ddaljenst D vseh interferenčnih eli, se enačba mčn penstavi. Napak, ki sm j pri tem napravili bm dpravili s krekijskim faktrjem pri knčni enačbi. Slika : Dejanska in predpstavljena razpreditev interferenčnih eli 3

4 Razmerje med mčj kristnega signala C in vst mči istkanalnih interferenčnih signalv je: C = L ( D ) 6L( R) 1.3 zražen v deibelih je: C 10 lg = C R D [ db] [ db] = 10lg L( ) 10lg L( ) 10lg6 1.4 Nekaj primerv največjih dvljenih razmerja med mčj kristnega signala C in vst mči istkanalnih interferenčnih signalv : SREJEMNK C [db] [db] C [W]/ [W] Analgni FM sprejemniki, 5kHz širina kanala 8 db 6,3096 Analgni FM sprejemniki, 1,5kHz širina kanala 1 db 15,8489 Digitalni sprejemnik FDMA (TETRAOL) 15 db 31,68 Digitalni sprejemnik TDMA (TETRA) 19 db 79,438 4

5 3. ENOSTAVEN TEORETČN MODEL ZA ZRAČUN JAKOST RADJSKEGA SGNALA Enstaven teretični mdel za izračun jaksti radijskega signala na sprejemniku s(x) v dvisnsti d mči ddajnika, višine ddajnika h in sprejemnika h s in razdalje med njima x lahk zapišem z enačb: hhs s ( x) = = L( x) x.1 Slabljenje signala L (x) iz zgrnje enačbe je: ( ) x L x = hhs. Če izraz za slabljenje signala. vstavim v enačb 1.3 dbim enačb za razmerje med mčj kristnega signala C in vst mči istkanalnih interferenčnih signalv v dvisnsti d plmera elie R in ddaljensti d istkanalne intrferenčne elie D. L ( D ) = 6L( R) C = D 4 6R 4.3 Od td lahk izračunam ptrebn ddaljenst interfrenčnih eli D. D = 4 6 R.4 Vst mči interferenčnih signalv v izbrani tčki izračunam p enačbi: 6 = = L ( D ) f ( D ).5 zračunana ddaljenst vsebuje napak, ki sm j vnesli s penstavitvij enačbe 1. in j je ptrebn krigirati. V ta namen namest predpstavljene ddaljensti interferenčnih eli d izbrane tčke na rbu mtene elie D izračunam dejanske ddaljensti interferenčnih eli, x 1, x, x 6 v dvisnsti d kta α, ki predstavlja dmik pazvane tčke na rbu mtene elie d izhdišča, ki je v liniji z en izmed interferenčnih eli. x 1 = D + (DR + R )(1 s( α )) x = D + (DR + R )(1 s(60 α )) x 3 = D + (DR + R )(1 s(10 α )) x 4 = D + (DR + R )(1 s(180 α)) x 5 = D + (DR + R )(1 s(10 + α)) x 6 = D + (DR + R )(1 s(60 + α)).6 5

6 Slika 3: Gemetrija za izračun interferenčnih signalv Vst mči interferenčnih signalv v izbrani tčki izračunam p enačbi: = = f( D, α ).7 L( x ) i( D) Vsta mči interferenčnih signalv je največja pri ktih 0 0, 60 0, 10 0,, t je v tčkah na rbu mtene elie, ki s v liniji z en izmed interferenčnih eli. Z izenačitvij izrazv.5 in.7 dbim pvezav med D in D in s tem vrednst krekijskega faktrja. 6 L 6 = D D = D kf kf = L = ( x ) D ( D ) i 1 i( D) = 0,

7 Enačba za prav vrednst ddaljensti med rbm mtene elie in interferenčnim ddajnikm je: D = 4 6 R 0, Slika 4: Gemetrija med mtenim in interferenčnim ddjnikm Razdalja med mtenim in interferenčnim ddajnikm razdalja med istkanalnimi eliami v mrežju K je: K C = R R 0, Faktr pnvitve frekvene je: K C a = = , R Števil ptrebnih frekven je: a N =.1 3 7

8 Enačba za izračun medsebjne ddaljensti istkanalnih eli v mrežju je dkaj enstavna. Temelji na preprstem mdelu slabljenja radijskega signala enačba.1, ki ima dve bistveni pmanjkljivsti: Mdel ni dvisen d frekvene, kar se v praksi izkaže za napačn. Meritve s pkazale, da je slabljenje signala dvisn d frekvene signala: n s ( x) f pri n 3 Mdel predvideva pri pdvjitvi višine sprejemne antene zmanjšanje slabljenja radijskega signala za 6 db. Meritve pa kažej, da je t pvečanje kli 3 db. S ( x,h ) S( x, h ) s s hs = h s = 4 6dB Mdel lahk služi le grbi eni slabljenja radijskega signala v prstru. st velja za enačb.10 za izračun medsebjne ddaljensti istkanalnih eli v mrežju. 8

9 rimer: redlagana idealna elična struktura mrežja temelji na predpstavljenih eliah plmera 5 km, višina vseh ddajnikv je 50 m, mč ddajnikv je 0 W. zračunane s mči elektrmagnetnega plja v prstru na višini 1.5 m, p mdelu, ki temelji na enačbi: hhs s = (W) 3.1 d pri kateri je: - mč ddajnika (W) s - mč signala pri sprejemniku (W) h - višina ddajnika (m) h s - višina sprejemnika (m) d - razdalja med ddajnikm in sprejemnikm (m) Slika 5: redpstavljena elična struktura mrežja s eliami plmera 5 km ri izračunu je upštevan minimaln dvljen razmerje (10lg( C / ) med kristnim signalm in šestimi mtilnimi signali istkanalnih eli, ki pri TETR znaša 19 db zirma C / ki znaša 79,433. Minimalna razdalja med središčema dveh istkanalnih eli je izračunana p enačbi: 9

10 K C = R R kf = 4, 38 km 3. K - razdalja med središčema istkanalnih eli (km) R - plmer elie (km) C - mč kristnega signala (W) - mč mtilnega signala (W) kf - krekijski faktr = 0, (/) zračun je narejen na predpstavki, da s parametri vseh eli enaki. zračunana minimalna razdalja med istkanalnima eliama je 4,38 km. K C a = = , = 4, R Števil ptrebnih frekven je: a N = = 7,9 N = Na tej pdlagi je mžn dlčiti minimaln ptrebn števil duplesnih parv v mrežju, ki b predpstavki, da je v vsaki elii uprabljen sam en dupleksni par, znaša 9. Omrežje s eliami plmera 5 km je predvidma primern za rčne radijske pstaje. Jakst plja na rbu elie je 58 dbuv/m, kar ustreza jaksti signala na sprejemniku radijske pstaje -67,44 dbm. Minimalna ptrebna jakst signala na sprejemniku radijske pstaje je -11 dbm statičn in -103 dbm dinamičn. Jakst plja pri bazni pstaji je b predpstavki, da je mč rčne pstaje W, 48 dbuv/m, kar ustreza jaksti signala na sprejemniku bazne pstaje -77,44 dbm. Minimalna ptrebna jakst signala na sprejemniku bazne pstaje je -115 dbm statičn in -106 dbm dinamičn. 10

11 4. STATSTČN MODEL HATA ZA ZRAČUN JAKOST RADJSKEGA SGNALA Evrpski telekmunikaijski inštitut za standardizaij priprča pri sistemih TETRA uprab statističnega mdela HATA, za razgiban pdeželsk bmčje, za izračun jaksti radijskega signala pri sprejemniku s(x) v dvisnsti d mči ddajnika, višine ddajnika h in sprejemnika h s, frekvene signala f in razdalje med njima x, ki ga lahk zapišem z enačb: s( x) = lg( f ) lg( h ) + (1.1lg( f ) 0.7) h (1.56 lg( f ) 0.8) ( lg( h )) lg( x) (lg( f )) 18.33lg( f ) s [ db] 4.1 Slabljenje signala L (x) iz zgrnje enačbe je: L ( x) = lg( f ) 13.8 lg( h ) (1.1lg( f ) 0.7) h + (1.56 lg( f ) 0.8) + ( lg( h ))lg( x) 4.78(lg( f )) lg( f s ) [ db] 4. Če izraz za slabljenje signala 4. vstavim v enačb 1.3 dbim enačb za razmerje med mčj kristnega signala C in vst mči istkanalnih interferenčnih signalv v dvisnsti d plmera elie R in ddaljensti d istkanalne intrferenčne elie D. 10lg C [ db] [ db] = (44,9 6,55lg( h ))lg( D ) (44,9 6,55lg( h ))lg( R) 10 lg(6) [ db] = 4.3 C Od td lahk izračunam ptrebn ddaljenst interfrenčnih eli D. D (44,9 6,55 lg( h )) lg( R) + C 44,9 6,55 lg( h [ db] [ db] ) + 10 lg 6 = Vst mči interferenčnih signalv v izbrani tčki izračunam p enačbi: = L f + 10lg 6 = 4.5 ( D ) ( ) [ db] D zračunana ddaljenst vsebuje napak, ki sm j vnesli s penstavitvij enačbe 1. in j je ptrebn krigirati. V ta namen namest predpstavljene ddaljensti interferenčnih eli d izbrane tčke na rbu mtene elie D izračunam dejanske ddaljensti interferenčnih eli, x 1, x, x 6 v dvisnsti d kta α enačbe.6, ki predstavlja dmik pazvane tčke na rbu mtene elie d izhdišča, ki je v liniji z en izmed interferenčnih eli. Vst mči interferenčnih signalv v izbrani tčki izračunam p enačbi: = ( xi ( D)) i= 1 10 lg(10 ) = 6 L f ( ) [ db] D,α 4.6 Vsta mči interferenčnih signalv je največja pri ktih 0 0, 60 0, 10 0,, t je v tčkah na rbu mtene elie, ki s v liniji z en izmed interferenčnih eli. 11

12 Z izenačitvij izrazv 4.5 in 4.6 dbim pvezav med D in D in s tem vrednst krekijskega faktrja. L 10lg 6 = 10 lg(10 ) db D = D 6 L ( xi ( D)) i= 1 ( ) [ ] D ( h ) Krekijski faktr je dvisen višine ddajnika h. zračunane vrednsti krekijskega faktrja za višine ddajnika d 30 d 1000 m s v spdnji tabeli. h kf h kf 30 0, , , , , , , , , , , , , , , , , , , , , , ribližek krekijskega faktrja za bmčje višin d 50 d 500 m lahk izračunam iz spdnjega plinma. kf 4.7 kf h h h h = 4.8 velja pri: 50m h 500m kf 0,91 0,9 0,89 0,88 0,87 0,86 0, h Graf 1: Krekijski faktr kf (črna linija) in približek krekijskega faktrja (rdeča linija) v dvisnsti d višine ddajnika h 1

13 Enačba za prav vrednst ddaljensti med rbm mtene elie in interferenčnim ddajnikm je: (44,9 6,55 lg( h )) lg( R) + C [ db] [ db] + 10 lg 6 44,9 6,55lg( h ) D = 10 kf( h ) 4.9 Razdalja med mtenim in interferenčnim ddajnikm razdalja med istkanalnimi eliami v mrežju K je: (44,9 6,55 lg( h )) lg( R) + C [ db] [ db] + 10 lg 6 44,9 6,55 lg( h ) K = R + 10 kf( h ) 4.10 Faktr pnvitve frekvene je: K a = 4.11 R Števil ptrebnih frekven je: a N = Enačba za izračun medsebjne ddaljensti istkanalnih eli v mrežju ni tak enstavna kt enačba.10. Temelji pa na velik bljšem mdelu slabljenja radijskega signala HATA za razgiban pdeželsk bmčje. Zat lahk pričakujem tčnejše rezultate, kt pri enačbi.10. Enačba 4.10 je bila izpeljana na pdlagi mdela HATA za razgiban pdeželsk bmčje vendar j lahk uprabim tudi pri mdelu HATA za urban bmčje. V tem primeru lahk pričakujem srazmern nižje vrednsti kristnega signala in interferenčnih signalv, medtem k se njihv medsebjn razmerje hranja. 13

14 rimer: redlagana idealna elična struktura mrežja temelji na predpstavljenih eliah plmera 5 km, višina vseh ddajnikv je 50 m, mč ddajnikv je 0 W. zračunane s mči elektrmagnetnega plja na višini 1,5 m, p mdelu, HATA za razgiban pdeželsk bmčje ki temelji na enačbi: = lg( f ) lg( h ) + (1.1lg( f ) 0.7) h (1.56 lg( f ) 0.8) s ( lg( h )) lg( R) (lg( f )) 18.33lg( f ) s [ db] 5.1 pri kateri je: - mč ddajnika (dbm) s - mč signala pri sprejemniku (db) h - višina ddajnika (m) h s - višina sprejemnika (m) d - razdalja med ddajnikm in sprejemnikm (km) f - frekvena ddajnika (MHz) Slika 6: redpstavljena elična struktura mrežja s eliami plmera 5 km ri izračunu je upštevan minimaln dvljen razmerje ( C [db] [db]) med kristnim signalm in šestimi mtilnimi signali istkanalnih eli, ki pri TETR znaša 19 db. Minimalna razdalja med središčema dveh istkanalnih eli je izračunana p enačbi: 14

15 K = R + 10 ( lg( h ))lg( R) + C lg( h ) [ db] [ db] + 10lg 6 kf = 31,67 km 5. K - razdalja med središčema istkanalnih eli (km) R - plmer elie (km) C - mč kristnega signala (dbm) - mč mtilnega signala (db) h - višina ddajnika (m) kf krekijski faktr (/) linm za izračun približka krekijskega faktrja: kf h h h h = 5.3 velja pri: 30m h 500m zračun je narejen na predpstavki, da s parametri vseh eli enaki. zračunana minimalna razdalja med istkanalnima eliama je 31,67 km. Na tej pdlagi je mžn dlčiti minimaln ptrebn števil duplesnih parv v mrežju, ki b predpstavki, da je v vsaki elii uprabljen sam en dupleksni par, znaša 13. K a = = 6, R Števil ptrebnih frekven je: a N = = 13,37 N = Omrežje s eliami plmera 5 km je predvidma primern za rčne radijske pstaje. Jakst plja na rbu elie je 46,31 dbuv/m, kar ustreza jaksti signala na sprejemniku radijske pstaje -79,14 dbm. Minimalna ptrebna jakst signala na sprejemniku radijske pstaje je -11 dbm statičn in -103 dbm dinamičn. Jakst plja pri bazni pstaji je b predpstavki, da je mč rčne pstaje W, 36,31 dbuv/m, kar ustreza jaksti signala na sprejemniku bazne pstaje -89,14 dbm. Minimalna ptrebna jakst signala na sprejemniku bazne pstaje je -115 dbm statičn in -106 dbm dinamičn. 15

16 Zgdvina zgdvina dkumenta nvember 000 prva različia (v1.0) Osnutek za razprav januar 001 prva različia (v1.0) različia za bjav na internetu Mdeli3.d Mdeli3.d 16

KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE

KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE. Trignir prinaša nv, kreativen, zanimiv in učinkvit pristp pri analiziranju in uprabi ktnih funkcij, s katerim ktne funkcije

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

STANDARD1 EN EN EN

STANDARD1 EN EN EN PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške

Διαβάστε περισσότερα

S53WW. Meritve anten. RIS 2005 Novo Mesto

S53WW. Meritve anten. RIS 2005 Novo Mesto S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u

Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u Plge a preavanja i ehanike 1 STATIČKI OENT SILE + SPREG SILA Labratri j a m umerič k u m e h a n i k u 1 Statički mment sile Sila u insu 225 N jeluje na ključ prema slici. Oreiti mment sile birm na tčku

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

1. Osnovne lastnosti radijske zveze

1. Osnovne lastnosti radijske zveze 1. Osnovne lastnosti radijske zveze stran 1.1 1. Osnovne lastnosti radijske zveze 1.1. Radijska zveza v praznem prostoru Radijska zveza je vrsta zveze s pomočjo elektromagnetnega valovanja, kjer se valovanje

Διαβάστε περισσότερα

Snovanje optimalnega krmilnega sistema

Snovanje optimalnega krmilnega sistema Univerza v Ljuljani FAULTETA ZA STROJNIŠTVO TEHNIČNA IBERNETIA 5/6 Vaja 5: Snvanje ialnega krilnega sisea 7..6 Daeka: kvaja5.dc, Zadnja sreea: 7..6 Vaja 5: Snvanje ialnega krilnega sisea. Definicija V

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ITU-R SM (2011/01)

ITU-R SM (2011/01) (2011/01) SM ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA RS S SA SF SM SNG TF V 2011 :.ITU-R 1 ITU

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA

IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Seminar pri predmetu Razdelilna in industrijska omrežja Maja Mikec Profesor: dr. Grega Bizjak Študijsko leto

Διαβάστε περισσότερα

PRENOS SIGNALOV

PRENOS SIGNALOV PRENOS SIGNALOV 14. 6. 1999 1. Televizijski signal s pasovno širino 6 MHz prenašamo s koaksialnim kablom na razdalji 4 km. Dušenje kabla pri f = 1 MHz je,425 db/1 m. Koliko ojačevalnikov z ojačenjem 24

Διαβάστε περισσότερα

ITU-R M.2084 ITU-R M.2084 (2006) (IALA) (IMO) (AIS) ITU-R M (VHF) (AIS) (SOLAS)

ITU-R M.2084 ITU-R M.2084 (2006) (IALA) (IMO) (AIS) ITU-R M (VHF) (AIS) (SOLAS) 1 (2006) (IALA). (IMO). (AIS) (IEC). ITU-R M.1371.(VHF) (TDMA) (AIS) ( 56 27) 30 20.. (SOLAS). 300 500. 2008.B.A (AIS)..(VHF). ( 370) 200.. : 1. 2 B A A ). ( (AIS).ITU-R M.1371 AIS AIS.. 2 250.. (VHF)...

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

! : ;, - "9 <5 =*<

! : ;, - 9 <5 =*< ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9

Διαβάστε περισσότερα

TOPNOST, HITROST RAZTAPLJANJA

TOPNOST, HITROST RAZTAPLJANJA OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. Dana je množica predpostavk p q r s, r t, s q, s p r, s t in zaključek t r. Odloči, ali je sklep pravilen ali napačen. pravilen, zapiši

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ITU-R F (2011/04)

ITU-R F (2011/04) ITU-R F.757- (0/0) F ITU-R F.757- ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

U N I V E R Z A V L J U B L J A N I Naravoslovnotehniška fakulteta 100 REŠENIH PROBLEMOV IZ FIZIKALNE KEMIJE ZA ŠTUDENTE GEOLOGIJE

U N I V E R Z A V L J U B L J A N I Naravoslovnotehniška fakulteta 100 REŠENIH PROBLEMOV IZ FIZIKALNE KEMIJE ZA ŠTUDENTE GEOLOGIJE U N I E R Z A L J U B L J A N I Naravslvntehniška fakulteta Oddelek za gelgij 00 REŠENIH PROBLEMO IZ FIZIKALNE KEMIJE ZA ŠUDENE GEOLOGIJE Marija Bešter Rgač Ljubljana, 999 I. PLINI, PRI IN DRUGI SAEK ERMODINAMIKE.

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Predmetno poučevanje, matematika in računalništvo

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Predmetno poučevanje, matematika in računalništvo UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Predmetno poučevanje, matematika in računalništvo MARIZA MOČNIK ALGORITEM ZA ŠTETJE MALIH INDUCIRANIH PODGRAFOV IN ORBIT VOZLIŠČ V REDKIH GRAFIH MAGISTRSKO DELO

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω. Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL-

HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL- RADIJSKE FREKVENCE UPORABA HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL- NI STANDARD 1 NI CIKLUS PRILOGA ŠIRINA KANALA 9,000 20,05 khz SRD: induktivne aplikacije EN 300 330-2 72 dbμa/m na 10 metrov Ni omejitev

Διαβάστε περισσότερα