Note On Euler Type Integrals
|
|
- Πάνθηρας Αλεβιζόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Iteatioal Bulleti of Matheatical Reseach Volue 2, Issue 2, Jue 25 Pages -7, ISSN: Note O Eule Type Itegals Meha Chad ad Eauel Guaiglia 2 Depatet of Matheatics, Fateh College fo Woe, Bathida-53 (Idia eha.jalladha@gail.co 2 Depatet of Physics E. R. Caiaiello, Uivesity of Saleo, 8484 Fisciao (Italy eguaiglia@uisa.it Abstact I this pape we fist evaluate Six fiite uified itegals ivolvig poduct of the Geealized Mittag-Leffle fuctio E (γ j,(l j (ρ j,λ z,, z] ad the geealized polyoials S x].the values of the itegals ae obtaied i tes of ψ(z (the logaithic deivative of Γ(z. O accout of the geeal atue of ou ai itegals a lage ube of ew ad kow fiite itegals ad othe itegals ivolvig siple Special fuctios ad Polyoials, follow as its special cases. Fo the sake of illustatio, we ecod hee soe special cases of ou ai itegals which ae also ew ad of iteest by theselves. The itegals established hee ae basic i atue ad ae likely to fid useful applicatios i seveal fields of sciece ad egieeig. Itoductio ad defiitios I ecet yeas the iteest i fuctios of Mittag-Leffle type aog scietists, egiees ad applicatios-oieted atheaticias has deepeed. The Mittag-Leffle fuctio aises atually i the solutio of factioal ode itegal equatios o factioal ode diffeetial equatios, ad especially i the ivestigatios of the factioal geealizatio of the kietic equatio, ado walks, Levy flights, supe-diffusive taspot ad i the study of coplex systes. The odiay ad geealized Mittag-Leffle fuctios itepolate betwee a puely expoetial law ad powe-law like behavio of pheoea goveed by odiay kietic equatios ad thei factioal coutepats, see Lag 8, 9], Hilfe 7], Saxea et al.7]. I 93, the Swedish atheaticia Gosta Mittag-Leffle ] itoduced the fuctio E α (z, defied as E α (z z Γ(α +, (. whee z is a coplex vaiable ad Γ(. is a Gaa fuctio, α. The Mittag-Leffle fuctio is a diect geealizatio of the expoetial fuctio to which it educes fo α. Fo < α < it itepolates betwee the pue expoetial ad a hypegeoetic fuctio z. Its ipotace is ealized duig the last two decades due to its ivolveet i the pobles of physics, cheisty, biology, egieeig ad applied scieces. Mittag-Leffle fuctio atually occus as the solutio of factioal ode diffeetial equatio o factioal ode itegal equatios. The geealizatio of E α (z was studied by Wia 26] i 95 ad he defied the fuctio as E α,β (z z, (α, β C; R(α >, R(β >. (.2 Γ(α + β which is kow as Wia s fuctio o geealized Mittag-Leffle fuctio as E α, (z E α (z. The foe was itoduced by Mittag-Leffle] i coectio with his ethod of suatio of soe diveget seies. I his papes, ], he ivestigated cetai popeties of this fuctio. The fuctio defied by (.2 fist appeaed i the wok of Wia 26]. The fuctio (.2 is studied, aog othes, by Wia 26], Agawal ], Hubet 5] ad Hubet ad Agawal 6] ad othes. The ai popeties of these fuctios ae give i the book by Edelyi et al. (3], Sectio Received: Jue, 25 Keywods: Fiite itegals, Sivastava polyoials, Geealized Mittag-Leffle fuctio, logaithic deivative. AMS Subject Classificatio: 4C, 33C45, 26A33.
2 2 Meha Chad ad Eauel Guaiglia 8. ad a oe copehesive ad a detailed accout of Mittag-Leffle fuctios ae peseted i Dzhebashya (2], Chapte 2. I 97, Pabhaka 2] itoduced the fuctio E γ α,β (z i the fo of E γ α,β (z (γ z Γ(α + β!, (.3 whee α, β, γ C; R(α >, R(β >, R(γ > ad (λ deotes the failia Pochhae sybol o the shifted factoial, sice (! ( N (λ Γ(λ + Γ(λ { ( ; λ C {} λ(λ + (λ + ( N; λ C (.4 Recetly geealizatio of Mittag-Leffle fuctio E γ α,β (z of (.3 studied by Sivastava ad Toovski 23] is defied as follows: E γ,k α,β (z (γ K z Γ(α + β!, (.5 whee α, β, γ C; R(α >, R(β >, R(γ > ; R(K > which, i the special case whe K q(q (, N ad i{r(α, R(β} (.6 was cosideed ealie by Shukla ad Pajapati 25]. A ultivaiable aalogue of Mittag-Leffle fuctio defied i (.3 is vey ecetly studied by Gouta 4] ad Saxea et al. 6, p. 536, Eq..4] i the followig fo: E (γj (ρ j,λ z,, z ] E (γ,γ (ρ,,ρ,λ z,, z ] whee λ, γ j, ρ j C; R(ρ j > ; j, 2,,. k,,k (γ k (γ k z k z k Γ(λ + k ρ + + k ρ (k!(k!, (.7 If we take ρ ρ 2 ρ, the Equatio (.7 educes to the followig cofluet hypegeoetic seies 22, p.34, Eq. (.4(8]: Φ ( 2 γ,, γ ; λ; z,, z ] Γ(λ (γ i ki i (λ k+k k,,k whee λ, γ j, z j C (j, 2,, ad ax{ z,, z } < ; λ / Z. z k zk, (.8 (k!(k! A ild geealizatio of ultivaiable aalogue of Mittag-Leffle fuctio i (.7 is also due to Saxea et al. defied as follows 6, p.547, Eq. (7.]: (ρ j,λ z,, z ] k,,k (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k!, (.9
3 Note O Eule Type Itegals 3 whee λ, γ j, ρ j C; R(ρ j > ; R(l j > ; l j N(j, 2,, ; λ / Z. Sivastava polyoials S x] will be defied ad epeseted as follows 9, p., Eq. (]: S x] /] l ( l A,l x l, (. l! whee,, 2,, is a abitay positive itege, the coefficiets A,l (, l ae abitay costats, eal o coplex. S x] yields ube of kow polyoials as its special cases. These iclude, aog othe, the Jacobi polyoials, the Bessel Polyoials, the Lague Polyoials, the Bafa Polyoials ad seveal othes (Sivastava ad Sigh, 983 2]. The followig esults ad defiitios ae also equied i ou ivestigatios. Pabhake ad Sua 3] defied the polyoials L (α,β (x as: whee α C +, β C + ad N. If α, the (. educes as: L (α,β Γ (α + β + (x Γ ( + L (,β Γ ( + β + (x Γ ( + whee L β (xis well-kow geealized Laguee polyoials (Raiville 4]. The Kohause polyoials of secod kid (Sivastava 2] is defied as: whee β C +, N ad k Z. It ca be easily veified that: Z β (x; k Γ (k + β +! k j k ( k x k Γ (αk + β +, (. ( k x k Γ (k + β + Lβ (x, (.2 ( ( j x kj j Γ (kj + β +, (.3 L (k,β ( x k Z β (x; k, (.4 The polyoials Z (α,β (x; k is defied24] as: Z (α,β (x; k Whee α C +, β C +, N ad k Z. Fo (.3 ad (.6, we get: L β (x Z β (x;, (.5 j If α N the (.6 ca be witte i the followig fo: Z (α,β Γ (k + β + (x; k Γ (α + Γ (k + β + ( j x kj j!γ (kj + β + Γ (α αj +, (.6 Z (,β (x; k Z β (x; k. (.7 ( α α x k. (.8 (α!γ (k + β + (
4 4 Meha Chad ad Eauel Guaiglia The set of polyoials L (α,β (γ; x is defied 24] as: whee α, γ C +, β C +, N. Fo (.9 ad (., we have: Oe ca easily veify that: L (α,β (γ; x Soe facts ae listed below (see Spaie ad Oldha 8] Γ (α + β + ( x!γ (α + β + Γ (γ γ +, (.9 L (α,β (; x L (α,β (x. (.2 L (k,β ( α; x k Z (α,β (x; k, (.2 Z (,β (x; L β (α; x, (.22 Z (,β (x; Z β (x; L β (x, (.23 L (,β (; x L (,β (x L β (x. (.24 ( x ( (x +, (.25 ( (x + y (x j j (y j, (.26 j (x + (x (x + ad (.27 ( x ( ( x. (.28! The followig well kow Eule itegal Foula is also equied to establish the ai itegals22, p. 275, Eq. 3]: u α u α ( u u β du du Γ(α Γ(α Γ(β Γ(α + + α + β, (.29 whee u j (j,,, u + + u ; R(α j >, j,, ; R(β >. 2 Mai Itegals Let ψ(z deotes the logaithic deivative of gaa fuctio Γ(z i.e. ψ(z Γ (z Γ(z, the we the followig esults. Theoe 2. If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S xλ ( x x η] log(x (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] ( k (γ kl A (γ kl z k z k,k Γ(λ + k ρ + + k ρ (k!(k! k k,k Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ( ] ψ(s + λ k + µ k ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i (2.
5 Note O Eule Type Itegals 5 Theoe 2.2 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S xλ ( x x η] log(x (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] ( k (γ kl A (γ kl z k z k,k Γ(λ + k ρ + + k ρ (k!(k! k k,k Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ( ] ψ(s + λ k + µ k ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i (2.2 Theoe 2.3 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S xλ ( x x η] log( x x (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] ( k (γ kl A (γ kl z k z k,k Γ(λ + k ρ + + k ρ (k!(k! k k,k Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ( ] ψ(t + ηk + δ k + + δ k ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i (2.3 Theoe 2.4 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S xλ ( x x η] logx x ( x x ] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] ( k (γ kl A (γ kl z k z k,k Γ(λ + k ρ + + k ρ (k!(k! k k,k Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ( ] ψ(s i + λ i k + µ i k i + ψ(t + ηk + δ k + + δ k ( + ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i i (2.4 Theoe 2.5 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + +
6 6 Meha Chad ad Eauel Guaiglia δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u (x x log ( x x /] k k,,k xλ ( x x η] 2 x ( x x t S ] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx ( k (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k! Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ( ] ψ(s i + λ i k + µ i k i ψ(t + ηk + δ k + + δ k ( ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i Theoe 2.6 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u ( x x log (x x /] k k,,k i xλ ( x x η] 2 x ( x x t S ] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx ( k (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k! Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i ψ(t + ηk + δ k + + δ k ( ] ψ(s i + λ i k + µ i k i + ( ψ (s i + λ i k + µ i k i + δ i k i + t + ηk. i The followig iteestig itegal, which is established i equatio (2.7 will be equied to establish the esults fo (2. to (2.6. i (2.5 (2.6 Theoe 2.7 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] ( k (γ kl A (γ kl z k z k,k Γ(λ + k ρ + + k ρ (k!(k! k k,,k Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk /] k i xλ ( x x η] Γ(s + λ kγ(s + λ kγ(t + λk ( k E (γj,sj+λjk,t+ηk,(lj,µj, δ j (ρ j,(µ j+δ j,λ,t+ηk+ (s z j+λ jk,, z ]. (2.8 (2.7
7 Note O Eule Type Itegals 7 Poof: To evaluate the above itegal, we expess S x] i its seies fo with the help of Eq.(. ad Geealized Mittag-Leffle fuctio i tes of seies fo give by Eq.(.9 ad the itechagig the ode of itegatio ad suatio, we get: I /] ( k k k,,k u u (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k! x s+λk+µk x s+λk+µk ( x x t+ηk+δk++δk dx dx (2.9 Futhe usig the foula give i equatio (.25, the above equatio (2.9 educed to the followig fo /] k k,,k ( k (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k! Γ(s + λ k + µ k Γ(s + λ k + µ k Γ(t + ηk + δ k + + δ k ( Γ (s i + λ i k + µ i k i + δ i k i + t + ηk i (2. /] k Γ(s + λ kγ(s + λ kγ(t + ηk ( k (s + λ k µk (s + λ k µk (t + ηk ( δk ++δ k Γ (s i + λ i k + µ i k i + δ i k i + t + ηk /] k i k,,k (γ kl (γ kl z k z k Γ(λ + k ρ + + k ρ (k!(k! Γ(s + λ kγ(s + λ kγ(t + ηk ( k E (γj,sj+λjk,t+ηk,(lj,µj, δ j (ρ j,(µ j+δ j,λ,t+ηk+ (s z j+λ jk,, z ] (2. Thus, fo equatio (2. ad (2., we have ou equied esults (2.7 ad (2.8. The esult i Eq. (2. is established by takig the patial deivative o both sides of equatio Eq. (2.7 with espect to s. Equatio (2.2 ad (2.3 ae siilaly established by takig the patial deivative of Eq. (2.7 with espect to s ad t espectively. Eq. (2.4 is established by addig patial deivatives of the Eq. (2.7 with espect to s,, s ad t. To establish Eq. (2.5 fist addig the patial deivatives of Eq. (2.7 with espect to s,, s ad the subtact patial deivative of Eq. (2.7 with espect to t. To establish Eq. (2.6 fist takig patial deivative of Eq. (2.7 with espect to t ad the subtact patial deivatives of Eq. (2.7 with espect to s,, s. Lea 2.8 If a, c, ζ, ξ C +, b, d C +,, N5, Lea 2.], the + L (a,b (ξ; x L (c,d (ζ; x h h k Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( x h Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d +. (2.2 Theoe 2.9 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j +
8 8 Meha Chad ad Eauel Guaiglia λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the L (a,b (ξ; xp u u 2 x xp ( x x q L (c,d ( x x t S xp ( x x q (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h h k Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d + /] k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] (2.3 Poof: Fist we deote LHS of equatio (2.3 by I, the applyig the esult give i equatio (2.2, we have: I h h k Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d + u u ( x x t+qh S x s+ph x s2+p2h 2 x s+ph xλ ( x x η] (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx, (2.4 ow applyig the esult give i equatio (2.8, we have the equied esult (2.3 afte little siplificatio. Theoe 2. If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the L (a,b (ξ; xp u u ( x x q L (c,d xp 2 x ( x x t S xp ( x x q xλ ( x x η] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ (ζ + Γ (ξ (σ h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk + k Γ (ak + b + Γ (c (h k + d + /] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (2.5 Poof: Let ξ, ζ N ad usig (.25, the equatio (2.3 educed to the equied esult (2.5afte little siplificatio.
9 Note O Eule Type Itegals 9 3 Special Cases By applyig the ou esult give i equatio (2.8, (2.3 ] ad (2.5 to the case of Heite polyoials (Sivastava ad Sigh, 983 2] by settig S(x 2 x /2 H 2 i which 2; A x,k ( k, we have the above equied esult. Coollay 3. If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: H 2 xλ u u ( x x η 2 x ( x x t xλ ( x x η] /2 (ρ j,λ z (x µ (3. ( x x δ,, z (x µ ( x x δ ]dx dx /2] k Γ(s + λ kγ(s + λ kγ(t + λk ( 2k ( k E (γj,sj+λjk,t+ηk,(lj,µj, δ j (ρ j,(µ j+δ j,λ,t+ηk+ (s z j+λ jk,, z ]. Coollay 3.2 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the H 2 xλ L (c,d u u ( x x η 2 x L (a,b ( x x t xλ ( x x η] /2 xp ( x x q (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /2] k h h k xp ( x x q Γ (a + b + Γ (c + d + ( h Γ (h k + Γ (ζ ( h + k + Γ (k + Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d + Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( 2k ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (3.2 Coollay 3.3 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j +
10 Meha Chad ad Eauel Guaiglia λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the H 2 xλ u u ( x x η 2 x L (a,b ( x x t xλ ( x x η] /2 xp ( x x q L (c,d xp ( x x q (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ (ζ + Γ (ξ (σ h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk + k Γ (ak + b + Γ (c (h k + d + /2] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( 2k ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. By applyig the ou esult give i equatio (2.8, (2.3 ad (2.5 to ( the case of Lague polyoials (Sivastava ad Sigh, 983 2] by settig S(x L (α + α x] i which ;, we have the followig (α + k esults. (3.3 Coollay 3.4 If t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have: u u 2 x ( x x t L (α (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx ] k Γ(s + λ kγ(s + λ kγ(t + λk ( k ( + α xλ ( x x η] δj E (γj,sj+λjk,t+ηk,(lj,µj, (α + (ρ j,(µ j+δ j,λ,t+ηk+ (s z j+λ jk,, z ]. k Coollay 3.5 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the (3.4 L (a,b (ξ; xp u u 2 x xp ( x x q L (c,d ( x x t L (α xp ( x x q (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h h k Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d + ] k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] ( + α (α + k (3.5 Coollay 3.6 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j +
11 Note O Eule Type Itegals λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the L (a,b (ξ; xp u u ( x x q L (c,d xp 2 x ( x x t L (α xp ( x x q xλ ( x x η] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ (ζ + Γ (ξ (σ h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk + k Γ (ak + b + Γ (c (h k + d + ] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. ( + α (α + k (3.6 If we take ρ ρ ad l l the Geealized Mittag-Leffle fuctio educed to the cofluet hypegeoetic seies 22, p.34, Eq. (.4(8], the the esults fo equatio (2.8, (2.3 ad (2.5 educed to the followig fo. Coollay 3.7 If t, η, λ, s j, λ j, γ j, δ j, µ j C; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > (j, 2,, ; λ / Z, the we have: u u 2 x ( x x t S xλ ( x x η] φ ( 2 γ,, γ ; λ; z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx /] k Γ(s + λ kγ(s + λ kγ(t + λk ( k E (γj,sj+λjk,t+ηk,(,µj, δ j (,(µ j+δ j,λ,t+ηk+ (s z j+λ jk,, z ]. (3.7 Coollay 3.8 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, δ j, µ j C; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; (j, 2,, ; λ / Z, the L (a,b (ξ; xp u u 2 x xp ( x x q L (c,d ( x x t S xp ( x x q xλ ( x x η] φ ( 2 γ,, γ ; λ; z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h h k Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h Γ (ξ ( k + Γ (ak + b + Γ (c (h k + d + /] k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(,µ j, δ j (,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (3.8 Coollay 3.9 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, δ j, µ j C; R(γ j > ; R(s j + λ j k + µ j k j >
12 2 Meha Chad ad Eauel Guaiglia ; R(t + ηk + δ k + + δ k > ; (j, 2,, ; λ / Z, the L (a,b (ξ; xp φ ( u u ( x x q L (c,d xp 2 x ( x x t S xp ( x x q xλ ( x x η] 2 γ,, γ ; λ; z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ (ζ + Γ (ξ (σ h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk + k Γ (ak + b + Γ (c (h k + d + /] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(,µ j, δ j (,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (3.9 If we take the above esult i equatios (2.8, (2.3 ad (2.5 educed to the followig fo. Coollay 3. If t, η, λ, s, λ, γ, ρ, δ, µ C; R(ρ > ; R(γ > ; R(s + λ k + µ k > ; R(t + ηk + δ k > ; l N; λ / Z, the we have: ( x t S /] k ( x η] E (γ,(l (ρ,λ z (x µ ( x δ ]dx Γ(s + λ kγ(t + λk ( k E (γ,s+λk,t+ηk,(l,µ,δ (ρ z,(µ +δ,λ,t+ηk+(s +λ k ]. Coollay 3. If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s, λ, γ, ρ, δ, µ C; R(ρ > ; R(γ > ; R(s + λ k + µ k > ; R(t + ηk + δ k > ; l N; λ / Z, the ( x t S ( x η] L (a,b E (γ,(l (ρ z,λ (x µ ( x δ ]dx h h k ( x q L (c,d ( x q Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h /] Γ (ξ ( k + Γ (ak + b + Γ (c (h k Γ(s + p h + λ kγ(t + qh + ηk ( k + d + E (γ,s+ph +λ k,t+ηk,(l,µ,δ (ρ,(µ +δ,λ,t+qh +ηk+(s +p h +λ k z ]. Coollay 3.2 If a, c, ζ, ξ C +, b, d C +,, N; t, η, λ, s, λ, γ, ρ, δ, µ C; R(ρ > ; R(γ > ; R(s + λ k + µ k > ; R(t + ηk + δ k > ; l N; λ / Z, the ( x t S ( x η] L (a,b E (γ,(l (ρ,λ z (x µ ( x δ ]dx Γ (a + b + Γ (c + d + Γ (ζ + Γ (ξ + /] k h (σ h h k k ( x q L (c,d ( x q ( h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk k Γ (ak + b + Γ (c (h k + d + Γ(s + p h + λ kγ(t + qh + ηk ( k E (γ,sj+ph +λ k,t+ηk,(l,µ,δ (ρ,(µ +δ,λ,t+qh +ηk+ (s +p h +λ z k ]. O settig l j γ j ρ j λ ; the ultivaiable Mittag-Leffle fuctio educed to expoetial fuctio i.e. E,, (z E,(z exp(z ; ou ai esults established i equatios (2.8, (2.3 ad (2.5, educed to the followig (3. (3. (3.2
13 Note O Eule Type Itegals 3 fo: Coollay 3.3 If t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk + δ k >, the we have: ( x t S /] k ( x η] exp ( z (x µ ( x δ dx Γ(s + λ kγ(t + λk ( k E (,s+λk,t+ηk,(,µ,δ (,(µ z +δ,,t+ηk+(s +λ k ]. (3.3 Coollay 3.4 If a, c, ζ, ξ C +, b, d C +,, N; t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk + δ k >, the we have: ( x t S exp ( z (x µ ( x δ dx ( x η] L (a,b h h k ( x q L (c,d ( x q Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h /] Γ (ξ ( k + Γ (ak + b + Γ (c (h k Γ(s + p h + λ kγ(t + qh + ηk ( k + d + E (,s+ph +λ k,t+ηk,(,µ,δ (,(µ +δ,,t+qh +ηk+(s +p h +λ k z ]. k (3.4 Coollay 3.5 If a, c, ζ, ξ C +, b, d C +,, N; t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk + δ k >, the we have: ( x t S Γ (a + b + Γ (c + d + Γ (ζ + Γ (ξ + /] k ( x η] L (a,b h (σ h h k ( x q L (c,d (ξ; xp ( x q exp ( z (x µ ( x δ dx ( h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk k Γ (ak + b + Γ (c (h k + d + (3.5 Γ(s + p h + λ kγ(t + qh + ηk ( k E (,sj+ph +λ k,t+ηk,(,µ,δ (,(µ +δ,,t+qh +ηk+ (s +p h +λ z k ]. O settig ; λ γ j l j ; ρ 2; the ultivaiable Mittag-Leffle fuctio educed to the hypebolic fuctio i.e. E, 2, z2 ] E 2, z 2 ] cosh(z; ou ai esults established i equatios (2.8, (2.3 ad (2.5, educed to the followig fo: Coollay 3.6 If t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk + δ k >, the we have: ( x t S /] k ( x η] cosh ( z (x µ ( x δ dx Γ(s + λ kγ(t + λk ( k E (,s+λk,t+ηk,(,µ,δ (2,(µ z +δ,,t+ηk+(s +λ k ]. (3.6 Coollay 3.7 If a, c, ζ, ξ C +, b, d C +,, N; t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk +
14 4 Meha Chad ad Eauel Guaiglia δ k >, the we have: ( x t S ( x η] L (a,b cosh ( z (x µ ( x δ dx h h k ( x q L (c,d ( x q Γ (a + b + Γ (c + d + Γ (h k + Γ (ζ ( h + k + Γ (k + ( h /] Γ (ξ ( k + Γ (ak + b + Γ (c (h k Γ(s + p h + λ kγ(t + qh + ηk ( k + d + E (,s+ph +λ k,t+ηk,(,µ,δ (2,(µ +δ,,t+qh +ηk+(s +p h +λ k z ]. k (3.7 Coollay 3.8 If a, c, ζ, ξ C +, b, d C +,, N; t, η, s, λ, δ, µ C; R(s + λ k + µ k > ; R(t + ηk + δ k >, the we have: ( x t S Γ (a + b + Γ (c + d + Γ (ζ + Γ (ξ + /] k ( x η] L (a,b h (σ h h k ( x q L (c,d (ξ; xp ( x q cosh ( z (x µ ( x δ dx ( h h ( ζ(h k ξk ( ζ ζ(h k ( ξ ξk k Γ (ak + b + Γ (c (h k + d + (3.8 Γ(s + p h + λ kγ(t + qh + ηk ( k E (,sj+ph +λ k,t+ηk,(,µ,δ (2,(µ +δ,,t+qh +ηk+ (s +p h +λ z k ]. O settig ζ ξ, the esult i Eq. (2.5 educed to the followig fo: Coollay 3.9 If a, c C +, b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the L (a,b (; xp u u ( x x q L (c,d xp 2 x ( x x t S (; xp xp ( x x q xλ ( x x η] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ ( + Γ ( (σ h h ( (h k k ( (h k ( k + k Γ (ak + b + Γ (c (h k + d + /] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (3.9 O settig a c ξ ζ ad usig Eq.(.4, we have L,b (; x Z (,b (x; ;the esult i Eq. (2.5 educed to the followig fo: Coollay 3.2 If b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the we have:
15 Note O Eule Type Itegals 5 Z (,b (xp xp u u ( x x q ; Z (,d 2 x ( x x t S (xp xp ( x x q ; xλ ( x x η] (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx Γ (a + b + Γ (c + d + h ( h Γ ( + Γ ( (σ h h ( (h k k ( (h k ( k + k Γ (ak + b + Γ (c (h k + d + /] k h k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. (3.2 O settig a c ; ξ ζ ;the esult i Eq. (2.5 educed to the followig fo: Coollay 3.2 If b, d C +,, N; t, η, λ, s j, λ j, γ j, ρ j, δ j, µ j C; R(ρ j > ; R(γ j > ; R(s j + λ j k + µ j k j > ; R(t + ηk + δ k + + δ k > ; l j N(j, 2,, ; λ / Z, the u u 2 x σ(x p xp ( x x q ] ( x x t S (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h (σ h ( h /] k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k (3.2 Poof: Put a c ; ξ ζ ; the esult i Eq. (2.5, we have: L (,b (; xp u u ( x x q L (,d xp 2 x ( x x t S (; xp xp ( x x q (ρ z j,λ (x µ ( x x δ,, z (x µ ( x x δ ]dx dx ( ] h Γ ( + Γ ( + /] k h (σ h h k k ( (h k ( k Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] (3.22 Applyig the esult (.25 i RHS of Eq. (3.22, we get:
16 6 Meha Chad ad Eauel Guaiglia L (,b (; xp u u ( x x q L (,d xp 2 x ( x x t S (; xp xp ( x x q (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h ( /] (σ h h Γ( + Γ( + k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k (3.23 Also applyig the case (. ad usig Eq. (.25-(.28, we get: L (,β (x Γ( + h ( h k k ( x k Γ( + ( x (3.24 Fo Eq. (3.23 ad (3.24, we have: u u 2 x σ(x p xp ( x x q ] Γ( + Γ( + ( x x t S (ρ j,λ z (x µ ( x x δ,, z (x µ ( x x δ ]dx dx h ( /] (σ h h Γ( + Γ( + k E (γj,sj+pjh +λ jk,t+ηk,(l j,µ j, δ j (ρ j,(µ j+δ j,λ,t+qh +ηk+ (s j+p jh +λ jk z,, z ]. xλ ( x x η] Γ(s + p h + λ kγ(s + p h + λ kγ(t + qh + ηk ( k (3.25 Replacig + by, we get esult (3.2. Refeeces ] Agawal, R.P., (953. A popos due ote de M. Piee Hubet, C.R. Acad. Sci., Pais, 236, ] Dzhebashya, M.M., (966. Itegal Tasfos ad Repesetatios of Fuctios i the Coplex Plae, Nauka, Moscow, (i Russia. 3] Edelyi, A., Magus,W., Obehettige, F. ad Ticoi, F. G. (955. Highe Tascedetal Fuctios, McGaw - Hill, Vol. 3, New Yok, Tooto ad Lodo. 4] Gauta, S.(28. Ivestigatios i Factioal Diffeetial Opeatos of Abitay Ode ad thei Applicatios to Special Fuctios of Oe ad Seveal Vaiables, Ph.D. Thesis, Uivesity of Kota, Kota, Idia. 5] Hubet, P., (953. Quelques esultats etifs a la foctio de Mittag-Leffle, C.R. Acad. Sci. Pais, 236, ] Hubet, P. ad Agawal, R.P., (953. Su la foctio de Mittag-Leffle et quelques ues de ses geealizatios, Bull. Sci. Math., (Se.II, 77, ] Hilfe, R. (ed., (2. Applicatios of Factioal Calculus i Physics, Wold Scietific, Sigapoe. 8] Lag, K.R., (999a. Astophysical Foulae, Vol. : Radiatio, Gas Pocesses ad High-eegy Astophysics, 3d editio, evised editio, Spige-Velag, New Yok.
17 Note O Eule Type Itegals 7 9] Lag, K.R., (999b. Astophysical Foulae, Vol. 2: Space, Tie, Matte ad Cosology, Spige-Velag, New Yok. ] Mittag-Leffle, G.M., (93. Ue geealisatio de litegale de Laplace-Abel, C.R. Acad. Sci. Pais, (Se. II, 37, ] Mittag-Leffle, G.M., (95. Su la epesetatio aalytiqie due foctio oogee (ciquiee ote, Acta Matheatica, 29, -8. 2] Pabhaka, T.R. (97. A Sigula itegal equatio with a geealized Mittag-Leffle fuctio i the keel. Yokohaa Math. J., Vol. 9, pp ] Pabhaka, T.R. ad Sua, R. (978. Soe esults o the polyoials L α,β (x, Rocky Moutai J. Math. 8, o. 4, ] Raiville, E.D. (96. Special Fuctios, Macilla, New Yok. 5] Pavee Agawal, Shipli Jai ad Meha Chad,(25. Cetai Itegals Ivolvig Geealized Mittage-Leffle Fuctio, Poceedigs of the Natioal Acadey of Scieces, Idia - Sectio A /25(Accepted. 6] Saxea, R.K., Kalla, S.L. ad Saxea, R.,(2. Multivaiable aalogue of geealized Mittag-Leffle fuctio, Itegal Tas. Special Fu., Vol. 22,No. 7, ] Saxea, R.K., Mathai, A.M. ad Haubold, H.J., (22. O factioal kietic equatios, Astophysics ad Space Sciece, 282, ] Spaie, J. ad Oldha, K.B., (987. A Altas of fuctios, Heisphee, Washigto DC, Spige, Beli. 9] Sivastava, H.M., (972. A cotou itegal ivolvig Foxs H-fuctio, Idia J. Math., 4: -6. 2] Sivastava, H.M. ad N.P. Sigh, (983. The itegatio of cetai poducts of the Multivaiable H-fuctio with a geeal class of polyoials, Red. Cic. Mat. Paleo 2(32: ] Sivastava, H.M., (985. A ultiliea geeatig fuctio fo the Kohause sets of bi-othogoal polyoials suggested by the Laguee polyoials, Pacific J. Math. 7(: ] Sivastava, H.M. ad Kalsso, P.W. (985. Multiple Gaussia hypegeoetic Seies. Ellis Howood Seies: Matheatics ad its Applicatios. Ellis Howood Ltd., Chicheste; Halsted Pess Joh Wiley & Sos, Ic.], New Yok. 23] Sivastava, H.M. ad Toovski, Z.(29. Factioal calculus with a itegal opeato cotaiig a geealized Mittag-Leffle fuctio i the keel. Appl. Math. Coput. 2(, ] Shukla, A.K., Pajapati, J.C. ad Salehbhai, I.A. (29. O a set of polyoials suggested by the faily of Kohause polyoial, It. J. Math. Aal. 3, o. 3-6, ] Shukla, A.K. ad Pajapati, J.C. (27. O a geealizatio of Mittag-Leffle fuctio ad its popeties, J. Math. Aal. Appl., 336(2, ] Wia, A., (95. Übe de Fudaetal satz i de Theoie de Fucktioe, E α(x, Acta Matheatica, 29, 9-2.
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Certain Sequences Involving Product of k-bessel Function
It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.
Identities of Generalized Fibonacci-Like Sequence
Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece
CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS
Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)
Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
physicsandmathstutor.com
physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
arxiv: v1 [math.fa] 30 Jan 2018
axiv:181.151v1 math.fa 3 Ja 218 Cotiuity of the factioal Hakel wavelet tasfom o the spaces of type S Kaailal Mahato Abstact. I this aticle we study the factioal Hakel tasfom ad its ivese o cetai Gel fad-shilov
Differential Equations (Mathematics)
H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)
List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS
17 Monotonicity Formula And Basic Consequences
Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).
[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3
Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
On a generalization of Mittag-Leffler function and its properties
J. Math. Anal. Appl. 336 27 797 8 www.elsevie.com/locate/jmaa On a genealization of Mittag-Leffle function and its popeties A.K. Shukla, J.C. Pajapati Depatment of Mathematics, S.V. National Institute
ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS
ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2
Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,
4.2 Differential Equations in Polar Coordinates
Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
The Laplacian in Spherical Polar Coordinates
Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Product of two generalized pseudo-differential operators involving fractional Fourier transform
J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar
CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
ANTENNAS and WAVE PROPAGATION. Solution Manual
ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1
Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet
A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators
Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
4. ELECTROCHEMISTRY - II
4. ELETROHEMISTRY - II Molar coductace, Equivalet coductace, cell cetat ad Kohlraush Law :. Give : l 0.98 cm a.3 cm cell cost. cell cost. a l cell cost. a l 0.98.3 0.7538 cm As : ell costat for the cell
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Reccurence Relation of Generalized Mittag Lefer Function
Palestine Journal of Mathematics Vol. 6(2)(217), 562 568 Palestine Polytechnic University-PPU 217 Reccurence Relation of Generalized Mittag Lefer Function Vana Agarwal Monika Malhotra Communicated by Ayman
Existence and Nonexistence of Weak Positive Solution for Classes of 3 3 P-Laplacian Elliptic Systems
Intenational Jounal of Patial Diffeential Euations Alications 03 Vol. No. 3-7 Aailable online at htt://ubs.scieub.co/ijdea///3 Science Education Publishing DOI:0.69/ijdea---3 Existence Nonexistence of
q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms
Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 7, Numbe 1, pp 41 55 (2012 http://campusmstedu/adsa -analogues of Tiple Seies Reduction Fomulas due to Sivastava and Panda with Geneal
Exercise, May 23, 2016: Inflation stabilization with noisy data 1
Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Gauss Radau formulae for Jacobi and Laguerre weight functions
Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST
Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives
America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo
Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by
5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9