CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS"

Transcript

1 Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of Applied Scieces ad Humaities,Faculty of Egieeig ad Techology, Jamia Millia Islamia A Cetal Uivesity, New Delhi - 005, Idia Depatmet of Applied Scieces ad Humaities, Faculty of Mathematics, Modi Istitute of Techology, Rawatbhata Road, Kota, Rajastha- 400, Idia Coespodig autho: sulakshaa80@ymail.com Received Nov 4, 07 Abstact. I the peset pape, we have obtaied hypegeometic geeatig elatios associated with two hypegeometic polyomials of oe vaiable H,β x; m ad B,β x; m, λ, µ with thei idepedet demostatios via Gould s idetity.as applicatios,some well kow ad ew geeatig elatios ae deduced.usig bouded sequeces, futhe geealizatios of two mai hypegeometic geeatig elatios have also bee give fo two geealized polyomials S,β x; m ad T,β x; m, λ, µ. 00 Mathematics Subject Classificatio.Pimay C05, C5, C0; Secoday C45. Key wods ad phases. Jacobi polyomials; geealized Laguee polyomial; geealized Rice polyomial of Khadeka; Gould s idetity.. Itoductio ad pelimiaies Thoughout i the peset pape, we use the followig stadad otatios: N :,,,..., N 0 : 0,,,,... N 0, Z 0 : 0,,,,..., Z :,,,... Z 0 \0 ad Z Z 0 N. Hee, as usual, Z deotes the set of iteges, R deotes the set of eal umbes, R + deotes the set of positive eal umbes ad C deotes the set of complex umbes. The Pochhamme symbol o the shifted factoial λ ν λ, ν C is defied, i tems of the familia Gamma fuctio, by Γλ + ν ν 0; λ C\0. λ ν : Γλ λλ +... λ + ν N; λ C it is beig udestood covetioally that 0 0 ad assumed tacitly that the Gamma quotiet exists. Some useful cosequeces of Lagage s expasio, p.;see also 5, p.46,poblem 07 c 08 Asia Pacific Joual of Mathematics 9

2 iclude the followig geealizatio 5, p.49,poblem 6 of the familia biomial expasio :. θ + β + t + ζθ+ whee θ+β+ is a biomial coefficiet ad θ, β ae complex umbes idepedet of ad ζ is a fuctio of t defied implicitly by. ζ t + ζ +β subject to the coditio.4 ζ0 0 Aothe geealizatio 5, p.48,poblem elated with the equatio.,is give as: θ θ + β + t θ + β θ θ + β + t whee ζ is defied by the equatios. ad.4. + ζθ Whe β,both esults. ad.5 educe immediately to the biomial expasio. Gould, p.90; see also 7, p.69 gave the followig idetity: θσ + µ θ + β +.6 θ + β + t + ζ θ σ + µθζ βζ whee θ, β, σ, µ ae complex paametes idepedet of ad ζ is give by the equatios. ad.4. If we put θ + β + m ad σ λ + µ m i Gould s idetity.6, we get the fist modified fom of Gould s idetity: + β + mλ + µ + µ m + β + m + β ζ +β+m λ + µ m + with ζ t + ζ β+ ; ζ0 0 + β + m + β + µ + β + mζ t 9

3 If we put θ + β + m ad σ λ + µ β + i Gould s idetity.6, we get the secod modified fom of Gould s idetity: + β + mλ + µ + µ β + + β + m + β ζ +β+m λ + µ β + + with ζ t + ζ β+ ; ζ0 0 + β + m + β + µ + β + mζ t Gauss s Multiplicatio Theoem Fo evey positive itege m, we have m b + j.9 b m m m m j ; 0,,,... Summatio idetity, p.0,lemma,..6.0 m B, B, + m x deotes the geatest itege i x ; m N, povided that seies ivolved ae absolutely coveget. The geealized Laguee polyomials L x 6, p.00,ae defied by. L x + F! ; + ; x ; N 0 Replacig by + β i equatio.,we get ;. F + + β; x! L +β x + + β The Jacobi Polyomials of fist kid P,β x 6, p.54.,p.55.7 ae defied by the followig equatios:. P,β x + F!, + + β + ; + ; x.4 P,β x + + β x! + + β F, ; β ; x 94

4 whee is a o-egative itege. Replacig by + b ad β by β b + i equatio., we get, + + β; x! Γ + b + +b, β b+ F.5 P x + + b ; Γ + b + + Replacig by ad β by β b+ i equatio.4,we get the followig esult, ; Γ + + β b!.6 F P,β b x b β; x Γ + + β b x The geealized Rice Polyomials H,β ν, σ, x of Khadeka 4, p.58,eq.. ae defied by +.7 H,β, + β + +, ν; ν, σ, x F +, σ ;.8 H ν, σ, x H 0,0 ν, σ, x.9 P,β x H,β ν, ν, x Replacig by + b ad β by β b + i eq..7, we get, ν, + + β ;!.0 F x H +b,β b+ ν, σ, x + + b, σ; + + b Some useful Pochhamme s elatios λ+µ λ + µ µβ+ m +. λ + µ + µβ + µ m. λ + µζ + µ m + λ+µ µβ+ m µζβ m + µζ m. + mβ + λ + µ ζ + µ β + + µ ζ β m β ζ λ β ζ + µ ζ β ζ λ βζ+µ ζ λ + µ ζ + µ mζ+ + mβ+ mβ+ β ζ + µ ζ m β ζ λ β ζ+µ ζ + µ β+ β ζ+m ζ λ β ζ+µ ζ µ β+ β ζ+m ζ 95 x λ βζ+µ ζ µ mζ+.a

5 whee 0,,,,... Now we shall discuss some special cases of the implicit fuctios defied by equatio. subject to the coditio.4.usig Mathematica 9.0, we ca fid the oots of esultig cubic equatio i ζ fo diffeet values of β i equatio.. Case I:- Whe β 0 i.,the paticula value of ζsatisfyig the coditio.4 is deoted by.4 Θ t t Case II:- Whe β i.,we get tζ + t ζ + t 0 the oe of the values of ζ satisfyig the coditio.4 is give by.5 Λ t 4t t Case III:- Whe β i.,we get ζ + ζ t 0 the the paticula value of ζsatisfyig the coditio.4 is give by.6 Ξ + + 4t Case IV:- Whe β i., we get.7 Υ + ζ + ζ + ζ t 0 the oe of the ootssatisfyig the coditio.4 of above equatio is give by + 7t + 4t + 7t + 7t + 4t + 7t + Case V:- Whe β i., we get ζ t ζ t 0 the oe of the ootssatisfyig the coditio.4 of above equatio is give by.8 U t t + t

6 Case VI:- Whe β i.,we get ζ + ζ t 0 the oe of the ootssatisfyig the coditio.4 of above equatio is give by Ψ + + ι + 7t + 4t + 7t 4 ι + 7t + 4t + 7t whee ι. Case VII:- Whe β i.,we obtai ζ t ζ t ζ t 0 the oe of the values of ζ satisfyig the coditio.4 is deoted by Π t 6t t 6 7t + 8t 6 + t t 6 + 4t 9.0 Case VIII:- Whe β 7t + 8t 6 + t 9 + 7t 6 + 4t 9 i.,we obtai. ζ t ζ t 0 the oe of the values of ζ satisfyig the coditio.4 is deoted by. Φ Fist Geeatig Relatio: t 9t + 7t 6 4t 9 + 9t + 7t 6 4t 9. Mai geeatig elatios If ay values of vaiables ad paametes leadig to the esults which do ot make sese, ae tacitly excluded, the λ + µ + β + H,β x; m t + ζ. 97

7 λ + µζ.. p+f q+ whee, + λ βζ+µζ, a m β+ m µ +ζ p ; +, b q ; x ζm, λ βζ+µζ m β+ m µ +ζ ζ t + ζ +β ; ζ0 0. povided that ivolved seies o both sides ae absolutely coveget. Hee Sivastava s geealized hypegeometic polyomials of oe vaiable H,β x; m, p.60,eq.7..;see also, pp.- ae give by + β +. H,β m;, a p ; x; m p+mf q+m m; + + β, b q ; x whee,β ae complex paametes idepedet of ad m; λ abbeviates the aay of m umbe of paametes give by λ m, λ + m,..., λ + m ; m N m Idepedet Demostatio: Usig the defiitio. of H,β x; m ad the the powe seies fom of p+m F q+m x i left had side of equatio.,we get λ + µ Ω + β + H,β x; m t λ + µ Γ + β β + Γ + Γ + β +. m. m + j a p x t m j m + + β + j b q! m j Usig Gauss s multiplicatio theoem.9 i above equatio, we get. Ω m λ + µ m β+ a p x t + β + + β m b q!! Now applyig summatio idetity.0 ad the simplifyig futhe, we get mβ+ a p x t m + β + mλ + µ + µ m Ω. + mβ+ b q! + β + m + β + + β + m + β +.4. t Now usig fist modified Gould s idetity.7,we get Ω + ζ mβ+ a p x t m + mβ+ b q! + ζ mβ+. 98

8 .5. λ + µζ + µ m + Now usig. ad simplifyig it futhe, we get λ + µζ.6 Ω + ζ µζβ + m mβ+ a p x ζ m + mβ+ b q!. + µ m+ζ λ βζ+µζ λ βζ+µζ µ m+ζ Afte solvig it futhe,we get the esult. i the fom of a geealized hypegeometic fuctio of oe vaiable. Secod Geeatig Relatio: If ay values of vaiables ad paametes leadig to the esults which do ot make sese, ae tacitly excluded, the λ + µ + β + B,β x; m, λ, µ t + ζ. λ + µζ.7. p+f q+ whee, + m β+ + m β+, ζ t + ζ +β ; ζ0 0. λ βζ+µζ, a µ +β βζ+mζ p; λ βζ+µζ, b µ +β βζ+mζ q; x ζm povided that ivolved seies o both sides ae absolutely coveget. Hee we defie ew geealized hypegeometic polyomialsb,β x; m, λ, µ,kow as Patha s geealized hypegeometic polyomials of oe vaiable, give by.8 B,β x; m, λ, µ + β + p+m+f q+m+ m;, + λ+µ, a µβ+ m p; λ+µ m; + + β,, b µβ+ m q; x whee,β ae complex paametes idepedet of ad m; λ abbeviates the aay of m umbe of paametes give by Idepedet Demostatio: λ m, λ + m,..., λ + m ; m N m Usig the defiitio.8 of B,β x; m, λ, µ ad the the powe seies fom of p+m+ F q+m+ x i left had side of equatio.7,usig Gauss s multiplicatio theoem.9 ad esult.,we get Ω λ + µ + β + B,β x; m, λ, µ t 99

9 .9 m λ + µ + µβ + µ m m Γ + β + a p x t Γ + β + + m b q!! Now applyig summatio idetity.0 i above equatio the simplifyig futhe, we get Ω a p x t m + mβ + b q! + β + m + β +.0. t + β + mλ + µ + µβ +. + β + m + β + Now usig secod modified Gould s idetity.8 ad eq..,we get a Ω + ζ mβ+ p x ζ m + b mβ+ q!.. λ + µ ζ + µβ + + µζβ + m Now usig equatio.a i above equatio ad summig it up ito hypegeometic fom futhe, we get the desied esult.7.. Kow applicatios of fist geeatig elatio. i. Puttig λ, µ β+. i equatio. ad afte simplifyig, we get + ζ+ a p ; pf q b q ; x ζm H,β x; mt which is the esult of Sivastava 9, p.975;see also 0, p.,eq..hee ζ beig give by equatio. ad.4 ad H,β x; m is give by equatio.. ii. Puttig λ, µ β+ x; ad afte simplificatio, we get H,β + β + ad m i equatio. ad usig the defiitio of p+f q+, a p ; + + β, b q ; x t. + ζ+ p F q a p ; b q ; x ζ which is the esult of Sivastava 8, p.59,eq.9;see also, p.86.ζ is give by equatios. ad.4. 00

10 iii. Puttig λ, µ, β x; f H, x ad eplacig ζ by U, we get + f xt p+f q+ ad m i equatio.,usig the defiitio. of, a p ; +, b q ; x t. + U+ + U p F q a p ; b q ; xu whee U t t + t + 4 which is the kow esult of Bow, p.64,eq.7 ad f x is Bow s geealized hypegeometic polyomial, p.58,eq New applicatios of fist geeatig elatio. i. Puttig β 0 ad ζ Θ λ + µ + + t t p+mf q+m fom equatio.4 i equatio., we get m;, a p ; m; +, b q ; x t t. λ t + µ t 4.. p+f, + λ t+µ t, a m m µ p ; q+ +, λ t+µ t, b m m µ q ; x m t t ii. Puttig β ad ζ Λ t 4t t + p+mf q+m λ + µ + fom equatio.5 i equatio.,we get m;, a p ; m; + +, b q ; x t + Λ. λ Λ + µ Λ 4.. Λ p+f q+, + λ Λ+µ Λ, a m m µ +Λ p ; +, b q ; x Λm, λ Λ+µ Λ m m µ +Λ iii. Puttig β ad ζ Ξ + +4t fom equatio.6 i equatio.,we get λ + µ m;, a p ; p+mf q+m m; +, b q ; x t + Ξ. λ + Ξ + µξ Ξ p+f q+ m, + λ +Ξ+µΞ m µ +Ξ, a p ; m, λ +Ξ+µΞ m µ +Ξ, b q ; x Ξ m 0

11 iv. Puttig β ad ζ Υ fom equatio.7 i equatio.,we get λ + µ m;, a p ; p+mf q+m m; +, b q ; x t + Υ. λ + Υ + µυ Υ p+f, + λ+υ+µυ, a m m µ +Υ p ; q+, b q ; x Υm, λ+υ+µυ m m µ +Υ v. Puttig β λ + µ + ad ζ U fom equatio.8 i equatio.,we get + m;, a p ; p+mf q+m m; +, b q; x t + U. λ + U µ U + U p+f q+ U +µ U, + λ+, a m m µ +U p ; +, λ+ U +µ U m m µ +U, b q ; x Um vi. Puttig β λ + µ ad ζ Ψ fom equatio.9 i equatio.,we get m;, a p ; p+mf q+m m; +, b q; x t + Ψ. λ + Ψ + µψ Ψ p+f q+ m, + λ+ Ψ+µΨ mµ+ Ψ, a p ; m, λ+ Ψ+µΨ mµ+ Ψ, b q ; x Ψ m vii. Puttig β λ + µ + ad ζ Π fom equatio.0 i equatio.,we get + m;, a p ; p+mf q+m m; +, b q; x t + Π. λ + Π + µπ Π p+f q+, + λ+ Π+µΠ, a m mµ+ Π p ; +, b q ; x Πm, λ+ Π+µΠ m mµ+π viii. Puttig β λ + µ + ad ζ Φ fom equatio. i equatio.,we get + m;, a p ; p+mf q+m m; +, b q; x t + Φ. λ + Φ + µφ Φ p+f q+, + λ+ Φ+µΦ, a m m µ +Φ p ; +, λ+ Φ+µΦ, b m m µ +Φ q ; x Φm 0

12 5. New applicatios of secod geeatig elatio.7 i. Puttig λ, µ β+ + β + 5. i equatio.7 ad afte simplifyig, we get p+m+f q+m+ + ζ+ p+f q+ m;, + +β+, a β+β+ m p; +β+ m; + + β,, b β+β+ m q; x, + mβ+ + mβ+, whee ζ is give by equatios. ad.4. +ζ, a β+ βζ+mζ p; +ζ, b β+ βζ+mζ q; x ζm ii. Puttig λ, µ β+, m i equatio.7 ad usig the defiitio of B,β x;,, β+, we get + β +, + p+f +β+, a p; q ζ+ p+f q+ + + β,, + β+ + β+, whee ζ is give by equatios. ad.4. +ζ β+β +β+ β+β, b q; x, a β+ βζ+ζ p; +ζ, b β+ βζ+ζ q; x ζ iii. Puttig λ, µ, β, m i equatio.7,usig the defiitio of B, x;,, ad eplacig ζ by U fom equatio.8, we get +, 4, a p ; p+f q+ +, 4, b q ; x t 5. + U+, + 8+U + U p+f, a +U p; q+ +, 8+U, b +U q; x U iv. Puttig β 0 ad ζ Θ t fom equatio.4 i equatio.7, we get t λ + µ + m;, + λ+µ p+m+f, a µ m p; q+m+ + λ+µ m; +,, b µ m q ; x t t. λ t + µ t 5.4. p+f, + λ t+µ t, a m µ t+mt p ; m t q+ + λ t+µ t,, b m µ t+mt q ; x t v. Puttig β ad ζ Λ t 4t fom equatio.5 i equatio.7,we get t λ + µ + m;, + λ+µ p+m+f, a µ m p; q+m+ + λ+µ m; + +,, b µ m q; x t t t 0

13 λ Λ + µ Λ Λ Λ p+f q+ λ Λ+µ Λ, + m + m, a µ Λ+mΛ p; λ Λ+µ Λ,, b µ Λ+mΛ q; x Λm vi. Puttig β ad ζ Ξ + +4t fom equatio.6 i equatio.7,we get λ+µ λ + µ m;, p+m+f, a µ+m p ; q+m+ λ+µ m; +,, b µ+m q; x t λ + Ξ + µξ Ξ + Ξ λ +Ξ+µΞ,, a m µ +Ξ+mΞ p ; p+f q+ λ +Ξ+µΞ,, b m µ +Ξ+mΞ q; x Ξm vii. Puttig β ad ζ Υ fom equatio.7 i equatio.7,we get λ+µ λ + µ m;, p+m+f, a µ+m p; q+m+ λ+µ m; +,, b µ+m q; x λ + Υ + µυ Υ + Υ viii. Puttig β λ + µ + p+f q+, λ+υ+µυ, a m µ +Υ+mΥ p;, λ+υ+µυ, b m µ +Υ+mΥ q; x Υm ad ζ U fom equatio.8 i equatio.7,we get + λ+µ m;, + p+m+f q+m+ µ m, a p; m; + λ+µ, µ m, b q; x t t λ + U U + µ U + U p+f q+, + λ+ U +µ U, a m µ + U +mu p ; +, λ+ U +µ U, b m µ + U +mu q ; x Um ix. Puttig β λ + µ ad ζ Ψ fom equatio.9 i equatio.7,we get λ+µ m;, p+m+f q+m+ µ +m, a p; m; + λ+µ, µ +m, b q; x t λ Ψ Ψ + µψ + Ψ p+f q+, λ+ Ψ+µΨ, a m µ+ p; Ψ+m Ψ, λ+ Ψ+µΨ, b m µ+ Ψ+m Ψ q ; x Ψm x. Puttig β λ + µ + ad ζ Π fom equatio.0 i equatio.7,we get + λ+µ m;, + p+m+f q+m+ µ m, a p; m; + λ+µ, µ m, b q; x t 04

14 λ Π Π + µπ + Π xi. Puttig β λ + µ + p+f q+, + λ+ Π+µΠ, a m µ+ p; Π+mΠ +, λ+ Π+µΠ, b m µ+ q; x Πm Π+mΠ ad ζ Φ fom equatio. i equatio.7,we get + λ+µ m;, + p+m+f q+m+ µ m, a p; m; + λ+µ, µ m, b q; x t λ Φ Φ + µφ + Φ p+f q+, + λ+ Φ+µΦ, a m µ + Φ+mΦ p ; +, λ+ Φ+µΦ, b m µ + Φ+mΦ q ; x Φm Makig suitable adjustmets of paametes ad vaiables i all geeatig elatios of sectios 4 ad5, we ca also obtai a umbe of ew geeatig elatios ivolvig esticted geealized Laguee polyomials, esticted Jacobi polyomials, esticted geealized Rice polyomials of Khadeka ad othe othogoal polyomials. Let 6. Futhe geealizatios of geeatig elatios. ad.7 Geealizatio of.: m 6. S,β x; m + β + m γ x whee,β ae complex paametes idepedet of ; m is a abitay positive itege ad γ is a bouded sequece of abitay eal ad complex umbes such that γ 0.The λ + µ + β + S,β x; mt 6. whee ζ is give by + ζ λ + µζ + µ m + ζ γ x ζ m + β + m 6. ζ t + ζ β+ ; ζ0 0 povided that each of the seies ivolved is absolutely coveget. Idepedet Demostatio: Usig the defiitio 6. of S,β x; m i left had side of equatio 6.,we get Ω λ + µ + β + S,β x; m t 05

15 6.4 m λ + µ Γ + β β + Γ m + Γ + β + m + γ x t Applyig summatio idetity.0 ad the simplifyig futhe, we get Ω γ x t m + β + mλ + µ + µ m + mβ + + β + m + β β + m + β + t Now usig fist modified Gould s idetity.7 with coditio 6.,we get 6.6 Ω + ζ λ + µζ µζβ + m γ x ζ m + µ m + + mβ + Chagig the summatio idex fom to ad afte solvig it futhe,we get the geeal esult 6. coespodig to ou fist geeatig elatio. subject to the coditios 6.. Geealizatio of.7: Let 6.7 T,β x; m, λ, µ m λ + µ + β + λ + µ + µβ + m γ x m whee, β,λ,µ ae complex paametes idepedet of ; m is a abitay positive itege ad γ is a bouded sequece of abitay eal ad complex umbes such that γ 0.The λ + µ + β + T,β x; m, λ, µt ζ whee ζ is give by λ + µζ + µ + β βζ + mζ γ x ζ m + β + m ζ t + ζ β+ ; ζ0 0 povided that each of the seies ivolved is absolutely coveget. Idepedet Demostatio: Usig the defiitio 6.7 of T,β x; m, λ, µ i left had side of equatio 6.8,we get Ω λ + µ + β + T,β x; m, λ, µ t 06

16 6.9 m + β + λ + µ + µβ + µ m m + β + γ x t Applyig summatio idetity.0 ad the simplifyig futhe, we get Ω γ x t m + β + mλ + µ + µ β + + mβ + + β + m + β β + m + β + t Now usig secod modified Gould s idetity.8 with coditio 6.,we get 6. Ω + ζ λ + µζ + µ β + + µζβ + m γ x ζ m + mβ + Chagig the summatio idex fom to ad afte solvig it futhe,we get the geeal esult 6.8 coespodig to ou secod geeatig elatio.7 subject to the coditios 6.. I the defiitios of geealized polyomials give by S,β x; m ad T,β x; m, λ, µ, puttig γ m a... a p, b... b q! we obtai Sivastava s geealized hypegeometic polyomials of oe vaiable H,β x; m ad Patha s geealized hypegeometic polyomials of oe vaiable B,β x; m, λ, µ espectively. Refeeces Bow, J.W.; New Geeatig Fuctios fo Classical Polyomials, Poc. Ame. Math. Soc., 969, Gould, H.W.; Some geealizatios of Vademode s Covolutio, Ame. Math. Mothly, 6956, Kaade, B.K. ad Thakae, N.K.; Note o the geeatig fuctio fo geealized hypegeometic polyomials, Idia J. Pue Appl. Math., 6975, Khadeka, P.R.; O a geealizatio of Rice s polyomial, I. Poc. Nat. Acad. Sci. Idia Sect. A, 4964, Pólya, G. ad Szegö, G; Poblems ad Theoems i Aalysis, Vol.I, Taslated fom the Gema by D.AeppliSpige-Velag, New Yok, Heidelbeg ad Beli Raiville, E.D.; Special Fuctios, The Macmilla, New Yok, 960; Repited by Chelsea Publishig Compay, Box, New Yok, Rioda, J.; Combiatoial Idetities, Joh Wiley & Sos, New Yok, Lodo ad Sydey

17 8 Sivastava, H.M.; Geeatig Fuctios fo Jacobi ad Laguee Polyomials, Poc. Ame. Math. Soc., 969, Sivastava, H.M.; A class of Geeatig Fuctios fo geealized Hypegeometic PolyomialsAbstact, Notices Ame. Math. Soc., 6969, 975Abstact #69T B98. 0 Sivastava, H.M.; A class of Geeatig Fuctios fo geealized Hypegeometic Polyomials, J. Math. Aal. Appl., 5 97, 0 5. Sivastava, H.M.; A Note o Cetai Geeatig fuctios fo the Classical Polyomials, Atti Accad. Naz. Licei Red. Cl. Sci. Fis. Mat. Natu.8, 6977, 8. Sivastava, H. M. ad Maocha, H. L.; A Teatise o Geeatig fuctios, Halsted Pess Ellis Howood Ltd., Chicheste, U.K., Joh Wiley ad Sos, New Yok, Chicheste, Bisbae ad Tooto, 984. Whittake, E.T.ad Watso, G.N.; A Couse of Mode Aalysis, Fouth ed., Cambidge Uiv.Pess, Cambidge, Lodo ad New Yok

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Note On Euler Type Integrals

Note On Euler Type Integrals Iteatioal Bulleti of Matheatical Reseach Volue 2, Issue 2, Jue 25 Pages -7, ISSN: 2394-782 Note O Eule Type Itegals Meha Chad ad Eauel Guaiglia 2 Depatet of Matheatics, Fateh College fo Woe, Bathida-53

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

arxiv: v1 [math.fa] 30 Jan 2018

arxiv: v1 [math.fa] 30 Jan 2018 axiv:181.151v1 math.fa 3 Ja 218 Cotiuity of the factioal Hakel wavelet tasfom o the spaces of type S Kaailal Mahato Abstact. I this aticle we study the factioal Hakel tasfom ad its ivese o cetai Gel fad-shilov

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 7, Numbe 1, pp 41 55 (2012 http://campusmstedu/adsa -analogues of Tiple Seies Reduction Fomulas due to Sivastava and Panda with Geneal

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

arxiv: v1 [math.nt] 17 Sep 2016

arxiv: v1 [math.nt] 17 Sep 2016 arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

arxiv: v1 [math.sp] 29 Jun 2016

arxiv: v1 [math.sp] 29 Jun 2016 INVERSE NODAL PROBLEMS FOR DIRAC-TYPE INTEGRO-DIFFERENTIAL OPERATORS arxiv:606.08985v [math.sp] 29 Ju 206 BAKI KESKIN AND A. SINAN OZKAN Abstract. The iverse odal problem for Dirac differetial operator

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Some Theorems on Multiple. A-Function Transform

Some Theorems on Multiple. A-Function Transform Int. J. Contemp. Math. Scences, Vol. 7, 202, no. 20, 995-004 Some Theoems on Multple A-Functon Tansfom Pathma J SCSVMV Deemed Unvesty,Kanchpuam, Tamlnadu, Inda & Dept.of Mathematcs, Manpal Insttute of

Διαβάστε περισσότερα

Relations Among Certain Generalized Hyper-Geometric Functions Suggested by N-fractional Calculus

Relations Among Certain Generalized Hyper-Geometric Functions Suggested by N-fractional Calculus athematics Letters 06; (6: 7-57 http://wwwsciecepublishiggroupcom//ml doi: 068/ml06006 Relatios Amog Certai Geeralied Hper-Geometric uctios Suggested b N-fractioal Calculus aged Gumaa Bi-Saad Departmet

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

The Non-Stochastic Steady State

The Non-Stochastic Steady State July 25, 24 Techical Appedix: The Dyamic System I this appedix I preset the full derivatio of the approximated dyamic system, its properties, ad the procedure for computig secod momets. I rely heavily

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα