arxiv: v1 [math.fa] 30 Jan 2018

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math.fa] 30 Jan 2018"

Transcript

1 axiv: v1 math.fa 3 Ja 218 Cotiuity of the factioal Hakel wavelet tasfom o the spaces of type S Kaailal Mahato Abstact. I this aticle we study the factioal Hakel tasfom ad its ivese o cetai Gel fad-shilov spaces of type S. The cotiuous factioal wavelet tasfom is defied ivolvig the factioal Hakel tasfom. The cotiuity of factioal Hakel wavelet tasfom is discussed o Gel fad- Shilov spaces of type S. This aticle goes futhe to discuss the cotiuity popety of factioal Hakel tasfom ad factioal Hakel wavelet tasfom o the ultadiffeetiable fuctio spaces. 1. Itoductio I the ecet yeas, the cotiuous wavelet tasfom has bee successfully applied i the field of sigal pocessig, image ecyptio. The cotiuous wavelet tasfom of a fuctio f associated with the wavelet ψ is defied by W ψ fb,a = ftψ b,a t dt a, t b whee ψ b,a t = ψ a, povided the itegal exists, whee a R + ad b R. If f,ψ L 2 R, the exploitig the Paseval elatio fo Fouie tasfom, the above expessio ca be viewed as see 1,2: W ψ fb,a = 1 2π e ibω ˆfωˆψaωdω, whee ˆf ad ˆψ deotesthe Fouietasfomoff adψ espectively. The Gel fad- Shilov spaces wee itoduced i 5 ad studied the chaacteizatio of Fouie tasfom o the afoesaid spaces. Pathak 18ad Holscheide 8 studied the wavelet tasfom ivolvig Fouie tasfom, o Schwatz space SR. Zemaia 25, Lee 11 ad Pathak 19 descibed the basic popeties of classical Hakel tasfom o the cetai Gel fad-shilov spaces of type S. I the theoy of patial diffeetial equatios, mathematical aalysis the spaces of type S play a impotat ole as a itemediate spaces betwee those of C ad of the aalytic fuctios. The mai pupose this aticle is to study the factioal Hakel tasfom 21 Mathematics Subject Classificatio. 46F5, 46F12, 42C4, 65T6. Key wods ad phases. Bessel Opeato, Factioal Hakel tasfom, Factioal Hakel taslatio, Wavelet tasfom, Gelfad-Shilov spaces, Ultadiffeetiable fuctio space. 1

2 2 KANAILAL MAHATO ad cotiuous wavelet tasfom associated with factioal Hakel tasfom o Gel fad-shilov spaces of type S. The factioal Hakel tasfom FHT, which is a geealizatio of the usual Hakel tasfom ad depeds o a paamete θ, has bee the focus of may eseache as it has a wide age of applicatios i the field of seismology, optics, sigal pocessig, solvig poblems ivolvig cylidical boudaies. The factioal Hakel tasfom Hν,µ θ of a fuctio f of ode ν 1 2 depeds o a abitay eal paamete µ ad θ < θ < π, is defied by see 9,16,17,23: 1.1 whee, 1.2 H θ ν,µ fω = f θ ω = K θ t,ωftdt, C ν,µ,θ e i 2 t2 +ω 2 cotθ tωcscθ µ J ν tωcscθt 1+2µ, θ π K θ t,ω = tω µ J ν tωt 1+2µ, θ = π 2 δt ω, θ = π, Z whee C ν,µ,θ = ei1+νθ π 2 siθ 1+µ. The ivese of 1.1 give as follows: 1.3 ft = H θ ν,µ f θ t = K θ ω,t f θ ωdω, whee K θ ω,t is same as K θ ω,t. Let the spacel p ν,µ I cotaisofallthose measuablefuctios f o I =, such that the itegal ft p t µ+ν+1 dt exist ad is fiite. Also let L I be the collectio of almost eveywhee bouded itegable fuctios. Hece edowed with the om 1 ft p t µ+ν+1 p dt,1 p <,µ,ν R 1.4 f L p ν,µ = ess sup ft, p =. t I Paseval s elatio: It is easy to see that fo the opeato Hν,µ θ, ude cetai coditios, ftgtt 1+2µ dt = f θ ω g θ ωω 1+2µ dω. To defie the factioal Hakel taslatio 6,12,16,17 τt θ of a fuctio ψ L 1 ν,µi, we eed to itoduce Dν,µ, θ which is defied by: 1.5 D θ ν,µ t,ω,z = C ν,µ, θ zscscθ µ J ν zscscθe i 2 z2 +t 2 +ω 2 cotθ tscscθ µ J ν tscscθωscscθ µ J ν ωscscθ s 1+3µ ν ds, povided the itegal exist.

3 1.6 FRACTIONAL HANKEL WAVELET TRANSFORM 3 The factioal Hakel taslatio 7 τt θ of ψ is give by τt θ ψω = ψθ t,ω = C ν,µ,θ ψzdν,µt,ω,ze θ i 2 z2 cotθ z µ+ν+1 dz. Wavelets ae cosideed to be the set of elemets costucted fom taslatio ad dilatio of a sigle fuctio ψ L 2 R 1,2,18. I the simila way 2,24 itoduced the Bessel wavelet ad the factioal Bessel wavelet by 12, 15, 17, 2 as ψ b,a,θ, which is defied as below: 1.7 ψ b,a,θ t = D a τ θ bψt = D a ψ θ b,t = a 2µ 2 e i 2 1 a 2 1t2 cotθ e i 2 1 a 2+1b2 cotθ ψ θ b/a,t/a, b,a >, whee D a epesets the dilatio of a fuctio. As pe 1,2,8,12,17,2, the factioal wavelet tasfom Wψ θ of f L2 ν,µi associated with the wavelet ψ L 2 ν,µi defied by meas of the itegal tasfom 1.8 W θ ψfb,a = ftψ b,a,θ tt 1+2µ dt. Now exploitig Paseval s elatio ad followig 12, 17, 2, the above expessio ca be ewitte as 1.9 W θ ψ fb,a = 1 C ν,µ, θ = K θ ω,baω µ ν e i 2 a2 ω 2 cotθ fθ ω Hν,µz θ ν µ e i 2 z2 cotθ ψzaωdω 1 Hν,µ θ aω µ ν e i 2 a2 ω 2 cotθ C fθ ω ν,µ, θ Hν,µz θ ν µ e i 2 z2 cotθ ψzaω b. Accodig to 11, 19, we ow itoduce the cetai Gel fad-shilov spaces of type S o which the factioal Hakel tasfom 1.1 ad the factioal Hakel wavlet tasfom 1.9 ca be studied. Let us ecall the defiitios of these spaces. Defiitio 1.1. The space H 1,α,A I cosists of ifiitely diffeetiable fuctios f o I =, satisfyig the iequality x k x 1 D x q e ± i 2 x2 cotθ x µ ν 1.1 fx q ν,µ A+δ k k kα, k,q N, whee the costats A ad Cq ν,µ ad the oms ae give by 1.11 f ν,µ,θ q = sup <x< depeds o f ad α,δ ae abitay costats x k x 1 D x q e ± i 2 x2 cotθ x µ ν fx A+δ k k kα <. Defiitio 1.2. The fuctio f H 2,β,B I iff x k x 1 D x q e ± i 2 x2 cotθ x µ ν 1.12 fx ν,µ k B +σq q qβ, k,q N,

4 4 KANAILAL MAHATO whee the costats B,C ν,µ k deped o f ad σ,β is a abitay costat. I this space the oms ae give by x k x 1 D x q e ± i f ν,µ,θ 2 x2 cotθ x µ ν fx 1.13 k = sup <x< B +σ q <. q qβ Defiitio 1.3. The space H β,b α,a I is defied as follows: f Hβ,B α,a I if ad oly if x k x 1 Dx q e ± i 2 x2 cotθ x µ ν 1.14 fx ν,µ A+δ k k kα B +σ q q qβ, k,q N, whee the costats A,B,C ν,µ deped o f ad α,β,δ,σ ae abitay costats. We itoduce the oms i the space H β,b α,a I as follows: x k x 1 D x q e ± i 2 x2 cotθ x µ ν fx 1.15 f ν,µ,θ = sup <x< A+δ k k kα B +σ q <. q qβ Now we eed to itoduce the followig types of test fuctio spaces 18 Defiitio 1.4. The space H 1, α, à I I, α = α 1,α 2, α 1,α 2 ad à = A 1,A 2, is defied as the collectio of all smooth fuctios fb,a I I, such that fo all l,k,p,q N, sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b 1.16 p,q ν,µ A 1 +δ 1 l l lα1 A 2 +δ 2 k k kα2, whee the costats A 1,A 2 ad Cp,q ν,µ depedig o f ad δ 1,δ 2 be abitay costats. Defiitio 1.5. The space H 2, β, BI I, β = β 1,β 2, β 1,β 2 ad B = B 1,B 2, is defied as the space of all smooth fuctios fb,a I I, such that fo all l,k,p,q N, 1.17 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ l,k B 1 +σ 1 p p pβ1 B 2 +σ 2 q q qβ2, whee σ 1,σ 2 be abitay costats ad B 1,B 2,C ν,µ l,k o f. be the costats depeds Defiitio 1.6. ThespaceH β, B α,ãi I, α = α 1,α 2, β = β 1,β 2,α 1,α 2,β 1,β 2 ad à = A 1,A 2, B = B 1,B 2, is defied as the space of all ifiitely diffeetiable fuctios fb,a I I, such that fo all l,k,p,q N, 1.18 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ A 1 +δ 1 l A 2 +δ 2 k B 1 +σ 1 p B 2 +σ 2 q l lα1 k kα2 p pβ1 q qβ2, whee the costats A 1,A 2,B 1,B 2,C ν,µ depedig o f ad δ 1,δ 2,σ 1,σ 2 ae abitay costats. Fom 16,23 we have the diffeetial opeato M ν,µ,θ as: M ν,µ,θ = e i 2 x2 cotθ x ν µ D x e i 2 x2 cotθ x µ ν. We shall eed the followig Lemma i the poof of the Theoem 2.1.

5 FRACTIONAL HANKEL WAVELET TRANSFORM 5 Lemma 1.7. Suppose that ν 1 2,µ,θ as above ad q,k N. Fo ψ W θ ν,µ, the we obtai i M ν+k 1,µ,θ...M ν,µ,θ ψx = 1 k x ν µ+k e i 2 x2 cotθ x 1 D x k e i 2 x2 cotθ x µ ν ψx, ii M ν+q 1,µ,θ...M ν,µ,θ Hν,µ θψy = cscθeiθ π/2 q H θ iiih θ ν+q+k,µ xq M ν+k 1,µ, θ...m ν,µ, θ ψy = Poof. Sice, M ν,µ,θ ν+q,µ xq ψy, = e i 2 x2 cotθ x ν µ D x e i 2 x2 cotθ x µ ν ycscθe iθ π/2 kh θ ν+q,µ xq ψy. M ν+1,µ,θ M ν,µ,θ ψx = x ν µ+2 e i 2 x2 cotθ x 1 D x 2 x µ ν e i 2 x2 cotθ ψx. Poceedig i this way k th times, we get the equied esult i. Now to pove ii, we have M ν+q 1,µ,θ...M ν,µ,θ H θ ν,µ ψy = 1 q y ν µ+q e i 2 y2 cotθ y 1 D y q y µ ν e i 2 y2 cotθ C ν,µ, θ xycscθ µ J ν xycscθe i 2 x2 +y 2 cotθ x 1+2µ ψxdx. Now exploitig the fomula x 1 D x m x J x = 1 m x m J +m x, whee m, beig positive iteges, the above expessio becomes C ν,µ, θ xycscθ µ J ν xycscθe i 2 x2 +y 2 cotθ x 1+2µ xcscθ q ψxdx = cscθe iθ π/2 q H θ ν+q,µ xq ψy. This completes the poof of ii. Usig itegatio by pats we get Hν+q+1,µ θ xq M ν,µ, θ ψy = C ν+q+1,µ, θ e i 2 y2 cotθ ycscθ µ x ν+q+1 J ν+q+1 xycscθd x x µ ν e i 2 x2 cotθ ψxdx Usig the fomula D x x J x = x J 1 x, i the above equatio, the the above expessio ca be expessed as C ν+q+1,µ, θ e i 2 y2 cotθ ycscθ µ D x x ν+q+1 J ν+q+1 xycscθ x µ ν e i 2 x2 cotθ ψxdx = ycscθe iθ π/2 H θ ν+q,µx q ψy. Cotiuig k th times i the simila mae, we get the equied esult iii. We shall make use of the followig iequality i ou peset study see 4, pp. 265: 1.19 m+ qm+ m mq q e mq e q.

6 6 KANAILAL MAHATO We shall eed the followig Leibitz fomula fom 25, p.134, 1.2 = t 1 D t e i 2 t2 cotθ t µ ν ftgt t 1 D t e i 2 t2 cotθ t µ ν ftt 1 D t gt. = This aticle cosists of fou sectios. Sectio 1 is itoductoy pat, i which seveal popeties ad fudametal defiitios ae give. I sectio 2, cotiuous factioal Hakel tasfomhν,µ θ ad its ivese H θ ν,µ is studied o cetai Gel fad-shilov spaces of type S. Sectio 3 is devoted to the study of cotiuous factioal Hakel wavelet tasfom i the space of cetai Gel fad-shilov spaces of type S. I sectio 4, factioal Hakel tasfom ad wavelet tasfom associated with factioal Hakel tasfom is ivestigated o ultadiffeetiable fuctio spaces. 2. The factioal Hakel tasfom H θ ν,µ o the spaces of type S I this sectio we coside the mappig popeties of the factioal Hakel tasfom H θ ν,µ ad ivese factioal Hakel tasfom H θ ν,µ o the spaces H 1,α,A I,H 2,β,B I ad H β,b α,a I. Theoem 2.1. The ivese factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H 1,α,A I ito H 2,2α,A2 2e 2α I, fo ν 1 2. Thus, Poof. Exploitig Lemma 1.7 ii ad iii we obtai M ν+q 1,µ,θ...M ν,µ,θ H θ ν,µ ψy = cscθe iθ π/2 q H θ ν+q,µx q ψy = cscθ q k y k e iθ π/2 q+k H θ ν+q+k,µ xq M ν+k 1,µ, θ...m ν,µ, θ y = cscθ q k y k e iθ π/2 q+k C ν+q+k,µ, θ xycscθ µ J ν+q+k xycscθ 1 k e i 2 y2 cotθ x 1+q+µ+ν+k x 1 D x k e i 2 x2 cotθ x µ ν ψxdx. 1 q y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ = 1 k cscθ ν+2q k µ C ν,µ, θ xycscθ ν q J ν+q+k xycscθx 1+k+2ν+2q 2.1 x 1 D x k e i 2 x2 cotθ x µ ν ψxdx. Now, we choose m be ay atual umbe i such a way that m 1 + 2ν; upo takig = m+2q+k ad use the fact that x ν q J ν+q+k x. The witig the itegal o the ight had side of 2.1 as a sum of two itegals fom to 1

7 FRACTIONAL HANKEL WAVELET TRANSFORM 7 ad 1 to ad usig 1.1, 1.19, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y +2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ka+δ 2q+k 2q +k α2q+k +C ka+δ m+2q+k+2 m+2q +k +2 αm+2q+k A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 1A 2 +δ q m+k +2 αm+k+2 e αm+k+2 2q α2q e α2q 2A 2 2e 2α +δ q q α2q. This completes the poof. Remak 2.2. Let ν 1/2, the the factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom H 1,α,A I ito H 2,2α,A2 2e 2α I. Defiitio 2.3. Let Ĥ2,β,B I be the space of all fuctios f H 2,β,B I satisfyig the coditio 2.2 whee C ν,µ k sup C ν,µ k+ = C ν,µ k, q ae costats estaiig the f s i H 2,β,B I. Theoem 2.4. The ivese factioal Hakel tasfom Hν,µ θ defied by 1.3 is a cotiuous liea mappig fom Ĥ2,β,B I ito H 1,β,B I, fo ν 1/2. Poof. Followig as i the poof of the theoem 2.1 ad usig 1.19 ad Defiitio 1.2, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy 1 D x 1+k+2ν+2q xycscθ ν q J ν+q+k xycscθ x 1 D x k e i 2 x2 cotθ x µ ν ψx dx + x 1+k+2ν+2q+2 xycscθ ν q J ν+q+k xycscθ 1 x 1 D x k e i 2 x2 cotθ x µ ν ψxx 2 dx DC ν,µ 1+k+2ν+2q +Cν,µ 1+k+2ν+2q+2 B +σk k kβ ν,µ q B +σ k k kβ. Which completes the poof. Remak 2.5. The factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom Ĥ2,β,B I ito H 1,β,B I, fo ν 1/2. Theoem 2.6. Fo ν 1/2, the ivese factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H β,b α,a I ito 2e 2α H2α,A2 α+β,abe I. α

8 8 KANAILAL MAHATO Poof. I this case we obtai fom 2.1 ad 1.14, y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y +2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ 1 A+δ 2q+k 2q +k α2q+k B +σ k k kβ +C ν,µ 2 A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 B +σ k k kβ A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 B +σ k k kβ. Now usig 1.19 i the above equatio, the the above estimate ca be ewitte as y k y 1 D y q e i 2 y2 cotθ y µ ν H θ ν,µψy B +σ k A+δ k k kβ A+δ 2q+m+2 2q 2αq k +m+2 αk+m+2 e 2αq e αk+m+2 AB +δ 1 k k kα+β A 2 +δ 2 q 2 2αq q 2αq e 2αq e αk ABe α +δ 1 k k kα+β A 2 2e 2α +δ 2 qq 2αq. Hece the theoem poved. Remak 2.7. Fo ν 1/2, the factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H β,b α,a I ito 2e 2α H2α,A2 α+β,abe I. α 3. The factioal wavelet tasfom o the spaces of type S I this sectio we study the wavelet tasfom o the spaces of type S. I ode to discuss the cotiuity of factioal wavelet tasfom Wψ θ o the afoesaid fuctio spaces, we eed to itoduce the followig fuctio space. Defiitio 3.1. The space W ν,µ,θ I, cosists of all those wavelets ψ, N ad ρ R which satisfy 3.1 t 1 D t t µ ν e i 2 t2 cotθ Hν,µz θ ν µ e i 2 z2 cotθ ψt < D,ρ 1+t ρ, whee D,ρ is costat. Theoem 3.2. Suppose ψ be the wavelet take fom W ν,µ,θ I. The cotiuous factioal wavelet tasfom Wψ θ is a cotiuous liea mappig fom H 1,α,AI ito H 1, α, à I I, whee α =,2α ad à = a,a 2 2e 2α +a 2. Poof. Fom the defiitio of W θ ψ fom 1.9 ad usig 2.1, we obtai = b k b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a cscθ 2q+ν µ k ω 1+2ν+2q+k bωcscθ ν q J ν+q+k bωcscθ ω 1 D ω k e i 2 ω2 cotθ aω µ ν e i 2 a2 ω 2 cotθ Hν,µ θ zν µ e i 2 z2 cotθ ψaω ω µ ν fθ ω dω.

9 FRACTIONAL HANKEL WAVELET TRANSFORM 9 Usig the fact that x ν q J ν+q+k x ad i viewig 1.2, the above elatio becomes b k b 1 D b q e i 2 b2 cotθ b µ ν Wψfb,a θ k cscθ 2q+ν µ k k ω 1+2ν+2q+k ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ = Hν,µ θ zν µ e i 2 z2 cotθ ψaω ω 1 D ω k 3.2 e i 2 ω2 cotθ ω µ ν fθ ω dω. Theefoe, b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k ω 1+2ν+2q+k a 1 D a p ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ = Hν,µz θ ν µ e i 2 z2 cotθ ψaω ω 1 D ω k 3.3 e i 2 ω2 cotθ ω µ ν fθ ω dω. Exploitig the defiitio 3.1 fo t = aω we obtai = a 1 D a p ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ Hν,µ θ zν µ e i 2 ψaω z2 cotθ a 2 ω 2p t 1 D t p+ t µ ν e i 2 t2 cotθ Hν,µ θ zν µ e i 2 z2 cotθ ψ 1 t a 2 ω 2p D p+,ρ1 1+t ρ1 p a 2 ω 2p D p+,ρ1 1+aω ρ1 p 3.4 a 2 ω 2p D p+,ρ1 1+a ρ1 p 1+ω ρ1 p. Usig 3.4 i 3.3 ad assumig ν 1 be ay positive itege such that ν 1 1+2ν, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k a 2 ω ν1+2q+2p+k 1+a ρ1 p 1+ω ρ1 p+s = ω 1 D ω k e i 2 ω2 cotθ ω µ ν 1 fθ ω 1+ω s dω k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω 1+ω s dω. Exploitig the emak 2.2 ad 1.11, the ight had-side of the above estimate becomes

10 1 KANAILAL MAHATO k = ρ 1 p+s = k ρ1 p+s k 2αk max f θ ν,µ,θ k k = max f θ ν,µ,θ k k a l 1+a ρ1 p k a 2+l 1+a ρ1 p A 2 2e 2α +δ 2 k = k a 2 k k A 2 2e 2α k2α +δ 2 1+a ρ1 p a l kk A 2 2e 2α +a 2 +δ 2 k2α max f θ ν,µ,θ k k. This completes the poof. Theoem 3.3. Let ψ W ν,µ,θ I. The cotiuous factioal wavelet tasfom Wψ θ is a cotiuous liea mappig fom Ĥ2,β,B I ito Ĥ2, β, BI I, whee β = 2β,2β ad B B = 2 a 2e2β,B 2 e 2β. Poof. Fom the estimate 3.5 ad usig 1.19, we obtai a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψfb,a θ k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k a 2+l 1+a ρ1 p B +σ ν1+2q+2p+k+ ν 1 +2q +2p+k + βν1+2q+2p+k+ max f θ ν,µ,θ ν 1+2q+2p+k+ k = = k 1 1+ω s dω a 2+l 1+a ρ1 p B +σ 2p B +σ 2q 2p β2p ν 1 +2q +k + βν1+2q+k+ e β2p e βν1+2q+k+ max f θ ν,µ,θ ν 1+2q+2p+k+ k = = = = k a 2+l B 2 /a+σ 1 p B +σ 2 2q p p2β q q2β 2 β2p e 2pβ e 2qβ max f θ ν,µ,θ ν 1+2q+2p+k+ k k B a 2+l 2 p a 2e2β +σ 1 B 2 e 2β +σ 2 q p p2β q q2β max f θ ν,µ,θ ν 1+2q+2p+k+. Hece the theoem poved. W θ ψ Theoem 3.4. Let ψ W ν,µ,θ I. The cotiuous factioal wavelet tasfom B is a cotiuous liea mappig fom Hβ,B α,a I ito H β, α,ãi I, whee α =

11 FRACTIONAL HANKEL WAVELET TRANSFORM 11,3α+β, β = 2α+β,2α+β ad à = a,a 2 2e 2α +a 2 ABe 3α+2β ad 1 B = a A2 B 2 2 2α+β e 4α+2β,A 2 B 2 e 6α+4β 2. 2α+β Poof. Poceedig as i the poof of above theoem ad i viewig the emak 2.7, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k 1 1+ω s dω a 2+l 1+a ρ1 p ABe α +δ ν1+2q+2p+k+ ν 1 +2q +2p+k + α+βν1+2q+2p+k+ A 2 2e 2α +δ 2 k k 2αk 3.6 max f ν,µ,θ. Exploitig the elatio 1.19, the above estimate ca be ewitte as k a l 1+a ρ1 p = = k a 2 A 2 2e 2α +δ 2 k ABe α +δ ν1+2q+2p+k+ 2p 2pα+β ν 1 +2q +k + α+βν1+2q+k+ e α+β2p e α+βν1+2q+k+ k 2kα max f ν,µ,θ = a l 1+a ρ1 p A 2 2e 2α +a 2 +δ 2 k2p 2pα+β e 2pα+β ABe α +δ ν1+2q+2p+k+ e α+βν1+2q+k+ e 2qα+β e α+βν1+k+ 2q 2qα+β ν 1 +k + α+βν1+k+ k 2kα max f ν,µ,θ 1 = a l 1+a ρ1 p A 2 2e 2α +a 2 +δ 2 k2p 2pα+β ABe α +δ ν1+2q+2p+k+ e 2α+βk k k3α+β e 2pα+β e 4qα+β 2q 2qα+β 2 a l A 2 2e 2α +a 2 kk ABe 3α+2β k3α+β +δ 3 = p 1 a A2 B 2 2 2α+β e 4α+2β +δ 4 p p2α+β qq A 2 B 2 e 6α+4β 2 2α+β +δ q2α+β 5. This completes the poof of the theoem. 4. Factioal Hakel tasfom o ultadiffeetiable fuctio spaces I this sectio we discuss the factioal Hakel tasfom o spaces moe geeal i pevious sectios 3,13,19,21. Assume that {ξ k } k= ad {η q} q= be two abitay sequeces of positive umbes possesses the followig popeties:

12 12 KANAILAL MAHATO ad 4.1 Popety ξk 2 ξ k 1ξ k+1, k N, 2 ξ k ξ l ξ ξ k+l, k,l N, 3 ξ k RH k mi ξ lξ k l, k,l N,R >,H >, l k 4 ξ k+1 RH k ξ k, k N,R >,H >, ξ j 5 <. ξ j+1 j= Fom the above popety 1, we have ξ k ξ k+1 ξ k 1 ξ k ξ k 2 ξ k 1... ξ ξ 1, ξ k = I the vey simila way we obtai 4.2 η q ξ k ξ k ξ k 1 ξ k ξ k +1 ξ k +2 ξ k ξ ξ k. ξ 1 η η 1 η q. We ow itoduce the followig types of fuctio spaces 19. Defiitio 4.2. Let {ξ k } k= ad {η q} q= be two ay sequeces of positive umbes. A ifiitely diffeetiable complex valued fuctio f H 1,ξk,AI if ad oly if x k x 1 Dx q e ± i 2 x2 cotθ x µ ν 4.3 fx q ν,µ A+δ k ξ k, k,q N, fo some positive costats A,Cq ν,µ depedig o f; ad f belogs to the space H 2,ηq,B I if ad oly if x k x 1 D x q e ± i 2 x2 cotθ x µ ν 4.4 fx ν,µ k B +σq η q, k,q N, fo some positive costats B ad C ν,µ k depedig o f; ad the fuctio f is said to be i the space H ηq,b ξ k,ai if ad oly if x k x 1 D x q e ± i 2 x2 cotθ x µ ν 4.5 fx ν,µ A+δ k ξ k B +σ q η q, k,q N, whee A,B,C ν,µ ae cetai positive costats depedet o f. The elemets of the spaces H 1,ξk,AI,H 2,ηq,B I ad H ηq,b ξ k,ai ae kow as ultadiffeetiable fuctios 1, 14, 19, 22. We shall eed simila types of fuctio spaces of two vaiables. Defiitio 4.3. The space H 1,ξml+k,ÃI I,Ã = A 1,A 2 is defied to the collectioofallifiitelydiffeetiablefuctiosfb,asatisfyig,foalll,k,m,,p,q N, 4.6 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ p,qa 1 +δ 1 l A 2 +δ 2 k ξ ml+k,

13 FRACTIONAL HANKEL WAVELET TRANSFORM 13 whee the abitay costats A 1,A 2,C ν,µ p,q depeds o f. Defiitio 4.4. The space H 2,ηsp+tq, BI I, B = B 1,B 2 is defied to the collectio of all fuctios fb,a C I I satisfyig, fo all l,k,s,t,p,q N, 4.7 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ l,k B 1 +σ 1 p B 2 +σ 2 q η sp+tq, whee the abitay costats B 1,B 2,C ν,µ l,k depeds o f. Defiitio 4.5. The spaceh ξ cp+dq,η sp+tq, B ξ ml+k,η gl+hk,ãi I,Ã = A 1,A 2, B = B 1,B 2 is defied to the collectio of all ifiitely diffeetiable fuctios fb, a satisfyig, fo all l,k,g,h,s,t,p,q,c,d N, sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ A 1 +δ 1 l A 2 +δ 2 k B 1 +σ 1 p B 2 +σ 2 q ξ ml+k η gl+hk η sp+tq ξ cp+dq, whee the abitay costats A 1,A 2,B 1,B 2 ad C ν,µ depeds o f. Theoem 4.6. If {ξ k } ad {η q } be the sequeces satisfies the popety 4.1, the ivese factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom the space H ηq,b ξ k,a I ito Hξ2 q,b1 ξ k η k,a 1, whee A 1 = ABH 2,B 1 = A 2 H 6. Poof. Followig the pocedue of the poof of the Theoem 2.1 ad usig popety ad i viewig 4.5, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y m+2q+k+2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ 1 A+δ 2q+k ξ 2q+k +C ν,µ 2 A+δ m+2q+k+2 ξ m+2q+k+2 B +σ k η k B +σ k η k HA+δ 2q+k ξ 2q+k 1+A+δ m+2 RH m+2 ξ m+2 ABH 2 +δ 2 k ξ k η k A 2 H 6 +δ 3 q η 2 q. This completes the poof. Remak 4.7. Let {ξ k } ad {η q } be the sequeces satisfies the popety 4.1, the factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom the space H ηq,b ξ k,a I ito Hξ2 q,b1 ξ k η k,a 1, whee A 1 = ABH 2,B 1 = A 2 H 6. Theoem 4.8. If {ξ k } be the sequece satisfies the popety 4.1 the fo ν 1/2, Hν,µ θ is a cotiuous liea mappig fom H 1,ξk,AI ito H 2,ξ2 q,a1 I, whee A 1 = A 2 H 6.

14 14 KANAILAL MAHATO Poof. Fom the above theoem, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y m+2q+k+2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ k A+δ2q+k ξ 2q+k +D ν,µ k A+δm+2q+k+2 ξ m+2q+k+2 A 2 H 6 +δ 2 q ξ 2 q. Hece the theoem poved. Remak 4.9. Let {ξ k } be the sequece satisfies the popety 4.1 the fo ν 1/2, H θ ν,µ is a cotiuous liea mappig fom H 1,ξ k,ai ito H 2,ξ2 q,a1 I, whee A 1 = A 2 H 6. Defiitio 4.1. The space Ĥ2,ηq,B I be the collectio of all fuctios f H 2,ηq,B I satisfyig the coditio 4.8 sup C ν,µ k+ = ν,µ C k, k whee C ν,µ k ae costats estaiig the f s i H 2,ηq,B I. Theoem Fo ν 1/2 ad suppose {η q } be the sequece satisfies the popety 4.1 the ivese factioal Hakel Hν,µ θ is a cotiuous liea mappig fom Ĥ 2,ηq,B I ito H 1,ηk,BI. Poof. Exploitig 2.1 ad Theoem 2.4, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ C ν,µ 1+2ν+2q+k +C 1+2ν+2q+k+2 B +σ k η k qb +σ k η k. This completes the poof. Remak If {η q } be the sequece satisfies the popety 4.1 ad ν 1/2 thefactioalhakeltasfomh θ ν,µ isacotiuouslieamappigfomĥ2,ηq,b I ito H 1,ηk,BI. Theoem Let ψ be the wavelet belogs to the space W ν,µ,θ I. If {ξ k } be the sequece satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom H 1,ξk,AI ito H 1,ξ 2 k,ãi I, whee à = a,a 2 H 6 + a2 ξ 2 ξ 2 1, fo ν 1/2.

15 FRACTIONAL HANKEL WAVELET TRANSFORM 15 Poof. Fom 3.5 ad i viewig Theoem 4.8, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k ξk 2 max f θ ν,µ k k k k = ξ 2 k ξ ξ 1 = = 2 max f θ ν,µ k k a 2+l 1+a ρ1 p A 2 H 6 +δ 1 k a 2+l 1+a ρ1 p A 2 H 6 +δ 1 k a l 1+a ρ1 p k = ξk 2 max f θ ν,µ k k a l A 2 H 6 + a2 ξ 2 k ξ1 2 +δ 2 ξk 2 max f θ ν,µ k k. This completes the poof. 1 1+ω s dω k A 2 H 6 +δ 1 k a 2ξ2 ξ1 2 Theoem Suppose ψ be the wavelet take fom W ν,µ,θ I. If {η q } be the sequece satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom Ĥ2,ηq,B I ito Ĥ2,η2p+2q, BI I, whee B = B 2 /a,b 2, fo ν 1/2. Poof. Poceedig as i the poof of the ealie theoem ad exploitig Theoem 4.11, we obtai a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω 1 k = = k a 2+l 1+a ρ1 p max f θ C ν,µ k 1 1+ω s dω B +σ ν1+2p+2q+k+ η ν1+2p+2q+k+ B 2 max f θ 2 p a +σ 1 B 2 +σ 2 q η ν1+2p+2q+k+. Hece the theoem poved.

16 16 KANAILAL MAHATO Theoem Let ψ W ν,µ,θ I. If {ξ k } ad {η q } be the sequeces satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom H ηq,b B ξ k,ai ito Hξ2p+2q,η2p+2q, I I, whee a,abh à = 2 A 2 H 6 + ξ 2k 2,η k,ã a 2 ξ 2/ξ2 1 ad B = 1 a A2 B 2 H 6,A 2 B 2 H 4, fo ν 1/2. Poof. Usig Theoem 4.6 ad i viewig 3.5, we see that a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k a 2+l 1+a ρ1 p f θ ν,µ A 2 H 6 +δ 2 k = = ξk ABH 2 2 +δ 1 ν1+2p+2q+k+ ξ ν1+2p+2q+k+η ν1+2p+2q+k+ k a a l 1+a ρ1 p 2 ξ 2 = = k ξ 2 1 A 2 H 6 +δ 2 k f θ ν,µ ξkabh 2 2 +δ 1 ν1+2p+2q+k+ ξ ν1+2p+2q+k+η ν1+2p+2q+k+ 1 a l k ABH 2 A 2 H 6 +a 2 ξ/ξ 2 1+δ a A2 B 2 H 6 p +δ 4 A 2 B 2 H 4 +δ 5 q f θ ν,µ ξk 2 ξ ν 1+2p+2q+k+η ν1+2p+2q+k+. Now usig the iequalities 2 ad 3 fom the popety 4.1, the last expessio ca be ewitte as 1 a l k p 1 ABH 2 A 2 H 6 +a 2 ξ 2 /ξ2 1 +δ 3 a A2 B 2 H 6 +δ 4 A 2 B 2 H 4 +δ 5 q f θ ν,µ ξ 2 2k η kξ 2p+2q η 2p+2q. This completes the poof. Refeeces 1. Chui CK. A Itoductio to Wavelets. New Yok: Academic Pess; Debath L. Wavelet Tasfom ad Thei Applicatios. Bosto MA: Bikhäuse; Dua AJ. Gelfad-Shilov spaces fo the Hakel tasfom. Idag. Math. 1992; 32: Fiedma A. Geealized fuctios ad patial diffeetial equatios. Eglewood Cliffs, NJ: Petice Hall, Gel fad IM, Shilov GE. Geealized fuctios, Vol 2, Academic Pess, New Yok, Hamio DT. Itegal equatios associated with Hakel covolutio. Tas Ame Math Soc. 1965; 116: Hischma II. Vaiatio dimiishig Hakel tasfom. J Aal Math ; 8: Holscheide M. Wavelets: a aalysis tool. Claedo, Oxfod, Ke FH. Factioal powes of Hakel tasfoms i the Zemaia space. J Math Aal Appl. 1992; 166: Komatsu H. Ultadistibutios, I, stuctue theoems ad a chaacteizatio. J. Fac. Sci. Uiv. Tokyo Sec. IA Math. 1973; 21: Lee WYK. O the spaces of type H µ ad thei Hakel tasfomatios. SIAM J. Math. Aal. 1974; 52: Mahato, K., O the boudedess esult of wavelet tasfom associated with factioal Hakel tasfom, Itegal Tasfoms Spec. Fuct. 217; 2811: Maeo I. Spaces of Geealized type H µ, Spaces of type S ad the Hakel tasfomatio. Rocky Mt. J. Math. 25; 355: Matsuzawa T. Hypoellipticity i ultadistibutio spaces. J. Fac. Sci. Uiv. Tokyo Sec. IA Math. 1987; 34:

17 FRACTIONAL HANKEL WAVELET TRANSFORM Pasad A, Mahato A, Sigh VK, Dixit MM. The cotiuous factioal Bessel wavelet tasfomatio. Boud Value Pobl. 213; 213:4. 16 pp Pasad, A., Mahato, K., Two vesios of factioal powes of Hakel-type tasfomatios ad pseudo-diffeetial opeatos, Red. Cic. Mat. Palemo. 652, Pasad, A., Mahato, K., The factioal Hakel wavelet tasfomatio, Asia-Eu. J. Math. 82, 1553, 11 pages Pathak RS. The Wavelet Tasfom. Vol-6. Pais, Amstedam: Atlais Pess/Wold Scietific; Pathak RS. Itegal Tasfoms of Geealized Fuctio ad Thei Applicatios. Godo Beach Sciece Publishes, Amstedem; Pathak RS, Dixit MM. Cotiuous ad discete Besse wavelet tasfoms. J Compt Appl Math. 23; 16: Pathak RS, Padey AB. O Hakel tasfoms of ultadistibutios. Appl. Aal. 1985; 2: Rodio L. Liea Patial Diffeetial Opeatos i Gevey spaces. Wold Scietific, Sigapoe; Toe A. Hakel-type itegal tasfoms ad thei factioalizatio: a ote. Itegal Tasfoms Spec Fuct. 28; 194: Upadhyay SK, Yadav RN, Debath L. O cotiuous Bessel wavelet tasfomatio associated with the Hakel-Hausdoff opeato. Itegal Tasfoms Spec Fuct. 212; 235: Zemaia AH.Geealized Itegal Tasfomatios. New Yok: Itesciece Publishes; Depatmet of Mathematics, Istitute of Sciece, Baaas Hidu Uivesity, Vaaasi- 2215, Idia addess: kaailalmahato@gmail.com, kaailalmahato@bhu.ac.i

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Note On Euler Type Integrals

Note On Euler Type Integrals Iteatioal Bulleti of Matheatical Reseach Volue 2, Issue 2, Jue 25 Pages -7, ISSN: 2394-782 Note O Eule Type Itegals Meha Chad ad Eauel Guaiglia 2 Depatet of Matheatics, Fateh College fo Woe, Bathida-53

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

A note on a conjecture of Calderón

A note on a conjecture of Calderón A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα