Homework 1: Solutions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Homework 1: Solutions"

Transcript

1 Homework : Solutions Statistics 63 Fall 207 Data Analysis: ote: All data analysis results are provided by Xuyan Lu. Baseball Data: a What are the most important features for predicting player s salary? i Fit and visualize regularization paths for the following methods: ˆ Lasso: Coefficients Lambda e 05 Hits CRuns Years Walks CAtBat League HmRun CHits CWalks AtBat Log Lambda ## [] "Hits" "Walks" "Years" "CRuns" "PutOuts" The top 5 predictors selected are: Hits, Walks, Years CRuns and PutOuts.

2 ˆ Elastic et: For α = 0.4: Lambda Hits Coefficients CRuns Years Walks CAtBat League HmRun PutOuts CWalks AtBat Log Lambda ## [] "Hits" "Walks" "CAtBat" "CHits" "CRuns" The top 5 predictors selected are: CRuns, Hits, CAtBat, Walks and CHits. 2

3 For α = 0.8: Coefficients Lambda Hits CRuns Years Walks CAtBat League HmRun CHits CWalks AtBat Log Lambda ## [] "Hits" "Walks" "Years" "CHits" "CRuns" The top 5 predictors selected are: CRuns, Hits, Years, Walks and CHits. 3

4 ˆ Adaptive Lasso: I choose to use LS solution and γ = to get the weights: ŵ = ˆβ OLS. Lambda Hits Coefficients CRuns Years Walks CAtBat League HmRun CHits CWalks AtBat Log Lambda ## [] "Hits" "Walks" "Years" "CHits" "CRuns" The top 5 predictors selected are: CRuns, Hits, Years, Walks and CHits. 4

5 ˆ SCAD: β^ λ ## [] "Hits" "Walks" "CHits" "DivisionW" "PutOuts" The top 5 predictors selected are: Hits, Walks, CHits, DivisionW, PutOuts. 5

6 ˆ MC+: β^ λ ## [] "Hits" "Walks" "CHits" "DivisionW" "PutOuts" The top 5 predictors selected are: Hits, Walks, CHits, DivisionW, PutOuts. ii What are the top predictors selected by each method? Are they different? If so, why? I count the munber of predictors selected by each model and get the top selected predictors of each model, the result is given in the previous question. The top predictors selected by all models are: *Hits* and *Walks*. But other top selected predictors are not the same, this is for the reason that the penalty terms for different models are not the same. For the convex model Lasso, Elastic Lasso, Adaptive Lasso the top selected predictors are very similar, and for non-convex model SCAD, MCP the top selected predictors are very similar. b Which linear method is best at predicting player s salary? i Compare the average prediction MSE on the test set for the following methods: LS Ridge Best Subset Lasso Aeveraged MSE Elastic et Adaptive Lasso SCAD MCP Aeveraged MSE The averaged prediction MSE is shown in the table above. Ridge, Lasso and Elastic et gives relatively good prediction, Least Square perform the worst among all methods. ii Visualize the results of your comparisons 6

7 LS Ridge B.S. Lasso E.. A.L. SCAD MC+ I did the boxplot of the MSE s of all method of 0 times 0 MSE s for each method and got the plot above. iii Reflection. From the boxplot above we can see that Ridge gives the best prediction error, and Lasso and Elastic et also gives good prediction error. These methods doing good is because they are shrinkage method and add constrains to ˆβ to prevent it from overfitting the training set. So these methods often have lower MSE compare to the Least Square. Least Square don t have constrains on ˆβ, so it is very easy to overfit the model, especially when there are too mutch features. Best Subset is a discreste process, so it often exibits high variace, which will result in bad performance on test set. ot all the methods choose the same subset of variables. Least Square and Ridge use all the variables but others only use some of them. The difference of subsets is due to the difference of penalty terms. 7

8 Math Problems: 2. We consider the problem y = Xβ + ɛ where y R n, β R p, X R n p, ɛ 0, I n n and n p with X full-rank. Recall that, for a general linear estimator, Xβ = X ˆβ, of Xβ: [ MSEX ˆβ = E X ˆβ Xβ X ˆβ ] Xβ [ = E X ˆβ E[X ˆβ] + E[X ˆβ] Xβ X ˆβ E[X ˆβ] + E[X ˆβ] ] Xβ [ = E X ˆβ E[X ˆβ] + E[X ˆβ] T Xβ X ˆβ E[X ˆβ] + E[X ˆβ] ] Xβ [ = E X ˆβ E[X ˆβ] X ˆβ E[X ˆβ] + X ˆβ E[X ˆβ] E[X ˆβ] Xβ + E[X ˆβ] Xβ X ˆβ E[X ˆβ] + E[X ˆβ] Xβ E[X ˆβ] ] Xβ [ = E X ˆβ E[X ˆβ] X ˆβ ˆβ] ] [ E[X + E X ˆβ E[X ˆβ] E[X ˆβ] ] Xβ [ + E E[X ˆβ] Xβ X ˆβ ˆβ] ] [ E[X + E E[X ˆβ] Xβ E[X ˆβ] ] Xβ [ = TrVarX ˆβ + E X ˆβ ˆβ] ] T E[X E[X ˆβ] Xβ + E[X ˆβ] T [ Xβ E X ˆβ E[X ˆβ] ] + E[ BiasX ˆβ 2 2] = TrVarX ˆβ + E[X ˆβ] E[X ˆβ] E[X ˆβ] Xβ = TrVarX ˆβ + 0 E[X ˆβ] Xβ = TrVarX ˆβ + BiasX ˆβ 2 2 For ˆβ OLS, we know ˆβ OLS is unbiased E[ ˆβ OLS ] = β so + + E[X ˆβ] Xβ E[X ˆβ] E[X ˆβ] + BiasX ˆβ 2 2 E[X ˆβ] Xβ T 0 + BiasX ˆβ 2 2 BiasX ˆβ OLS = E[X ˆβ OLS Xβ] = XE[ ˆβ OLS β] = X Bias ˆβ OLS = X 0 = 0 Hence the MSE is a function of the variance only: Var ˆβ OLS = VarX T X X T y = X T X X T Vary X T X X T T = X T X X T σ 2 I n XX T X = σ 2 X T X X T XX T X = σ 2 X T X = VarX ˆβ OLS = X Var ˆβ OLS X T = σ 2 XX T X X T MSEX ˆβ OLS = TrVarX ˆβ OLS + BiasX ˆβ OLS 2 2 = Trσ 2 XX T X X T = Trσ 2 X T X X T X + 0 = Trσ 2 I p p = σ 2 p If the OLS solution is unique, X T X is a real, symmetric, positive-definite matrix. 8

9 For ˆβ Ridge λ, we have to analyze both terms. We first note: [ ] E ˆβRidge λ = E [ X T X + λi X T y ] = X T X + λi X T E[y] = X T X + λi X T Xβ = X T X + λi X T X + λi λiβ = X T X + λi X T X + λiβ X T X + λi λiβ = β λx T X + λi β so giving and E[X ˆβ Ridge λ] = Xβ XλX T X + λi β BiasX ˆβ Ridge λ 2 2 = E[X ˆβ Ridge λ] Xβ E[X ˆβ Ridge λ] Xβ = λxx T X + λi β λxx T X + λi β = λ 2 β T X T X + λi X T XX T X + λi β Var ˆβ Ridge λ = Var X T X + λi X T y = X T X + λi X T Vary X T X + λi X T T = X T X + λi X T σ 2 IXX T X + λi = σ 2 X T X + λi X T XX T X + λi = VarX ˆβ Ridge λ = X Var ˆβ Ridge λx T = σ 2 XX T X + λi X T XX T X + λi X T giving MSEX ˆβ Ridge λ = Tr VarX ˆβ Ridge λ + BiasX ˆβ Ridge λ 2 = Tr σ 2 XX T X + λi X T XX T X + λi X T + λ 2 β T X T X + λi X T XX T X + λi β = Tr σ 2 X T X + λi X T XX T X + λi X T X + λ 2 β T X T X + λi X T XX T X + λi β [ ] 2 = σ 2 Tr X T X + λi X T X + λ 2 β T X T X + λi X T XX T X + λi β As expected, if λ = 0, we recover MSE ˆβ OLS from above. To simplify MSEX ˆβ Ridge λ further, we will take the eigendecomposition of X T X = P T DP where ˆ P R p p is an orthogonal matrix P T P = P P T = I p p ˆ D R p p is a diagonal matrix with all strictly positive elements ote that, with this decomposition X T X + λi can be simplified: X T X + λi = P T DP + λp T P = P T D + λip = P T D + λi P where D + λi is a diagonal matrix with elements λ i+λ where λ i} eigenvalues of X T X. 9

10 We use this to simplify the expression above: MSEX ˆβ Ridge λ = σ 2 Tr [P T D + λi P P T DP ] 2 + λ 2 β T P T D + λi P P T DP P T D + λi P β = σ 2 Tr [P T D + λi DP ] 2 + λ 2 β T P T D + λi DD + λi P β = σ 2 Tr P T D + λi DP P T D + λi DP + λ 2 β T P T D + λi DD + λi P β = σ 2 Tr P T D + λi DD + λi DP + λ 2 β T P T D + λi DD + λi P β = σ 2 Tr D + λi DD + λi DP P T + λ 2 β T P T D + λi DD + λi P β = σ 2 Tr D + λi DD + λi D + λ 2 β T P T D + λi DD + λi P β = σ 2 Tr + λ 2 β T P T λ i P β = σ 2 = i= i= λ 2 i λ+λ i 2 i λ 2 i λ + λ i 2 + λ2 σ 2 λ 2 i + λ2 λ i P β 2 i λ + λ i 2 for some fixed but unknown P β i. As before, note that, if λ = 0, we simply get: i= P β 2 i λ i λ + λ i 2 λ i+λ 2 i MSEX ˆβ Ridge 0 = i= σ 2 λ 2 i + 0 λ i P β 2 i 0 + λ 2 i = i= σ 2 λ 2 i λ 2 i = σ 2 p which is MSEX ˆβ OLS. Since MSEX ˆβ Ridge λ = MSEX ˆβ OLS at λ = 0, we know that a λ with lower MSE must exist if the derivative of MSEX ˆβ Ridge λ with respect to λ is negative at λ = 0. We differentiate with respect to λ: d MSEX ˆβ Ridge λ dλ = = = = i= i= i= i= λ + λ i 2 2λλ i P β 2 i σ2 λ 2 i + λ2 λ i P β 2 i 2λ + λ i λ + λ i 4 λ + λ i 2λλ i P β 2 i 2σ2 λ 2 i + λ2 λ i P β 2 i λ + λ i 3 2λ 2 λ i P β 2 i + 2λλ2 i P β2 i 2σ2 λ 2 i 2λ2 λ i P β 2 i λ + λ i 3 2λλ 2 i P β2 i 2σ2 λ 2 i λ + λ i 3 ote that the denominator is strictly positive: ˆ X T X has strictly positive eigenvalues λ i } by assumption; and ˆ λ > 0 for all penalized regression problems. A sufficient condition for a sum to be negative is for each of its terms to be negative, so a sufficient 0

11 condition for the derivative to be negative is 2λλ 2 i P β 2 i 2σ 2 λ 2 i < 0 2λλ 2 i P β 2 i < 2σ 2 λ 2 i σ2 λ < P β 2 i for all i. Equivalently, the derivative is negative if: [ } σ 2 λ 0, min i P β 2 i Hence, since MSEX ˆβ Ridge λ is continuous at λ, we have MSEX ˆβ Ridge λ < MSEX ˆβ OLS for λ 0, σ 2 minp β 2 i i which proves the MSE existence theorem. 3. In standard form min Lβ + λ j β + j + β j subject to β + j 0, β j 0. Lagrange form is min Lβ + λ j β + j + β j j λ + j β+ j j λ j β j KKT conditions are β + Lβ + λ β + j + β j j j j β Lβ + λ β + j + β j j j j b The KKT conditions state which implies λ + j β+ j λ + j β+ j j j λ j β j λ j β j Lβ j + λ λ + j = 0 Lβ j + λ λ j = 0 } = Lβ j + λ λ + j = 0 } = Lβ j + λ λ j = 0 λ + j β+ j = = 0 λ j β j = 0 Lβ j = λ λ + j Lβ j = λ λ j By dual feasibility λ + j 0 along with λ j 0 imply Lβ j = λ λ + j Lβ j = λ λ j λ λ

12 Therefore Lβ j λ Suppose λ = 0. λ = 0 and Lβ j λ implies Lβ j = 0. Suppose β + j > 0 and λ > 0. β + j > 0 and λ > 0 along with λ + j β+ j = 0 implies λ + j = 0. Hence Lβ j + λ λ + j = 0 Lβ j = λ < 0 Also Lβ j + λ λ j = 0 λ j = 2λ > 0 so that λ j β j = 0 β j = 0. Suppose β j > 0 and λ > 0. β j > 0 and λ > 0 along with λ j β j = 0 implies λ j = 0. Hence Lβ j + λ λ j = 0 Lβ j = λ > 0 Also so that λ + j β+ j = 0 β + j = 0. Lβ j + λ λ + j = 0 λ+ j = 2λ > 0 Hence for any active predictor, β j 0 so that Lβ j = λ for β j > 0 β j < 0. And Lβ j = λ for β + j > 0 β j > 0. Or, Lβ j = sgnβ j λ. Finally note that Xj T Y Xβ = Lβ j = sgnβ j λ, which relates the correlation of the jth variable and current residuals to λ. } c Let Aλ = j ˆβ j λ 0 denote our active set. We assume Aλ does not change for λ [λ 0, λ ], and denote it A. Consider λ [λ 0, λ ]. ote from part b we have for active ˆβ j λ i.e. ˆβj λ such that j A, or more compactly X T j Y X ˆβλ = sgnβ j λλ X T AY X ˆβλ = sgnβ A λλ where X A, β A λ denote submatrix/subvector with components corresponding to active set A. Let s = sgn ˆβ A λ. ote that ˆβ j λ = 0 for j / A so that we may rewrite the above as Hence for X T A X A 0, we have and therefore X T AY X A ˆβλ = sλ ˆβ A λ = X T AX A X T AY sλ ˆβ A λ ˆβ A λ 0 = X T AX A sλ λ 0 which delivers our result for the active set. For the non active set we are done since β A C λ = 0 for all λ [λ 0, λ ]. 2

13 4. For this problem, we use the following definition of the Lasso: ˆβ Lasso λ = arg min β 2n y Xβ λ β } } Lβ,λ We assume that X is such that the above problem is strictly convex with a unique solution. We will need the subdifferential of L with respect to β: β Lβ, λ = β 2n y Xβ λ β = 2 XT y Xβ + λ sβ 2n = XT Xβ X T y + λ sβ n where s is the subgradient of the l -norm applied elementwise: 2 } x > 0 sx = [, ] x = 0. } x < 0 The subdifferential with respect to a specific element β i is given by the i-th element of the above: X T Xβ X T y βi Lβ, λ = + λ sβ i. n Suppose that λ is sufficiently large that ˆβ Lasso λ = 0. At the solution, the KKT conditions require that zero be in the subgradient of L with respect to each β i : Since sβ i, we must have: 0 βi Lβ = 0, λ XT y i n i + λ sβ i. λ X T y i /n. Suppose this were not true: that is, λ < X T y i /n ; then, even at sβ i = signx T y i /n, we would have XT y i + λ sβ i > 0 n for all elements of sβ i. This implies that 0 is not in the subdifferential and thus that β i = 0 could not be a solution. Since this argument holds for any i, we have: The smallest λ which satisfies this for all i gives λ max X T y i /n = X T y/n. i λ max = X T y/n. That is, we assume the columns of X are in general position. See [Tib3, Section 2.2] for details. 2 Here, and throughout, we interpret the sum of a scalar and a set to be a Minkowski-style sum: that is, b+a = b+a : a A}. 3

14 Under an alternate scaling of the Lasso, ˆβ Lasso λ = arg min β 2 y Xβ λ β a similar argument leads to λ max = X T y. 5. a Since β is feasible and ˆβ = arg min β is optimal: β Hence we get: b Since ˆβ is feasible ˆβ β = β S + β S C = β S ˆβ = β + ˆv = β S + ˆv S + β S C + ˆv S C = β S + ˆv S + ˆv S C β S ˆv S + ˆv S C β S β S ˆv S + ˆv S C ˆv S ˆv S C y X ˆβ 2 2 C y X ˆβ 2 2 y Xβ 2 2 C y Xβ 2 2 Xβ + w X ˆβ 2 2 w 2 2 C w 2 2 w Xˆv 2 2 w 2 2 C w 2 2 } w 2 2 C w 2 2 w 2 2 2ˆv T X T w + ˆvX T Xˆv Xˆv 2 2 2ˆv T X T w c ˆβ β implies ˆv C, and we have: } C w 2 2 Xˆv 2 2 2ˆvT X T w + C } w 2 2 Xˆv XT w ˆv + Xˆv 2 2 w 2 XT ˆv + C } w 2 2 } C w 2 2 ˆv = ˆv S + ˆv S C 2 ˆv S 2 k ˆv 2 By γ-re condition on X: γ ˆv 2 2 Xˆv 2 2 w 2 XT ˆv + C } w XT w 2 k ˆv 2 + C } w 2 2 4

15 Therefore, any estimate ˆβ based on the constrained lasso with C = y Xβ 2 2 satisfies the bound ˆv 2 4 k γ X T w i.e. ˆβ β 2 4 k γ X T w References [Tib3] Ryan J. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7: , arxiv

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Lecture 34: Ridge regression and LASSO

Lecture 34: Ridge regression and LASSO Lecture 34: Ridge regression and LASSO Ridge regression Consider linear model X = Z β + ε, β R p and Var(ε) = σ 2 I n. The LSE is obtained from the minimization problem min X Z β R β 2 (1) p A type of

Διαβάστε περισσότερα

Nondifferentiable Convex Functions

Nondifferentiable Convex Functions Nondifferentiable Convex Functions DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Applications Subgradients

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα