UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka"

Transcript

1 UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI Zbira zadataa NIŠ,.

2

3 Sadržaj Furijeov red, spetar 5 Literatura 5 Indes pojmova 5

4 Sadržaj

5 Furijeov red, spetar Zadata. Izračunati oeficijente Furijeovog reda i nacrtati amplitudsi i fazni spetar periodičnog signala g(t), osnovne periode T = s, datog izrazom g(t) = { 8 za < t < 6s za 6s < t < s. (.) Rešenje: Frevencija signala je f = /T = / =.8Hz, odnosno ružna učestanost ima vrednost w = π f = π/t = π/6 =.5rad/s. Periodični signali mogu biti predstavljeni Furijeovim redom g a (t) = = C e jnw t (.) čije oeficijente odred - ujemo na osnovu izraza i C = T T C = T T g(t)dt = T g(t)e jw t dt = T T/ T/ U onretnom slučaju se oeficijent C izračunava ao C = g(t)dt = [ 6 T/g(t)dt, za = (.) T/g(t)e jw t dt, za =,,,... (.) ] 8dt + dt = 8(6 ) 6 8t 6 = = = e j (.5) i odgovara srednjoj vrednosti signala g(t) (DC omponenta (na frevenciji f = )). Koeficijente C, =,,... izračunavamo iz izraza 5

6 6. Furijeov red, spetar 6 C = g(t)e jwt dt = 8e jπt/6 dt = 6 e jπt/6 dt = 6 jπ e jπt/6 6 = j [ e jπ6/6 j e jπ/6] π = j [ e jπ ], =,,,... π Na osnovu izraza (.6) zaljučujemo da je C = 8 j π za = m( parno) za = m+( neparno). s obzirom da je e j(m)π = a e j(m+)π =. Na osnovu ovog izraza se dobija da je (.6) (.7) C =.565 j =.565e j π C = + j = e j C =.888 j =.888e j π C = + j = e j (.8) C 5 =.59 j =.59e j π a. C = C = j =.565e j π C = C = + j = e j C = C = j =.888e j π C = C = + j = e j (.9) C 5 = C 5 = +.59 j =.59e j π. gde je sa C obeležena onjugovano omplesna vrednost onstante C. Amplitudsi spetar signala datog izrazom (.) je priazan na slici.. Fazni spetar ovog signala priazan je na slici.. Jednaost periodične ontinualne funcije i njenog Furijeovog reda besonačne dužine postoji samo u slučaju nepreidnih funcija. Data funcija g(t) je sa preidima u trenucima t =..., 8,,,,8,,6,,..., ada soovito menja vrednost sa 8 na i obrnuto, što za posledicu daje Gibsov fenomen (otriven od strane Henry Wilbraham-a prvi put godine 88. a potom i od strane Willard Gibbs-a 899. godine po ome nosi naziv). Furijeov red (funcija dobijena sumiranjem jednosmerne omponente i harmonia) poseduje oscilatornu prirodu sa masimumom u oolini preida funcije g(t), oji se ne može uinuti a oji onvergira neoj onačnoj vrednosti ada dužina reda neograničeno raste ( ). Pratično Furijeov red onačne dužine aprosimira periodičnu funciju g(t), što je za slučaj N = 5 priazano na slici., tj.

7 7 Amplitudsi spetar.5.5 abs(c ) Sl..: Amplitudsi spetar pravougaonog signala datog izrazom (.). Fazni spetar.5.5 arg(c ) Sl..: Fazni spetar pravougaonog signala datog izrazom (.). g a (t) = 5 = 5 Furijeov red dužine N = je priazan na slici.. C e j π 6 t (.) Sa slia.5 i.7 primećujemo da funcija g a (t) poseduje masimum u oolini tače preida funcije g(t) čija je vrednost veća od 8.5. Treba obratiti pažnju da je na slici.5 na x osi vreme u seundama a na slici.6 na x osi je indes (redni broj oeficijenata Furijeovog reda C čije se vrednosti modula mogu očitati sa y ose). S obzirom da C uazuje na amplitudu omplesne prostoperiodične funcije frevencije w, moguće je na x osi za označavanje umesto rednog broja oristiti frevenciju harmonia. Pratično sve vrednosti na x osi treba samo pomnožiti sa w čime se dobijaju vrednosti u rad/s ili pomnožiti sa f = /T posle čega bi vrednosti na x osi bile u Hz.

8 8. Furijeov red, spetar 9 Aprosimacija funcije Furijeovim redom za N= ga(t) g a (t) g(t) t Sl..: Periodična funcija g(t) i njen Furijeov red g a (t) dužine N = 5. Aprosimacija funcije Furijeovim redom za N= 8 6 ga(t) g a (t) g(t) t Sl..: Periodična funcija g(t) i njen Furijeov red g a (t) dužine N =. Za odred - ivanje oeficijenata Furijeovog reda je isorišćen MATLAB R program, u ome je potrebno na samom početu promeniti izraz za izračunavanje oeficijenta C (označenog sa c u programu) i izraz ojim se izračunavaju oeficijenti C, =,,...N (označeni sa cc u programu), a čiji je od priložen u nastavu, ao bi se mogao isoristiti za proizvoljnu funciju g(t). clear all close all

9 9 9 Aprosimacija funcije Furijeovim redom za N= Amplitudsi spetar ga(t) t g a (t) g(t) abs(c ) Sl..5: Periodična funcija g(t) i njen Furijeov red g a (t) dužine N =. Sl..6: Amplitudsi spetar za N =. 9 Aprosimacija funcije Furijeovim redom za N= 6 Amplitudsi spetar ga(t) g a (t) g(t) abs(c ) t 6 6 Sl..7: Periodična funcija g(t) i njen Furijeov red g a (t) dužine N = 6. Sl..8: Amplitudsi spetar za N = 6. syms t T= % perioda seundi c=(/t)*int(8,t,,6) % jednosmerna (DC) omponenta N= % broj oeficijenata oji odredjujemo (ne % racunajuci DC omponentu)- broj harmonia n=:n; cc=(/t)*int(8*exp(-j*n**pi*t/t),t,,6) % izracunava oeficijente =[c cc];% formira niz oeficijenata (C, C,..., CN) =double(); % prelazi iz simbolie u realne vrednosti oef=[conj(fliplr((:length()))) ]; % dodaje oeficijente sa % negativnim indesom oji su onjugovane vrednosti figure stem([-n:n],abs(oef)) % amplitudsi spetar xlabel( n ) ylabel( abs(c_n) ) title( Amplitudsi spetar )

10 . Furijeov red, spetar grid figure stem([-n:n],angle(oef)) xlabel( n ) ylabel( arg(c_n) ) title( Fazni spetar ) grid tt=:.:; % vremensa osa za sliu tt=tt ; nn=-n:n; pom=tt*nn; pom=pom ; w=*pi/t; % ugaona ucestanost prvog harmonia ff=oef*exp(j*w*pom); %ff=()+()*exp(j**pi*tt/t)+conj(())*exp(-j**pi*tt/t)+()*exp(*j**pi*tt/t) figure plot(tt,ff, r, LineWidth,) xlabel( t ) ylabel( f_a(t) ) aaa=numstr(n); title([ Aprosimacija funcije Furijeovim redom za N=,aaa]) grid Zadata. Izračunati oeficijente Furijeovog reda i nacrtati amplitudsi i fazni spetar periodičnog signala g(t), osnovne periode T = s, datog izrazom g (t) = { za < t < 6s za 6s < t < s. (.) Rešenje: Zbog simetrije signala u odnosu na t osu, i identičnog trajnja dela signala ada je njegova vrednost jednaa i dela signala ada mu je vrednost-, srednja vrednost signala jednaa je nuli tj. C =. Važi da je g (t) = g(t) (g(t) je funcija iz zadata.). Zbog toga se spetar signala razliuje po pitanju DC omponente a svi ostali harmonici imaju istu amplitudu ao u prethodnom zadatu, što se može uočiti sa slie.. Komplesni Furijeov red f(t) = = C e jw t (.) može biti dat i preo realnih oeficijenata f(t) = a + [ a cos(w t)+b sin(w t) ] (.) = čime je pratično predstavljen preo svog parnog i neparnog dela, s obzirom da je osinus parna a sinus neparna funcija. Data funcija g (t) je naparna (simetrična u odnosu na oordinatni početa),

11 5 Aprosimacija funcije Furijeovim redom za N= 6 Amplitudsi spetar.5 ga(t) g a (t) g (t) abs(c ) t 6 6 Sl..9: Periodična funcija g (t) i njen Furijeov red g a (t) dužine N = 6. Sl..: Amplitudsi spetar za N = 6. tao da u izrazu. nedostaju osinusni članovi, odnosno a, =,,,... su jenai nuli. S obziroma da je e jα = cos(α)+ j sin(α) u izrazu. oeficijenti C biće čisto imaginarni brojevi, ao je poazano izrazom.9. Dale ao je data funcija parna (simetrična u odnosu na y osu) Furijeov red (.) sadrži samo osinusne članove, odnosno oeficijenti C iz izraza (.) su čisto realni brojevi a ao je data funcija neparna, postoje samo sinusni članovi Furijeovog reda zbog čega su oeficijenti C čisto imaginarni brojevi. Nee funcije nisu ni parne ni neparne. Tave funcije poseduju omponente i osinusnog i sinusnog reda a oeficijenti C su omplesni brojevi (imaju i realni i imaginarni deo). Osim ove dve moguće simetrije funcija može posedovati i polutalasnu simetriju, definisanu sa f(t) = f(t + T ). (.) Ovave funcije poseduju samo neparne harmonie odnosno za njih važi da je C, za = m+ C =, za = m (.5) S obzirom da funcija g (t) poseduje polutalasnu simetriju svi parni harmonici su jednai nuli ao se uočava sa slie.. Treba naglasiti da funcija može biti ni parna ni neparna, ada su oeficijenti C omplesni brojevi, ali da istovremeno poseduje polutalasnu simetriju zbog čega su svi parni harnonici jednai nuli. Na primer, uvod - enjem vremensog pomeraja od T pom = s, od funcije g(t) dobijamo funciju g (t) = g(t T pom ) oja je priazana na slici.. Na istoj slici priazana je funcija g a (t) dobijena sraćivanjem Furijeovog reda na članova (DC omponenta- C i prvih harmonia). Kao je obli funcije identičan funciji g(t) (sastoji se od dela trajanja 6s amplitude 8 i dela trajanja 6s amplitude, ao i g(t)) obe funcije poseduju identičan amplitudsi spetar, što je priazano na slici.. Razlia izmed - u funcija g (t) i g (t)

12 . Furijeov red, spetar 9 Aprosimacija funcije Furijeovim redom za N= ga(t) g a (t) g (t) t Sl..: Periodična funcija g (t), periode T = s dobijena vremensim pomeranjem funcije g(t). postoji i ona je uočljiva sa slie. jer je neophodno promeniti početne fazne stavove osinusnih i sinusnih funcija ao bi se pojavilo vremenso ašnjenje od s. Amplitudsi spetar Fazni spetar.5.5 abs(c ) arg(c ) Sl..: Amplitudsi spetar funcije g (t) za N =. Sl..: Fazni spetar za N =. Da pojasnimo ao do ašnjenja dolazi. Na slici. je priazano idealno olo za ašnjenje signala. Pratično je reč o pojačavaču čije počanje ne zavisi od frevencije, odnosno pojačanje ima vrednost A = e jmw = e jmw = A e j arg(a). (.6) Na slici.5 je priazana amplitudsa arateristia pojačavača. Kao što vidimo, pojačanje ne

13 g(t) = ulaz A izlaz = g (t) Sl..: zavisi od frevencije i uve ima jediničnu vrednost (za A < i A > se očuvava obli signala, s tim da amplituda signala opada, odnosno raste). A 6 6 w [rad/s] τ [s] w [rad/s] Sl..5: Amplitudsa arateristia idealnog pojačavača. Sl..6: Grupno ašnjenje idealnog pojačavača. Na slici.7 je priazana fazna arateristia idealnog pojačavača. Faza se dobija ao arctan Imag(A) Real(A) i sva rešenja su u opsegu ( π,π). Razmotavanjem faze, oje se u MATLAB R -u realizuje naredbom unwrap, eliminišu se soovi vrednosti π, posle čega se dobija ontinualna fazna funcija priazana na slici.8. Izvod faze po frevenciji predstavlja grupno ašnjenje τ(w) = d{arg(a)} dw = ( m) = m (.7) oje se meri u seundama. Grupno ašnjenje u opštem slučaju je funcija frevencije i uazuje na to za olio seundi na izlazu pojačavača zaasni signal frevencije w u odnosu na ulazni signal iste frevencije. Na slici.6 je priazano grupno ašnjenje za m =. Prethodno navedene fazne arateristie taod - e odgovaraju slučaju m =. Karateristia grupnog ašnjenja je ontinualna funcija a u onretnom slučaju treba primetiti da je ulazni signal priazan preo Furijeovog reda taav da ao ga sagledamo ao sumu prostoperiodičnih funcija, prisutan samo na frevencijama,w,w,..., pa nam je samo na tim frevencijama od interesa ava je vrednost grupnog ašnjenja. Ove arateristične vrednosti od interesa su na slici.6 označene ružićima. Kao što vidimo, sve omponente Furijeovog reda oje odgovaraju ulaznom signalu biće zaašnjenje za tačno seunde. Izlaz pojačavača se dobija množenjem ulaznog signala i pojačanja, tj.

14 . Furijeov red, spetar 5 arg(a) [rad] arg(a) [rad] w[rad/s] w [rad/s] Sl..7: Nerazmotana fazna arateristia idealnog pojačavača. Sl..8: Razmotana fazna arateristia idealnog pojačavača. g (t) = g(t) A = [ = = = C e jw t ] [ e jmw] = C e jw (t m) = g(t m) = (C )e jw t e jmw (.8) odale vidimo da je izlazni signal zaašnjena verzija ulaznog signala za m seundi. Dale, da bi izlazni signal bio neizobličen (da se očuva njegov obli) potrebno je da pojačanje bude onstantno na svim frevencijama (jediničnim pojačanjem se očuvava i amplituda signala) a fazna arateristia linearno zavisna od frevencije. Ova je osobina od rucijalane važnosti u neim oblastima pratične primene obrade signala, ao što je prenos signala (omuniacija izmed - u dve tače) gde je neophodno bez greše ustanoviti na prijemnoj strani aav je signal bio na predajnoj strani. Dale, sa slie. vidimo da ulazne omponente imaju fazu jednau π/ za w = (+ )w i fazu jednau nuli za w = w. Prolasom signala g(t), datog jednačinom., roz pojačavač, menja se fazni stav svih harmonia prisutnih u Furijeovom redu oji odgovara ovom signalu, a vrednosti za olio se faza menja na ojoj fregenicji se mogu očitati sa grafia.8 i na frevencijama w su one obeležene ružićima. Kao je faza data izrazom ϕ(w) = arg(a) = w zaljučujemo da su njene vrednosti na frevencijama w,w, w, w, 5w, 6w, 7w, 8w, 9w i w jednae -.7, -.9, -.6, -.888, -5.6, -6.8, -7., , -9.8, i -.7, respetivno. Zato je faza signala frevencije w na izlazu pojačavača jednaa π/ w = π/.7 =.68( π/ je faza ulaznog signala na frevenciji w ojoj dodajemo uticaj pojačavača na toj frevenciji). Na frevenciji w faza na izlazu ima vrednost (w ) =.9(drugi harmoni ulaznog signala ne postoji i faza mu je jednaa nuli). Slično na frevenciji w faza na izlazu ima vrednost π/ (w ) = π/.6 =.7. Na frevenciji w faza izlaznog signala je (w ) =.888. Istim postupom se na frevencijama od 5w do w dobijaju vrednosti faze , -6.8, -8.9, , i -.7.

15 Literatura 5

16 Indes pojmova Gibsov fenomen, 7 6

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Diferencijabilnost funkcije više promenljivih

Diferencijabilnost funkcije više promenljivih Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

5.1 Razvoj kontinualnih periodičnih signala u Furijeov red

5.1 Razvoj kontinualnih periodičnih signala u Furijeov red Glava 5 FURIJEOV RED Priliom analize i obrade signala veoma je pogodno predstaviti složeni signal ao linearnu ombinaciju prostijih signala. Osim što ovava predstava daje bolji uvid u prirodu signala, slijedeći

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

FREKVENCIJSKE KOMPENZACIJE OPERACIONIH POJAČAVAČA

FREKVENCIJSKE KOMPENZACIJE OPERACIONIH POJAČAVAČA FEKVENIJSKE KOMPENZAIJE OPEAIONIH POJAČAVAČA 4 ZADATAK: Operacioni pojačavač čija je prenosna uncija data iraom: 5 (4) A( s) ( s)( s) oristi se a realiaciju invertujućeg pojačavača (slia 4) odnosno neinvertujućeg

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t) Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Linearni operatori. Stepenovanje matrica

Linearni operatori. Stepenovanje matrica Linearni operatori Stepenovanje matrica Nea su X i Y vetorsi prostori nad istim poljem salara K Presliavanje A : X Y zovemo operator Za operator A ažemo da je linearan ao je istovremeno 1 aditivan: A(u

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

MOSTOVI beleške za predavanja

MOSTOVI beleške za predavanja MOSTOVI beleše za predavanja. Opšta onfiguracija, generalizovana A E eletrična mreža B U ( E, Z, K ) AB = f Z n ( L,, M, f ) Z i = g, avnoteža mosta: U = 0. AB Osetljivost mosta, definicija: S m U U AB

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Dati su intervali [a,b] i [c,d]. Odrediti interval koji je njigov presek (ako postoji).

Dati su intervali [a,b] i [c,d]. Odrediti interval koji je njigov presek (ako postoji). Ovde su nabrojane nee osnovne formule i postupci oji se oriste pri rešavanju algoritamsih problema iz oblasti geometrije. apredniji problemi računarse geometrije biće obrađeni u posebnim lecijama. Prese

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Signali i sustavi - Zadaci za vježbu II. tjedan

Signali i sustavi - Zadaci za vježbu II. tjedan Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

DELJIVOST CELIH BROJEVA

DELJIVOST CELIH BROJEVA DELJIVOST CELIH BROJEVA 1 Osnovne osobine Definicija 1.1 Nea su a 0 i b celi brojevi. Ao postoji ceo broj m taav da je b = ma, onda ažemo da je a delitelj ili fator broja b, b je sadržalac, višeratni ili

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

NUMERIČKA MATEMATIKA ZADACI ZA Mathcad

NUMERIČKA MATEMATIKA ZADACI ZA Mathcad NUMERIČKA MATEMATIKA ZADACI ZA Mathcad Jun() 5. Date su vrednosti specifičnih toplota c p ( J gk) azota na pritisu p = bar i različitim temperaturama, sa tačnošću od 4 sigurne cifre u širem smislu. T(K)

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

10.1. Bit Error Rate Test

10.1. Bit Error Rate Test .. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

= 10, a u drugom slučaju je broj mogućnosti ( ( 2! = 15. Prema tome krajnji rezultat je S5 3 = ( (

= 10, a u drugom slučaju je broj mogućnosti ( ( 2! = 15. Prema tome krajnji rezultat je S5 3 = ( ( REŠENJA ZADATAKA SA PRIJEMNOG ISPITA IZ MATEMATIKE ZA ELEKTROTEHNIKU, RAČUNARSTVO, ANIMACIJU U INŽENJERSTVU I MEHATRONIKU, FTN NOVI SAD 0070 Na hipotenuzi AB pravouglog trougla ABC date su tače D i E,

Διαβάστε περισσότερα