788 SECTION 16.1 CHAPTER 16 SECTION f =(6x y) i +(1 x) j 2. f =(2Ax + By)i +(Bx +2Cy)j. 3. f = e xy [(xy +1)i + x 2 j]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "788 SECTION 16.1 CHAPTER 16 SECTION f =(6x y) i +(1 x) j 2. f =(2Ax + By)i +(Bx +2Cy)j. 3. f = e xy [(xy +1)i + x 2 j]"

Transcript

1 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 788 SECTION 6. CHAPTER 6 SECTION 6.. f =6x y) i + x) j. f =Ax + By)i +Bx +Cy)j. f = e xy [xy +)i + x j] 4. f = x + y ) [y x +xy)i +y x xy)j] 5. f = [ y sinx +)+4x y cosx +) ] i +4xy sinx +)j 6. f = x x + y i + y x + y j 7. f =e x y + e y x ) i + e x y e y x ) j =e x y + e y x )i j) 8. f = AD BC [ yi xj ] Cx + Dy) 9. f =z +xy) i +x +yz) j +y +zx) k 0. f = x x + y + z i + y x + y + z j + z x + y + z k. f = e z xy i + x j x y k). [ xyz f = x + y + z [ + ] [ + yz lnx + y + z) i + xyz + xy lnx + y + z) x + y + z ] k xyz + xz lnx + y + z) x + y + z. f = e x+y cos z + ) i +e x+y cos z + ) j ze x+y sin z + ) k 4. f = e yz /x yz x 4 i + z x j + yz ) x k 5. f = 6. f = [ y cosxy)+ ] i +xcosxy) j + x z k ) xy z 4 i + x x ) z z j y z +xz k 7. f =4x y) i +8y x) j; at, ), f = i +8j 8. f = x y) yi +xj), f, ) = i + j ] j 9. f = x x + y i + y x + y j; at, ), f = 4 5 i + 5 j

2 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 0. f = tan y/x) xy ) ) x π x + y i + x + y j, f, ) = 4 ) i + j. f = sin xy + xy cos xy) i + x cos xy j; at,π/), f = i SECTION f = e x +y ) [y x y)i +x xy )j], f, ) = e i j). f = e x sin z +y) i +e x cos z +y) j + e x cos z +y) k; at 0,π/4,π/4), f = i +j + k) 4. f = cos πzi cos πzj πx y) sin πzk, f, 0, ) = πk 5. f = i y y + z j z y + z k; at,, 4), f = i + 5 j 4 5 k 6. f = sinxyz )yz i + xz j +xyzk), f π, 4 ), = 7. a) f0, ) = 4 i b) f 4 π, 6 π) = c) f,e)= e) i j 8. a) f,, ) = 8 i + j 7 c) f,e,π/6) = i + π e j + k 9. For the function fx, y) =x xy + y, we have + ) i + 4 i + π j π ) k ) + j 8 k b) f,, ) = 5 8 i + 9 j + 8 k fx + h) fx) =fx + h,y+ h ) fx, y) =x + h ) x + h )y + h )+y + h ) [ x xy + y ] = [6x y) i + x) j] h i + h j)+h h h = [6x y) i + x) j] h +h h h The remainder gh) =h h h =h i h j) h i + h j), and gh) h = h i h j h cos θ h i h j h Since h i h j 0 as h 0 it follows that f =6x y) i + x) j 0. fx + h) fx) =[x +y) i +x +y) j] [h i + h j]+ h +h h + h ; gh) = h +h h + h is oh).

3 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 790 SECTION 6.. For the function fx, y, z) =x y + y z + z x, we have fx + h) fx) =fx + h,y+ h,z+ h ) fx, y, z) =x + h ) y + h )+y + h ) z + h )+z + h ) x + h ) x y + y z + z x ) = xy + z ) h + yz + x ) h + xz + y ) h +xh + yh + h h ) h + yh + zh + h h ) h +zh + xh + h h ) h = [ xy + z ) i + yz + x ) j + xz + y ) k ] h + gh) h, where gh) =xh + yh + h h ) i +yh + zh + h h ) j +zh + xh + h h ) k Since gh) h 0 as h 0 it follows that f = xy + z ) i + yz + x ) j + xz + y ) k [ ]. fx + h) fx) = xy +h x + h y) i +x j + zz + h ) k h i + h j + h k)+h ; gh) =h h is oh) and f =4xy i =x j + z k.. f = Fx, y) =xy i + +x ) j x =xy fx, y) =x y + gy) for some function g. Now, y = x + g y) =+x g y) = gy) =y + C, C a constant. Thus, fx, y) =x y + y + C 4. f =xy + x)i +x + y)j = f x =xy + x = fx, y) =x y + x + gy) Now, f y = x + g y) =x + y = g y) =y = gy) = y + C Thus, fx, y) =x y + x + y + C 5. f = Fx, y) =x + sin y) i +xcos y y) j x = x + sin y fx, y) = x + x sin y + gy) for some function g. Now, y = x cos y + g y) =x cos y y g y) = y gy) = y + C, C a constant. Thus, fx, y) = x + x sin y y + C. 6. f = yzi +xz +yz)j +xy + y )k = f x = yz = fx, y, z) =xyz + gy, z). f y = xz + g y = xz +yz = g y =yz = gy, z) =y z + hz) = fx, y, z) =xyz + y z + hz). f x = xy + y + h z) =xy + y = h z) =0 = hz) =C. Thus, fx, y, z) =xyz + y z + C. 7. With r =x + y + z ) / we have r x = x r, a) r y = y r, r z = z r. ln r) = x ln r) i + y ln r) j + ln r)k z = r r x i + r r y j + r r z k = x r i + y r j + z r k = r r

4 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION b) sin r) = x sin r) i + y sin r) j + sin r)k z = cos r r r r i + cos r j + cos r x y z k = cos r) x r i + cos r)y r j + cos r)z r k cos r ) = r r ) e c) e r r = r [ same method as in a) and b) ] r 8. With r n =x + y + z ) n/ we have r n x = n x + y + z ) n/) x) =nx + y + z ) n )/ x = nr n x. Similarly Therefore r n y = nrn y and r n z = nrn z. r n = nr n xi + nr n yj + nr n zk = nr n xi + yj + zk) =nr n r 9. a) f =x i +y j = 0 = x = y =0; f = 0 at 0, 0). b) c) f has an absolute minimum at 0, 0) 40. a) f = xi + yj) =0 at 0, 0) 4 x y b) c) f has a maximum at 0, 0)

5 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 79 SECTION a) Let c = c i + c j + c k. First, we take h = hi. Since c h is oh), c h 0 = lim h 0 h = lim c h h 0 h = c. Similarly, c = 0 and c =0. b) y z) h =[fx + h) fx) z h]+[y h fx + h)+fx)]=oh)+oh) =oh), so that, by part a), y z = lim gh) = lim h gh) ) ) = lim h 0 h 0 h h lim h 0 h 0 ) gh) =0)0) =0). h 4. a) In Section 5.6 we showed that f was not continuous at 0, 0). It is therefore not differentiable at 0, 0). b) For x, y) 0, 0), x = y y 4 = y x = yy x ) x + y. As x, y) tends to 0, 0) along the positive y-axis, ) tends to. SECTION 6.. f =xi +6yj, f, ) = i +6j, u = i j), f u, ) = f, ) u =. f = [ + cosx + y)]i + cosx + y)j, f0, 0) = i + j, u = 5 i + j), f u0, 0) = f0, 0) u = 5. f =e y ye x ) i +xe y e x ) j, f, 0) = i + e)j, u = i +4j), 5 f u, 0) = f, 0) u = 7 4e) 5 4. f = x y) yi +xj), f, 0) = j, u = i j), f u, 0) = f, 0) u = a b)y b a)x a b 5. f = i + j, f, ) = x + y) x + y) 4 i j), u = i j), f u, ) = f, ) u = 4 a b) d c 6. f = [d c)yi +c d)xj], f, ) = cx + dy) c + d) i j), u = ci dj), c + d f u, d c ) = f, ) u = c + d) c + d 7. f = x x + y i + y x j, f0, ) = j, u = 8 i + j), + y 65 f u0, ) = f0, ) u = 65

6 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8. f =xyi +x + sec y)j, f, π 4 )= π i +j, u = i j) 5 f u, π ) = f, π ) u = π ) SECTION f =y + z)i +x + z)j +y + x)k, f,, ) = j, u = 6 6i +j + k), f u,, ) = f,, ) u = 6 0. f =z +xy)i +x +yz)j +y +zx)k, f, 0, ) = i + j +k, u = j k) 0 0 f u, 0, ) = f, 0, ) u = 0. f = x + y + z ) i +yj +z k ), f,, ) = 6i j +k), u = i + j), f u,, ) = f,, ) u =. f =Ax + Byz)i +Bxz +Cy)j + Bxyk, f,, )=A + B)i +B +4C)j +Bk u = Ai + Bj + Ck); A + B + C f. f = tan y + z) i + x +y + z) j + u = i + j k), f u, 0, ) = f, 0, ) u = π 4 = u,, ) = f,, ) u = A + B +AB +6BC A + B + C x +y + z) k, f, 0, ) = π 4 i + j + k, π 4. f =y cos z πyz cos πx +6zx)i +xy cos z z sin πx)j + xy sin z 4yz sin πx +x )k f0,,π)=π )i; u = i j +k), f u0,,π)= f0,,π) u = π ). 5. f = x x + y i + y x + y j, u = xi yj), x + y f ux, y) = f u = x + y 6. f = e xy [ y + xy y )i +x )y + xy )j ], f0, ) = j u = i +j), f u0, ) = f0, ) u = f =Ax +By) i +Bx +Cy) j, fa, b) =aa +bb)i +ab +bc) j a) u = i + j), f u a, b) = fa, b) u = [ab A)+bC B)] b) u = i j), f u a, b) = fa, b) u = [aa B)+bB C)] 8. f = z x i z y j +ln x y ) k, f,, ) = i j u = i + j k); f u,, ) = f,, ) u = 0

7 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 794 SECTION f = e y z i +xyj xzk), f,, ) = i +4j +4k, r t) =i sin t ) j e t k, at,, ) t =, r ) = i k, u = 5 5i k), f u,, ) = f,, ) u = f =xi + zj + yk, f,, ) = i +j k Direction: r ) = i +j k, u = i +j k), f u,, ) = f,, ) u =. f =x +yz) i + xz z ) j +xy yz) k, f,, ) = 6 i k The vectors v = ± i + j k) are direction vectors for the given line; u = ± are corresponding unit vectors; f u,, ) = f,, ) ±u) =± 8 4 ) [ i + j k] 4. f = e x cos πyzi πz sin πyzj πy sin πyzk), f0,, )= π j π k The vectors v = ± i +j +5k) are direction vectors for the line; u = ± are corresponding unit vectors; f u0,, )= f0,, π ) ±u) = 8 ) [ i +j +5k] 8. f =y e x i +ye x j, f0, ) = i +j, f = f, f = i + j) f increases most rapidly in the direction u = i + j); the rate of change is. f decreases most rapidly in the direction v = i + j); the rate of change is. 4. f = [ + cosx +y)]i + cosx +y)j, f0, 0) = i +j Fastest increase in direction u = i + j), rate of change f0, 0) = Fastest decrease in direction v = i + j), rate of change 5. f = x x + y + z i + y x + y + z j + f,, ) = 6 i j + k), f = z x + y + z k, f increases most rapidly in the direction u = i j + k); the rate of change is. 6 f decreases most rapidly in the direction v = i j + k); the rate of change is f =xze y + z )i + x ze y j +x e y +xz)k, f, ln, ) = i +4j +6k Fastest increase in direction u = 6i +j +k), rate of change f, ln, ) =4 7 Fastest decrease in direction v = 6i +j +k), 7 rate of change 4 7. f = f x 0 ) i. If f x 0 ) 0, the gradient points in the direction in which f increases: to the right if f x 0 ) > 0, to the left if f x 0 ) < 0.

8 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION ; the vector c = y x 0,y 0 )i x x 0,y 0 )j is perpendicular to the gradient fx 0,y 0 ) and points along the level curve of f at x 0,y 0 ). fh, 0) f0, 0) h 9. a) lim = lim h 0 h h 0 h 0. a) h = lim h 0 h does not exist b) no; by Theorem 6..5 f cannot be differentiable at 0, 0) gx + h)oh) h [gx + h) gx)] fx) h b) h by Schwarz s inequality = gx + h) oh) h gx)0) = 0. λx, y) = 8 xi 6yj a) λ, ) = 8 λ, ) i =6j, u = [gx + h) gx)] fx) h h = gx + h) gx) fx) 0 8 λ, ) = i 6j, λ u, ) = λ, ) u = b) u = i, λ u, ) = λ, ) u = 8 i j) i = 8 c) u = i + j), λ u, ) = λ, ) u = 6 i j) [ ] i + j) = 6. I = 4xi yj. We want the curve rt) =xt)i + yt)j which begins at, ) and has tangent vector r t) in the direction I. We can satisfy these conditions by setting These equations imply that x t) = 4xt), x0) = ; y t) = yt), y0) =. xt) = e 4t, yt) =e t. Eliminating the parameter, we get x = y ; the particle will follow the parabolic path x = y toward the origin.. a) The projection of the path onto the xy-plane is the curve C : rt) = xt)i + yt)j which begins at, ) and at each point has its tangent vector in the direction of f. Since we have the initial-value problems f =xi +6yj, x t) = xt), x0) = and y t) = 6yt), y0) =. From Theorem 7.6. we find that xt) =e t and yt) =e 6t. Eliminating the parameter t, we find that C is the curve y = x from, ) to 0, 0).

9 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 796 SECTION 6. b) Here so that x t) = xt), x0) = and y t) = 6yt), y0) = xt) =e t and yt) = e 6t. Eliminating the parameter t, we find that the projection of the path onto the xy-plane is the curve y = x from, ) to 0, 0). 4. z = fx, y) = x y ; f = xi yj, so we choose the projection rt) =xt)i + yt)j of the path onto the xy-plane such that x t) =xt), y t) = yt) a) With initial point,, ), we get xt) = et,yt) =e t, or y = x from, ), in the direction of decreasing x. b) With initial point, 0, ), we get xt) =et,yt) =0, or the x-axis from, 0), in the direction of increasing x. 5. The projection of the path onto the xy-plane is the curve C : rt) = xt)i + yt)j which begins at a, b) and at each point has its tangent vector in the direction of f = a xi +b yj ). We can satisfy these conditions by setting so that x t) = a xt), x0) = a and y t) = b yt), y0) = b xt) =ae a t and yt) =be bt. Since [ x ] b = a ) b [ e a t y ] a =, b C is the curve b) a x b =a) b y a from a, b) to 0, 0). 6. The particle must go in he direction T = e y cos xi e y sin xj, so we set x t) = e yt) cos xt), y t) = e yt) sin xt). Dividing, we have y t) sin xt) x = t) cos xt), or dy = tan x. dx 0, 0), we get y =ln sec x, in the direction of decreasing x since x 0) < 0). 7. We want the curve C : rt) = xt)i + yt)j which begins at π/4, 0) and at each point has its tangent vector in the direction of From T = e y sin x i e y cos x j. x t) = e y sin x and y t) = e y cos x With initial point

10 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION we obtain so that dy dx = y t) x t) = cot x y =ln sin x + C. Since y = 0 when x = π/4, we get C =ln and y =ln sin x. As T π/4, 0) = i j, the curve y =ln sin x is followed in the direction of decreasing x. 8. z = x)i + 6y)j, so the projection of the path onto the xy-plane satisfies x t) = xt), y dy t) = 6yt), or dx = 6y. With initial point 0, 0), this gives the curve x y =x ) +, in the direction of increasing x. 9. a) b) f +h, + h) ) f, 4) + h) ++h) 6 lim = lim h 0 h h 0 h [ ] 4h + h = lim h 0 4 = lim h h) =6 h ) ) h +8 h +8 f, 4+h f, 4) +4+h) lim = lim h 0 h h 0 h = lim h 0 6 h +h ++4+h 6 h = lim h 0 6 h +4) =4 c) u = 7 7 i +4j), f, 4) = i + j; f u, 4) = f, 4) u = d) The limits computed in a) and b) are not directional derivatives. In a) and b) we have, in essence, computed f, 4) r 0 taking r 0 = i +4j in a) and r 0 = 4i + j in b). is r 0 a unit vector. GMm 40. f = xi + yj + zk) = GMm x + y + z ) / r r 4. a) u = cos θ i + sin θ j, fx, y) = x i + y j; f ux, y) = f u = x i + ) y j b) f = x +y y ) i +x xy) j, f, ) = i +j cos θ i + sin θ j) = x f u, ) = cosπ/) + sinπ/) = cos θ + y sin θ In neither case

11 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 798 SECTION f ux, y) = x cos 5π 4 + y sin 5π ) ) 4 =xey +x e y = xe y + x) f u, ln ) = e ln +)= 4 4. fg)= fg) x i + fg) j + fg) k = f g y z x + g ) x 44. ) f = g x = f g x i + g y j + g z k = f g + g f ) f i + g y ) f j + g z i + f g y + g y ) + g ) f k g ) j + f g z + g z ) x i + y j + z k ) k = x g f g x g i + y g f g y g j + z g f g z g k = gx) fx) fx) gx) g x) 45. f n = n x i + n y j + n n n n k = nf i + nf j + nf z x y z k = nf n f SECTION 6.. fb) =f, ) = ; fa) =f0, ) = 0; fb) fa) = f = x y ) i x j; b a = i +j and f b a) =x y x The line segment joining a and b is parametrized by Thus, we need to solve the equation x = t, y =+t, 0 t t +t) t =, which is the same as t 4t +=0, 0 t The solutions are: t =,t=. Thus, c =, 5 ) satisfies the equation. Note that the endpoint b also satisfies the equation.. f =4zi yj +4x +z)k, fa) =f0,, ) = 0, fb) =f,, ) = b a = i +j + k, so we want x, y, z) such that f b a) =4z 4y +4x +z =6z 4y +4x = fb) fa) = Parametrizing the line segment from a to b by xt) = t, yt)= + t, zt) = + t, we get t =, or c =,, ). a) fx, y, z) =a x + a y + a z + C b) fx, y, z) =gx, y, z)+a x + a y + a z + C 4. Using the mean-value theorem 6.., there exists c such that fc) b a) =0

12 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 5. a) U is not connected b) i) gx) =fx) ii) gx) = fx) 6. By the mean-value theorem fx ) fx )= fc) x x ) for some point c on the line segment x x. Since Ω is convex, c is in Ω. Thus SECTION fx ) fx ) = fc) x x ) fc) x x M x x. by Schwarz s inequality 7. f =xyi + x j; frt)) r t) = i + e t j ) e t i e t j)=e t 8. f = i j; frt)) r t) =i j) ai ab sin atj) =a + b sin at) 9. f = x +y x ) i + frt)) r t) = 0. f = x + y 4xi +y j) y sin t +y x j, frt)) = ) + cos t i + cos t + cos t j ) 4 sin t cos t cos t i sin t j) = + cos = t sin t + cos t i + cos t + cos t j frt)) r t) = e 4t + t 4et i +t / j) e t i + t / j)= 8e4t + e 4t + t. f =e y ye x ) i +xe y + e x ) j; frt)) = t t ln t) i + frt)) r t) =. f = t t ln t) i + x + y xi + yj + zk) + z frt)) r t) =. f = yi +x z)j yk; t t ln t + t ) ) j t i +[+lnt] j +e 4t sin ti + cos tj + et k) cos ti sin tj +e t k)= 4e4t +e 4t frt)) r t) = t i + t t ) j t k ) i +tj +t k ) =t 5t 4 sin t + cos t t t ln t + ) j t ) ) t = t t +lnt + [ln t] + t 4. f =x i +y j frt)) r t) =a cos ωti +b sin ωtj) ωa sin ωti + ωb cos ωtj + bωk) =ωb a ) sin ωt cos ωt 5. f =xi +yj + k; frt)) r t) =a cos ωt i +b sin ωt j + k) aω sin ωt i + bω cos ωt j + bωk) =ω b a ) sin ωt cos ωt + bω

13 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 800 SECTION f = y cosx + z)i +ysinx + z)j + y cosx + z)k frt)) r t) = [cos t cost + t )i + cos t sint + t )j + cos t cost + t )k] i sin tj +t k) = cos t[+t ) cos t cost + t ) sin t sint + t )] 7. du dt = dx x dt + dy =x y) sin t)+4y x)cos t) y dt = cos t sin t + sin t cos t = sin t cos t 8. du dt = x dx dt + y dy dt = + = y x ) x t + ) y t ) + t ) t +t ) t ) =t +4+ t du dt = dx x dt + dy y dt =e x sin y + e y cos x) ) +e x cos y + e y sin x) ) = e t/ sin t + cos t) + e t cos t + sin t) du dt = x dx dt + y dy =4x y) sin t)+y x) cos t dt = sin tsin t 4 cos t) + cos t sin t cos t) du dt = dx x dt + dy y dt =ex sin y)t)+e x cos y)π) = e t [t sinπt)+π cosπt)] du dt = x dx dt + y dy dt + z dz = t e t t + + et +ln t t + dt = z x t + z y ) e t + t) du dt = dx x dt + dy y dt + dz z dt =y + z)t)+x + z) t)+y + x)t ) y ) t +ln e t + t) x = t)t)+t t + ) t)+tt ) = 4t +6t 4t 4. du dt = x dx dt + y dy dt + z dz = sin πy + πz sin πx)t + πx cos πy ) cos πx t) dt =t [ sin[π t)] + π t ) sinπt ) ] πt cos[π t)]+tcosπt ) 5. V = πr h, dv dt = V r dr dt + V h dh dt = πrh ) dr dt + πr ) dh dt.

14 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 At the given instant, dv dt = π80)) + 88 π96) ) = π. The volume is increasing at the rate of 88 π in. / sec. 6. v = πr h, dr dt =, dv dt = v r dr dt + v h dh dt =πrhdr dh + πr dt dt dh dv =, r =, h =8 = dt dt = 49π : SECTION decreasing at the rate of 49π cm /sec. 7. A = xy sin θ; da dt = A dx x dt + A dy y dt + A [ dθ θ dt = y sin θ) dx ] dy dθ +xsin θ) +xy cos θ). dt dt dt At the given instant da dt = [ sin ) 0.5)+.5sin ) 0.5).5) cos ) 0.)] = 0.87 ft /s = 4.4 in /s dz dt =xdx dt + y dy dt. = dz dt =xdx dt + y But x + y = = x dx dt x ) dx = x dx y dt dt = 5. +y dy dt s = x x s + y =x y)cos t)+ x)t cos s) y s =scos t t sin s cos t st cos s cos t t = x x t + y =x y) s sin t)+ x)sin s) y t = s cos t sin t + st sin s sin t s cos t sin s s = x x s + y y s = [cosx y) sinx + y)]t +[ cosx y) sinx + y)]s dy =0 = dt = x dx y dt z is increasing 5 centimeters per second =t s) cosst s + t ) t +s) sinst + s t ) t = x x t + y y t = [cosx y) sinx + y)]s +[ cosx y) sinx + y)] t) =s +t) cosst s + t ) s t) sinst + s t ). s = x x s + y y s =xtan y)st)+ x sec y ) ) =4s t tan s + t ) + s 4 t sec s + t ) t = x x t + y y t =xtan y) s ) + x sec y ) t) =s 4 t tan s + t ) +s 4 t sec s + t )

15 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION 6... s = x x s + y y s + z z s = z y sec xy tan xyt)+z x sec xy tan xy +zsec xyst) = sec[sts t )] s 4 t s t ) tan[sts t )]+s t tan[sts t )]+4s t ) t = z y sec xy tan xys)+z x sec xy tan xy t)+zsec xys ) = sec[sts t )] s 5 t s t ) tan[sts t )] 4s 5 t 4 tan[sts t )]+s 4 t ) s = x x s + y y s + z z s =x y)cos t)+ x) cos t s))+ztcos s) =scos t sin t s) cos t + s cos t cos t s)+t sin s cos s t = x x t + y y t + z z t =x y) s sin t)+ x)cos t s))+zsin s) = s cos t sin t + s sin t s) sin t s cos t cos t s)+t sin s 4. s = x x s + y y s + z z s = e yz s + xz e yz 0+xyze yz s = s et s +t ) +4st s + t ) lnst)e t s +t ) t = x x t + y y t + z z t = e yz t + xz e yz t +xyze yz t = t et s +t ) + t s + t )s +7t ) lnst)e t s +t ) d dt [frt))] = [ frt)) r ] t) r r t) t) = f ut) rt)) r t) where ut) = r t) r t) x [fr)] = d r [fr)] dr x = f r) r x = f r) x r ; similarly y [fr)] = f r) y r and z [fr)] = f r) z r. Therefore fr) =f r) x r i + f r) y r j + f r) z r k = f r) r r. 7. a) cos r) r r b) r cos r + sin r) r r 8. a) r ln r)=+lnr) r r b) e r )= re r r r = e r r

16 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION a) r cos r sin r) r r b) sin r r cos r sin r ) r r 40. a) b) du dt = dx ds x ds dt + y dy ds ds dt 4. a) b) r = x w x w r + x t ) t + y w r y w r + y t To obtain / s, replace each r by s. ) t + z w r z w r + z t ) t. r 4. a) b) r = x x r + z z r + w w r, v = y y v + w w v

17 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 804 SECTION du dt = dx x dt + dy y dt d u dt = d x x dt + dx dt and the result follows. s = x x s + y y s u s = x [ u x dx dt + u y x x s + x s ] dy + d y dt y dt + dy [ ] u dx dt x y dt + u dy y dt u x x s + u y x ) y s + y y s + y ) u x s x y s + u y y s 45. a) b) = u x ) x + u s x y x y s s + u y r = x x r + y y r = cos θ + x y sin θ y s ) + x x s + y y s θ = x x θ + y y θ = r sin θ)+r cos θ) x y ) ) = cos θ + ) cos θ sin θ + sin θ, r x x y y ) ) r = sin θ ) cos θ sin θ + cos θ, θ x x y y ) + ) ) r r = cos θ + sin θ ) ) + sin θ + cos θ ) = θ x y ) + x ) y 46. a) By Exercise 45 a) w r = w w w cos θ + sin θ, x y w Solve these equations simultaneously for and x b) To obtain the first pair of equations set w = r; to obtain the second pair of equations set w = θ. θ = w w r sin θ + r cos θ. x y w y. c) θ is not independent of x; r = x + y gives r x = x x + y = r cos θ = cos θ r 47. Solve the equations in Exercise 45 a) for x x = r cos θ r θ Then and y : sin θ, y = r sin θ + r θ cos θ u = x i + y j = r cos θ i + sin θ j)+ sin θ i + cos θ j) r θ 48. ur, θ) =r = u =re r

18 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 49. ux, y) =x xy + y = r r cos θ sin θ = r 50. u = r e r + r θ = x x θ + y r = r sin θ), θ e θ = r sin θ)e r r cos θ e θ y = r sin θ + r cos θ θ x y u = sin θ r θ x r sin θ u x x r + u y x sin θ) θ = r cos θ SECTION ) y + cos θ ) r y + r cos θ u x x y r + u y y r = sin θ ) u + cos θ + r sin θ cos θ x y y u x + rcos θ sin θ) u x y 5. From Exercise 45 a), u r = u x cos θ + u y x sin θ cos θ + u y sin θ ) u θ = u x r sin θ u y x r sin θ cos θ + u y r cos θ r cos θ + x y sin θ. The term in parentheses is r. Now divide the second equation by r and add the two equations. The result follows. 5. ux, y) =x xy + y 4 4, dy dx = x = y y x 4y x = =x y, x y x y x y = x +4y 5. Set u = xe y + ye x x y. Then x = ey + ye x 4xy, y = xey + e x x dy dx = / x / y = ey + ye x 4xy xe y + e x x. 54. ux, y) =x / + y /, = dy dx = x y y / = x) x = x /, y = y / 55. Set u = x cos xy + y cos x. Then = cos xy xy sin xy y sin x, x y = x sin xy + cos x dy dx = / x cos xy xy sin xy y sin x = / y x. sin xy cos x

19 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 806 SECTION Set ux, y, z) =z 4 + x z + y + xy. Then x =xz + y, y =y + x, z =4z +x z z x = x z = xz + y 4z +x z, z y = y z = y + x 4z +x z 57. Set u = cos xyz +ln x + y + z ). Then x = yz sin xyz + x x + y + z, z = xy sin xyz + z x + y + z. y z x = / x / z z y = / y / z = xz sin xyz + y x + y + z, and x yz x + y + z ) sin xyz = z xy x + y + z ) sin xyz, y xz x + y + z ) sin xyz = z xy x + y + z ) sin xyz. 58. a) Use du dt = du dt i + du dt j and apply the chain rule to u,u. b) i) du dt = tex cos yi + e x sin yj)+π e x sin yi + e x cos yj) = te t / cos πti + sin πtj)+πe t / sin πti + cos πtj) ii) ut) =e t / cos πti + e t / sin πtj du / sin πt + te dt = πet t / cos πt)i +πe t / cos πt + te t / sin πt)j 59. s = x x s + y y s, t = x x t + y y t 60. du dt = dx x dt + dy y dt + dz z dt where x = x i + x j + x k, y = y i + y j + y k, z = z i + z j + z k. SECTION 6.4. Set fx, y) =x + xy + y. Then, f =x + y)i +x +y)j, f, ) = i j. normal vector i + j; tangent vector i j tangent line x + y + = 0; normal line x y =0

20 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION Set fx, y) =y x) x, f = y x +)i +y x)j, f, 4) = 6i +4j normal vector i + j; tangent vector i + j tangent line x y + = 0; normal line x +y 6 = 0. Set fx, y) = x + y ) 9 x y ). Then, f =[4xx + y ) 8x]i + [ 4y x + y ) +8y ] j, ) f, = 6 i +0j. normal vector i 5 j; tangent vector 5i + j tangent line x 5y + = 0; normal line 5x + y 6 =0 4. Set fx, y) =x + y, f =x i +y j, f, ) = i +j normal vector i +4j; tangent vector 4i j tangent line x +4y 9 = 0; normal line 4x y =0 5. Set fx, y) =xy x + y +5x. Then, f =y 4x +5)i +xy +)j, f4, ) = 7i +7j. normal vector 7i 7j; tangent vector 7i + 7j tangent line 7x 7y + 6 = 0; normal line 7x +7y 8=0 6. Set fx, y) =x 5 + y 5 x. f =5x 4 6x )i +5y 4 j, f, ) = i +5j normal vector i 5j; tangent vector 5i + j tangent line x 5y + 4 = 0; normal line 5x + y 6=0 7. Set fx, y) =x x y x + y. Then, f =6x xy ) i + x y +)j, f, ) = 5i +5j. normal vector i j; tangent vector i + j tangent line x y = 0; normal line x + y +=0 8. Set fx, y) =x + y +x. f =x +)i +yj, f, )=5i +6j normal vector 5i +6j; tangent vector 6i 5j tangent line 5x +6y = 0; normal line 6x 5y +=0 9. Set fx, y) =x y + a y. By 5.4.4) m = / x / y = xy x + a. At 0,a) the slope is Set fx, y, z) =x + y ) z. f =4xx + y )i +4yx + y )j k, f,, 4) = 8i +8j k Tangent plane: 8x +8y z = 0 Normal: x =+8t, y =+8t, z =4 t

21 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 808 SECTION 6.4. Set fx, y, z) =x + y xyz. Then, f =x yz) i +y xz) j xyk, f,, ) = 6i + 5 j 6k; tangent plane at,, ) : 6x ) + 5 y ) 6 z ) =0, which reduces to 4x 5y +4z =0. Normal: x =+4t, y = 5t, z = +4t. Set fx, y, z) =xy +z. f = y i +xyj +4zk, f,, ) = 4i +4j +8k Tangent plane: x + y +z 7=0 Normal: x =+t, y =+t, z =+t. Set z = gx, y) =axy. Then, g = ayi + axj, g tangent plane at, a, ) : z =x ) + a y a, ) = i + aj. ) a, which reduces to x + ay z =0 Normal: x =+t, y = a + at, z = t 4. Set fx, y, z) = x + y + z. f = x i + y j + z k, f, 4, ) = i + 4 j + k Tangent plane: x + y +z 8=0 Normal: x =+t, y =4+t, z =+t 5. Set z = gx, y) = sin x + sin y + sin x + y). Then, g = [cos x + cos x + y)] i + [cos y + cos x + y)] j, g0, 0) = i +j; tangent plane at 0, 0, 0): z 0=x 0)+y 0), x +y z =0. Normal: x =t, y =t, z = t 6. Set fx, y, z) =x + xy + y 6x + z. f =x + y 6)i +x +y)j k, f4,, 0) = k Tangent plane: z = 0 Normal: x =4, y =, z = 0 + t 7. Set fx, y, z) =b c x a c y a b z. Then, f x 0,y 0,z 0 )=b c x 0 i a c y 0 j a b z 0 k; tangent plane at x 0,y 0,z 0 ): b c x 0 x x 0 ) a c y 0 y y 0 ) a b z 0 z z 0 )=0, which can be rewritten as follows: b c x 0 x a c y 0 y a b z 0 z = b c x 0 a c y 0 a b z 0 = f x 0,y 0,z 0 )=a b c. Normal: x = x 0 +b c x 0 t, y = y 0 a c y 0 t, z = z 0 a b z 0 t

22 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION Set fx, y, z) = sinx cos y) z. f = cos y cosx cos y)i x sin y cosx cos y)j k, f, π, 0) = j k Tangent plane: y + z = π Normal: x =, y = π + t, z = t 9. Set z = gx, y) =xy + a x + b y. g = y a x ) i + x b y ) j, g = 0 = y = a x and x = b y. Thus, y = a b 6 y 4, y = b 6 a, y = b /a, x = b y = a /b and g a /b, b /a ) =ab. The tangent plane is horizontal at a /b, b /a, ab ). 0. z = gx, y) =4x +y x + xy y. g =4 x + y)i ++x y)j g = 0 = 4 x + y =0, +x y =0 = x = 0,y= 8 The tangent plane is horizontal at 0, 8, 8 ).. Set z = gx, y) =xy. Then, g = yi + xj. The tangent plane is horizontal at 0, 0, 0). g = 0 = x = y =0.. z = gx, y) =x + y x y xy. g =x y)i +y x)j g =0 = x y =0=y x =0 = x =,y= The tangent plane is horizontal at,, ).. Set z = gx, y) =x +xy y 5x +y. Then, g =4x +y 5) i +x y +)j. g = 0 = 4x +y 5=0=x y + = x =, y = 6. The tangent plane is horizontal at, 6, ). 4. a) Set fx, y, z) =xy z. f = yi + xj k, f,, ) = i + j k upper unit normal = i j + k) b) Set fx, y, z) = x y z. f = x i + j k, f,, 0) = i + j k y lower unit normal: = i + j k) 5. x x 0 / x)x 0,y 0,z 0 ) = y y 0 / y)x 0,y 0,z 0 ) = z z 0 / z)x 0,y 0,z 0 )

23 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION All the tangent planes pass through the origin. To see this, write the equation of the surface as xfx/y) z =0. The tangent plane at x 0,y 0,z 0 ) has equation [ ) )] [ )] x0 x x 0 ) f x0 x0 x0 + f y y 0 ) y 0 y 0 y 0 y f x0 z z 0 )=0. 0 y 0 The plane passes through the origin: x 0 y 0 f x0 y 0 ) x 0 f x0 y 0 ) + x 0 y 0 f x0 y 0 ) + z 0 = z 0 x 0 f x0 y 0 ) =0. 7. Since the tangent planes meet at right angles, the normals F and G meet at right angles: F x G x + F y G y + F z G z =0. 8. The sum of the intercepts is a. To see this, note that the equation of the tangent plane at x 0,y 0,z 0 ) can be written x x 0 + y y 0 + z z 0 =0. x0 y0 z0 Setting y = z = 0 we have x x 0 x0 = y 0 + z 0. Therefore the x-intercept is given by x = x 0 + x 0 y 0 + z 0 )=x 0 + x 0 a x 0 )= x 0 a. Similarly the y-intercept is y 0 a and the z-intercept is z0 a. The sum of the intercepts is x 0 + y 0 + z 0 ) a = a a = a. 9. The tangent plane at an arbitrary point x 0,y 0,z 0 ) has equation y 0 z 0 x x 0 )+x 0 z 0 y y 0 )+x 0 y 0 z z 0 )=0, which simplifies to x y 0 z 0 x + x 0 z 0 y + x 0 y 0 z =x 0 y 0 z 0 and thus to + y + z =. x 0 y 0 z 0 The volume of the pyramid is V = Bh = [ ] x0 )y 0 ) z 0 )= 9 x 0y 0 z 0 = 9 a. 0. The equation of the tangent plane at x 0,y 0,z 0 ) can be written x 0 / x x 0 )+y 0 / y y 0 )+z 0 / z z 0 )=0 Setting y = z =0, we get the x-intercept x = x 0 + x / 0 y / 0 + z / 0 )=x 0 + x / 0 a / x / 0 ) = x = x / 0 a / Similarly, the y-intercept is y / 0 a / and the z-intercept is z / 0 a /. The sum of the squares of the intercepts is x 0 / + y 0 / + z 0 / )a 4/ = a / a 4/ = a.

24 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION The point,, ) is the tip of r). Since r t) =i t j 4tk, we have r ) = i j 4k. Now set fx, y, z) =x + y +z 5. The function has gradient xi +yj +6zk. At the point,, ), The angle θ between r ) and the gradient gives cos θ = i j 4k) 9 f = i +j 6k). i +j 6k) 7 = 9 7 = Therefore θ =.04 radians. The angle between the curve and the plane is π θ = = 0.58 radians.. The curve passes through the point,, ) at t =, and its tangent vector is r ) = i +4j +k. For the ellipsoid, set fx, y, z) =x +y +z. f =xi +4yj +6zk, f,, ) = 6i +8j +6k, which is parallel to r ).. Set fx, y, z) =x y +x + z. Then, f =xy +)i +x yj +z k, f,, )=6i +8j +k. The plane tangent to fx, y, z) = 6 at,, ) has equation 6x )+8y ) + z )=0, or x +4y +6z =. Next, set gx, y, z) =x + y z. Then, g =6xi +yj k, g,, ) = i +j k. The plane tangent to gx, y, z) =9at,, ) is x )+y ) z )=0, or 6x + y z =. 4. Sphere: fx, y, z) =x + y + z 8x 8y 6z +4, f =x 8)i +y 8)j +z 6)k f,, ) = 4i 6j 4k Ellipsoid: gx, y, z) =x +y +z, g =xi +6yj +4zk g,, )=4i +6j +4k Since their normal vectors are parallel, the surfaces are tangent. 5. A normal vector to the sphere at,, ) is xi +y 4) j +z )k =i j +k. A normal vector to the paraboloid at,, ) is 6xi +4yj k =6i +4j k.

25 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8 SECTION 6.4 Since i j +k) 6i +4j k) =0, the surfaces intersect at right angles. 6. Surface A: Set fx, y, z) =xy az, f = yi + xj azk Surface B: Set gx, y, z) =x + y + z, Surface C: Set hx, y, z) =z +x cz +y ). g =xi +yj +zk h =4xi 4cyj + c)zk Where surface A and surface B intersect, f g =4xy az )=0 Where surface A and surface C intersect, f h = 4 c)xy az )=0 Where surface B and surface C intersect, g h = 4[x cy + c)z ]=0 7. a) x +4y + 6 = 0 since plane p is vertical. b) y = 4 x +6)= 4 [4t )+6]= t z = x +y +=4t ) + t) +=4t 6t +6 rt) =4t )i tj + 4t 6t +6)k c) From part b) the tip of r) is,, ). r ) = 4i j +70j as d to write We take Rs) =i j +k)+s4i j +70k). d) Set gx, y) =x +y +. Then, g =xi +6yj and g, ) = 4i 8j. An equation for the plane tangent to z = gx, y) at,, ) is z = 4x ) 8y + ) which reduces to 4x 8y z =9. e) Substituting t for x in the equations for p and p, we obtain From the first equation and then from the second equation Thus, ) rt) =ti 4 t + )j + 5 t ) k. t +4y + 6 = 0 and 4t 8y z =9. y = 4 t +) z =4t 8 [ 4 t +)] 9 = 5 t. Lines l and l are the same. To see this, consider how l and l are formed; to assure yourself, replace t in ) by4s + to obtain Rs) found in part c).

26 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8. a) normal vector: 5 i j; normal line: x =+ 5 t, y = b) tangent line: x =+ 4 5 c) y t, y =+ 5 t SECTION t x 9. a) normal vector: i +j +4k; normal line: x =+t, y =+t, z =+4t b) tangent plane: x )+y )+4z ) = 0 or x + y +z 7=0 c) 40. a) b) c) f = 0 at ±, 0), - 0 0, ± ) /

27 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 84 SECTION a) b) c) f = 4x 4x ) i 4y 4y ) j; f =0: 4x 4x =0 = x =0, ±; 4y 4y =0 = y =0, ± f = 0 at 0, 0), ±, 0), 0, ±), ±, ±) 4. a) b) c) f = 0 at 0, 0), ± /, ± / ) SECTION 6.5. f = x) i y j = 0 only at, 0). The difference f + h, k) f, 0) = [ + h) + h) k ] = h k 0 for all small h and k; there is a local maximum of at, 0).. f = x) i ++y) j = 0 only at, ). The difference f + h, +k) f, ) = [ + h)+ +k) + h) + +k) +5] 5= h + k does not keep a constant sign for small h and k;, ) is a saddle point.

28 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION f =x + y +)i +x +y) j = 0 only at, ). The difference f +h, +k) f, ) =[ +h) + +h) + k)++k) + +h)+] ) = h + hk + k is nonnegative for all small h and k. To see this, note that h + hk + k h h k + k = h k ) 0; there is a local minimum of at, ). 4. f =x ) i + j is never 0 ; there are no stationary points and no local extreme values. 5. f =x + y 6) i +x +y) j = 0 only at 4, ). f xx =, f xy =, f yy =. At 4, ), D=> 0 and A => 0 so we have a local min; the value is f =x +y +)i +x +6y + 0) j = 0 only at, ). f x =, f y x =, f y =6; D = 6 > 0, A= = local min; the value is f =x 6y) i + y 6x ) j = 0 at, ) and 0, 0). f xx =6x, f xy = 6, f yy =6y, D =6xy 6. At, ), D= 08 > 0 and A => 0 so we have a local min; the value is 8. At 0, 0), D= 6 < 0 so we have a saddle point. 8. f =6x + y +5)i +x y 5) j = 0 at f x =6, f y x =, 5 ), 5. f y = ; D =6 ) < 0; 5/, 5/) is a saddle point. 9. f =x 6y +6)i +y 6x +)j = 0 at 5, 7 ) and, ). f xx =6x, f xy = 6, f yy =, D =x 6. At 5, 7 7 ),D=4> 0 and A =0> 0 so we have a local min; the value is 4. At, ),D= 4 < 0 so we have a saddle point. 0. f =x y ) i + x +4y +5)j = 0 at, ). f x =, the value is 4. f y x =, f y =4; D = 4 ) > 0, A= = local minimum;. f = sin y i + x cos y j = 0 at 0,nπ) for all integral n. f xx =0, f xy = cos y, f yy = x sin y. Since D = cos nπ = < 0, each stationary point is a saddle point.

29 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 86 SECTION 6.5. f = sin y i ++x cos y) j = 0 at, nπ) and, n +)π) for all integral n. f x =0, f = cos y, y x so they are all saddle points f y = x sin y; D =0 x sin y) cos y<0 at the above points. f =xy ++y ) i + x +xy + ) j = 0 at, ) and, ). f xx =y, f xy =x +y, f yy =x, D =4xy 4x + y). At both, ) and, ) we have saddle points since D = 4 < f = y + y ) x i + x y ) j = x + y x x i x + y y xy j is never 0; no stationary points, no local extreme values. 5. f =y x ) i + x 8y ) j = 0 only at, 4). f xx =x, f xy =, f yy =6y, D =x y. At, 4),D=> 0 and A =6> 0 so we have a local min; the value is f =x y) i + x y) j = 0 only at 0, 0) f x =, f y x =, f y = ; D = ) ) < 0; 0, 0) is a saddle point. 7. f =y x ) i + x y ) j = 0 only at, ). f xx =x, f xy =, f yy =y, D =4x y. At, ), D=> 0 and A => 0 so we have a local min; the value is. 8. f =xy y ) i +x xy +)j = 0 at, ),, ) f x =y, f =x y), y x, ) and, ) are saddle points. f y = x; D = 4xy 4x y) < 0 at the above points; 9. f = x y ) x + y +) i + 4xy x + y j = 0 at, 0) and, 0). +) f xx = 4x +xy +x x + y +), f xy = 4y +4y x y x + y +), f yy = 4x +4x xy x + y +). f, 0) = ; f, 0) = point A B C D result, 0) 0 loc. min., 0) 0 loc. max.

30 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 0. f = ln xy + ) i + x j = 0 at, /) x y SECTION f x = x + x, f y x = y, f y = x y At, /), f x =, f y x =, f = 0 and D = 9 < 0 = saddle point. y. f = 4x 4x ) i +y j = 0 at 0, 0),, 0), and, 0). f xx =x 4, f xy =0, f yy =. f±, 0) =. point A B C D result 0, 0) saddle, 0) loc. min., 0) loc. min.. f =xe x y + x + y ) i +ye x y x y ) j = 0 at 0, 0), 0, ), 0, ) A = f y x =xex x +x +xy )+e x y +6x +y ) B = f y x = y x +x +xy )+e yex x y 4xy) C = f y = y yex y yx y )+e x y x 6y ) At 0, 0), AC B = )) = 4 > 0,A>0 local minimum; the value is 0. At 0, ±), AC B =4e ) 4e )= 8e > 0, saddle points. f = cos x sin y i + sin x cos y j = 0 at π, π), π, π), π, π), π, π), π, π). f xx = sin x sin y, f xy = cos x cos y, f yy = sin x sin y point A B C D result π, π) 0 loc. max. π, π) 0 loc. min. π, π) 0 0 saddle π, π) 0 loc. min. π, π) 0 loc. max. f π, π) = f π, π) =; f π, π) = f π, π) = 4. f = sin x cosh y i + cos x sinh y j = 0 at π, 0), 0, 0), π, 0). f xx = cos x cosh y, f xy = sin x sinh y, f yy = cos x cosh y D = cos x cosh y sin x sinh y<0; π, 0), 0, 0), π, 0) are saddle points.

31 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 88 SECTION a) f =x + ky) i +y + kx) j and f0, 0) = 0 independent of the value of k. b) f xx =, f xy = k, f yy =, D =4 k. Thus, D<0 for k > and 0, 0) is a saddle point c) D =4 k > 0 for k <. Since A = f xx => 0, 0, 0) is a local minimum. d) The test is inconclusive when D =4 k = 0 i.e., for k = ±. If k = ±, fx, y) =x ± y) and 0, 0) is a minimum.) 6. a) f =x + ky) i +kx +8y) j = 0 at 0, 0). b) f x =, f y x = k, f y = 8; we want 6 k < 0, or k > 4 c) We want 6 k > 0, or k < 4 d) k = ±4. If k = ±4, fx, y) =x ± y) and 0, 0) is a minimum.) 7. Let P x, y, z) be a point in the plane. We want to find the minimum of fx, y, z) = x + y + z. However, it is sufficient to minimize the square of the distance: F x, y, z) =x + y + z. It is clear that F has a minimum value, but no maximum value. Since P lies in the plane, x y +z =6 which implies y =x +z 6 = x + z 8). Thus, we want to find the minimum value of Now, The gradient is 0 when F x, z) =x +4x + z 8) + z F =[x +8x + z 8)] i + [8x + z 8)+z] k x +8x + z 8) = 0 and 8x + z 8)+z =0 The only solution to this pair of equations is: x = z = 9, from which it follows that y = 6 9. The point in the plane that is closest to the origin is P 9, 6 9, ) 9. The distance from the origin to the plane is: F P )= 6. Check using.6.5): dp, 0) = ) + = We want to minimize x +) +y ) +z 4) on the plane. Since z = 6 x +y, we need to minimize fx, y) =x +) +y ) + 0 x +y) ; f = x 6y +6) i x +0y) j = 0 at 4, 6) Closest point 4, 6, ), distance= 4)) + 6) +4 ) = 9 [ 9. fx, y) =x ) +y ) + z =x ) +y ) + x +y since z = ] x +y f = [x )+x] i + [y ) + 4y] j = 0 = x =,y=. f xx =4> 0, f xy =0, f yy =6, D =4> 0. Thus, f has a local minimum at /, /). The shortest distance from,, 0) to the cone is f, ) = 6 4

32 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION V =8xyz, x + y + z = a = V x, y) =8xy a x y, x > 0, y>0, x + y <a V = 8ya x y ) 8x y a x y i + 8xa x y ) 8xy a x y j = 0 at a/,a/ ) dimensions: a a a, maximum volume: 8 9 a. a) b) c) f =4y 4x ) i +4x 4y ) j = 0 at 0, 0),, ),, ). f xx = x, f xy =4, f yy = y, D = 44x y 6 point A B C D result 0, 0) saddle, ) 4 8 loc. max., ) 4 8 loc. max. f, ) = f, ) =. a) b) c) f =4x 4x) i +yj = 0 at 0, 0),, 0),, 0). f xx =x 4, f x,y =0, f yy =, D =4x 8 point A B C D result 0, 0) saddle, 0) loc. min., 0) loc. min. f, 0) = f, 0) = 0

33 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION 6.5. a) 4 b) f, ) = is a local max.; f has a saddle at 0, 0). 4. a) b) f0, 0) = 0 is a local min.; f0, ) = f0, )=e are local maxima; f has a saddle at ±, 0). 5. a) b) f, 0) = is a local min.; f, 0) = is a loc. max.

34 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION a) b) fπ/,π/) = fπ/, 5π/) = f5π/,π/) = f5π/, 5π/) = are local maxima; π/, π/), π/,π/), π/, π/), π/, 5π/), 5π/, π/) are saddle points of f; f7π/6, 7π/6) = fπ/6, π/6) = are local minima. SECTION 6.6. f =4x 4) i +y ) j = 0 at, ) in D; f, ) = Next we consider the boundary of D. We y 4 parametrize each side of the triangle: C : r t) =t i, t [0, ], C : r t) =i + t j, t [0, 4], C : r t) =t i +tj, t [0, ], Now, x f t) =fr t)) = t ), t [0, ]; critical number: t =, f t) =fr t)) = t ) +, t [0, 4 ]; critical number: t =, f t) =fr t)) = 6t 8t +, t [0, ]; critical number: t =. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 0) = f0, 0) = ; f ) = f, 0)=0; f ) = f 0) = f, 0) = ; f ) = f, )=; f 4) = f ) = f, 4) = 0; f /) = f/, 4/) =. f takes on its absolute maximum of 0 at, 4) and its absolute minimum of at, ).. f = i +j 0; no stationary points in D; Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =t i, t [0, 4], C : r t) =t i + t +6) j, t [0, 4], C : r t) =t j, t [0, 6],

35 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8 SECTION 6.6 and evaluate f: f t) =fr t)) = t, t [0, 4 ]; no critical numbers, f t) =fr t)) = 6t +4, t [0, 4 ]; no critical numbers, f t) =fr t)) = + t, t [0, 6 ]; no critical numbers. Evaluating these functions at the endpoints of their domains, we find that: f 0) = f 0) = f0, 0) = ; f 4) = f 4) = f4, 0) = 0; f 0) = f 6) = f0, 6) = 4; f takes on its absolute maximum of 4 at 0, 6) and its absolute minimum of 0 at 4, 0).. f =x + y 6) i +x +y) j = 0 at 4, ) in D; f4, ) = Next we consider the boundary of D. We parametrize each side of the rectangle: C : r t) = t j, t [0, ] C : r t) =t i j, t [0, 5] C : r t) =5i tj, t [0, ] C 4 : r 4 t) =t i, t [0, 5] Now, f t) =fr t)) = t, t [0, ]; no critical numbers y x f t) =fr t)) = t 9t +8, t [0, 5 ]; critical number: t = 9 f t) =fr t)) = t 5t 6, t [0, ]; critical number: t = 5 f 4 t) =fr 4 t)) = t 6t, t [0, 5 ]; critical number: t = Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 4 0) = f0, 0) = ; f ) = f 0) = f0, ) = 8; f 9/) = f9/, ) = 49 4 ; f 5) = f ) = f5, ) = ; f 5/) = f5, 5/) = 49 4 ; f 0) = f 4 5) = f5, 0) = 6. f 4 ) = f, 0) = 0 f takes on its absolute maximum of 8 at 0, ) and its absolute minimum of at 4, ). 4. f =x +y) i +x +6y) j = 0 at 0, 0) in D; f0, 0) = 0 Next we consider the boundary of D. We parametrize each side of the square: C : r t) =t i j, t [, ], C : r t) =i + t j, t [, ], C : r t) =t i +j, t [, ], C 4 : r 4 t) = i + t j, t [, ],

36 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION and evaluate f: f t) =fr t)) = t 4t +, t [, ]; no critical numbers, f t) =fr t)) = 4 + 4t +t, t [, ]; critical number: t =, f t) =fr t)) = t +4t +, t [, ]; no critical numbers, f 4 t) =fr 4 t)) = 4 4t +t, t [, ]; critical number: t =. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f 4 ) = f, ) = 4; f ) = f ) = f, ) = 8; f /) = f, /) = 8 ; f ) = f ) = f, ) = 4; f ) = f 4 ) = f, ) = 8; f 4 /) = f, /) = 8. f takes on its absolute maximum of 4 at, ) and, ) and its absolute minimum of 0 at 0, 0). Note that x +xy +y =x + y) +y. The results follow immediately from this observation. 5. f =x +y) i +y +x) j = 0 at 0, 0) in D; f0, 0) = Next we consider the boundary of D. We parametrize the circle by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 6 + sin t cos t, t [0, π ] F t) = cos t sin t : F t) =0 = cos t = ± sin t = t = 4 π, 4 π, 5 4 π, 7 4 π Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0)=6; F 4 π) = F 5 4 π) ) = f, F 4 π) = f, ) = F 7 4 π) ) = f, =0 f takes on its absolute maximum of at, ) and at, ) ; minimum of 0 at, ) and at, ). = f, ) = ; 6. f = yi +x )j = 0 at, 0), which is not in the interior of D. The boundary is f takes on its absolute rt) = cos t i + sin t j. frt)) = sin t cos t ) = 9 sin tcos t ), t [0, π]. df dt = 9 cos t cos t ); df dt =0 = cos t =, which yields the points A, 0), B, ),C, ): fa) =0, fb) = 7 4 min, fc) = 7 4 max 7. f =x )i +y ) j = 0 only at, ) in D. As the sum of two squares, fx, y) 0. Thus, f, ) = 0 is a minimum. To examine the behavior of f on the boundary of D, we note that f represents the square of the distance between x, y) and, ). Thus, f is maximal at the point of the boundary furthest from, ). This is the point, ) ; the maximum value of f is f, ) =6+4.

37 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 84 SECTION f =y +)i +x ) j = 0 at, ) which is not in the interior of D. Next we consider the boundary of D. C : r t) =t j + t j, t [, ], C : r t) =t i +4j, t [, ], and evaluate f: We parametrize the boundary by: f t) =fr t)) = t t + t +, t [, ]; no critical numbers, f t) =fr t)) = 5t, t [, ]; no critical numbers. Evaluating these functions at the endpoints of their domains, we find that: f ) = f ) = f, 4) = ; f ) = f ) = f, 4) = 9. f takes on its absolute maximum of 9 at, 4) and its absolute minimum of at, 4). 9. f = x y x + y +) i + 4xy x + y j = 0 at, 0) and, 0) in D; f, 0) =, f, 0) =. +) Next we consider the boundary of D. We parametrize each side of the squre: Now, C : r t) = i + t j, t [, ] C : r t) =t i +j, t [, ] C : r t) =i + t j, t [, ] C 4 : r 4 t) =t i, t [, ] f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f t) =fr t)) = t t, +5 t [, ]; no critical numbers f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f 4 t) =fr 4 t)) = t t, +5 t [, ]; no critical numbers Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f 4 ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9 ; f 4 ) = f ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9. f takes on its absolute maximum of at, 0) and its absolute minimum of at, 0). 0. f = x y x + y +) i + 4xy x + y j = 0 at, 0) in D; f, 0) =. +) Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =t i t j, t [0, ] C : r t) =i + t j, t [, ] C : r t) =t i + t j, t [0, ],

38 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 and evaluate f: SECTION f t) =fr t)) = t t +, t [0, ]; critical number: t =/, f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f t) =fr t)) = t t +, t [0, ]; critical number: t =/. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 0) = f0, 0) = 0; f / ) = f/, / ) = / ; f ) = f ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9 ; f / ) = f/, / ) = /. f takes on its absolute maximum of 0 at 0, 0) and its absolute minimum of at, 0).. f =4 4x) cos y i 4x x ) sin y j = 0 at, 0) in D: f, 0) = Next we consider the boundary of D. We parametrize each side of the rectangle: C : r t) =t j, t [ 4 π, 4 π ] C : r t) =t i 4π j, t [0, ] C : r t) =i + t j, t [ 4 π, 4 π ] C 4 : r 4 t) =t i + 4π j, t [0, ] Now, f t) =fr t)) = 0; f t) =fr t)) = 4t t ), t [0, ]; critical number: t =; f t) =fr t)) = 0; f 4 t) =fr 4 t)) = 4t t ), t [0, ]; critical number: t =; f at the vertices of the rectangle has the value 0; f ) = f 4 ) = f, 4 π) = f, 4 π) =. f takes on its absolute maximum of at, 0) and its absolute minimum of 0 along the lines x =0 and x =.. f =x )i +yj = 0 at, 0) which is not in the interior of D. Boundary: On y = x, f =x ) + x 4 df, dx =x )+4x =0atx = =, ) On y =4x, f =x ) +6x, df dx =x )+x =0atx = 7 = 7, 7 ). So the maximum and minimum occur at one or more of the following points: 0, 0), 4, 6),, ), 7, 7 ). Evaluating f at these points, we find that f, ) = 5 is the absolute minimum of f; f4, 6) = 57 is the absolute maximum of f.

39 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 86 SECTION 6.6. f =x y) i + x y ) j = 0 at, ) in D; f, ) = Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) = i + t j, t [, ], C : r t) =t i + t j, t [, ], C : r t) =t i +j, t [, ], - - x - y and evaluate f: f t) =fr t)) = 8+6t t, t [, ]; critical numbers: t = ±, f t) =fr t)) = t, t [, ]; critical number: t =0, f t) =fr t)) = t 6t 8, t [, ]; critical numbers: t = ±. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f ) = f, ) = ; f ) = f, ) = 8 4 =.66; f ) = f, ) = 8+4 =.4; f ) = f ) = f, ) = 4; f 0) = f0, 0)=0; f ) = f ) = f, ) = ; f ) = f, ) = 8+4 ; f ) = f, ) = 8 4 f takes on its absolute maximum of at, ) and its absolute minimum of 8 4 at, ) and, ). 4. f =x 4)i +yj = 0 at 4, 0) which is not in the interior of D. Next we examine f on the boundary of D: C : r t) =ti +4tj, t [0,, ], Note that Next and C : r t) =ti + t j, t [0, ]. f t) =f r t)) = 7t 8t +6, f t) =f r t)) = t 4) + t 6. f t) =4t 8=0 = t =4/7 and gives x =4/7, y =6/7 f t) =6t 5 +t 8=0 = t = and gives x =, y =. The extreme values of f can be culled from the following list: f0, 0) = 6, f, 8)=68, f 4 7, ) 6 7 = 56 7, f, ) = 0. We see that f, ) = 0 is the absolute minimum and f, 8) = 68 is the absolute maximum.

40 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION xy 5. f = x + y +) i + y x x + y j = 0 at 0, ) and 0, ) in D; +) f0, ) =, f0, ) = Next we consider the boundary of D. We parametrize the circle by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 4 5 sin t, t [0, π ] F t) = 4 5 cos t : F t) =0 = cos t =0 = t = π, π. Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0) = 0; F π) = f0, ) = 4 5 ; F π) = f0, ) = 4 5 f takes on its absolute maximum of at 0, ) and its absolute minimum of at0, ). 6. f =x +)i +8y ) j = 0 at, 4) in D; f, ) 4 = Next we consider the boundary of D. We parametrize the ellipse by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 4 cos t + 4 sin t + cos t sin t =4+cost sin t, t [0, π ] F t) = sin t cos t : F t) =0 = cos t = sin t = t = 4 π, or 7 4 π Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0) = 6; F 4 π) = f, ) / =4 ; F 7 4 π) ) = f, / =4+ f takes on its absolute maximum of 4 + at, / ) ; f takes on its absolute minimum of at, 4). 7. f =x y)i x y) j = 0 at each point of the line segment y = x from 0, 0) to 4, 4). Since fx, x) = 0 and fx, y) 0,f takes on its minimum of 0 at each of these points. Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =tj, t [0, ] C : r t) =ti, t [0, 6] C : r t) =ti + t) j, t [0, 6]

41 P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 88 SECTION 6.6 and observe from fr t)) = t, t [0, ] fr t)) = t, t [0, 6] fr t)) = t ), t [0, 6] that f takes on its maximum of 44 at the point 0, ). 8. f = xi yj) 0 in D. Note that fx, y) is the reciprocal of the distance of x, y) x + y / ) from the origin. The point of D closest to the origin draw a figure) is, ). Therefore f, ) = / is the maximum value of f. The point of D furthest from the origin is, 4). Therefore f, 4) = /5 is the least value taken on by f. 9. Using the hint, we want to find the maximum value of fx, y) =8xy x y xy in the triangular region. The gradient of f is: The gradient is 0 when D = 8y xy y ) i + 8x x xy ) j 8y xy y = 0 and 8x x xy =0 The solution set of this pair of equations is: 0, 0), 8, 0), 0, 8), 6, 6). It is easy to verify that f is a maximum when x = y =6. The three numbers that satisfy x + y + z =8 and maximize the product xyz are: x = 6,y = 6,z = fy, z) =0yz y z yz, f = 0z yz z )j + 60yz y z yz )k = 0 at ) 5, 5 ) 5 other points are not in the interior); f, 5 = On the line y + z =0,fy, z) = 0 so the maximum of xyz occurs at x = y = 5, z =5. fx, y) =xy x y), 0 x, 0 y x. [ dom f) is the triangle with vertices 0, 0),, 0), 0, ).] f =y xy y )i + x xy x ) j = 0 = x = y =0,x=,y=0,x=0,y=,x=y =. Note that [ 0, 0 ] is not an interior point of the domain of f.) f xx = y, f xy = x y, f yy = x. At, ), D = > 0 and A<0 so we have a local max; the value is /7. Since fx, y) = 0 at each point on the boundary of the domain, the local max of /7 is also the absolute max.

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα