ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ"

Transcript

1 ΣΤΟΙΧΕΙΑ ΠΕΡΙΓΡΑΦΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ

2 ΜΕΤΑΒΛΗΤΗ Ποσοτική Ποιοτική ιακριτή ή ασυνεχής (dscrete qutttve vrble (Πεπερασµένο πλήθος πιθανών τιµών Άπειρο αλλά αριθµήσιµο πλήθος πιθανών τιµών Συνεχής (cotuous qutttve vrble ( Άπειρο πλήθος πιθανών τιµών Κλίµακες µέτρησης µεταβλητών Κλίµακα διαστήµατος (tervl scle Ορίζεται διάταξη και απόσταση Η αρχή µέτρησης είναι αυθαίρετη (Η τιµή 0 δεν αποτελεί ένδειξη ανυπαρξίας πχ Θερµοκρασία, βαθµός πτυχίου Ονοµαστική ή κατηγορική κλίµακα (oml scle (ονόµατα, σύµβολα ή κατηγορίες εν ορίζεται διάταξη ούτε απόσταση πχ φύλο : "άνδρας" "γυναίκα" Κλίµακα λόγου (rto scle Ορίζεται διάταξη και απόσταση Η αρχή µέτρησης είναι καθορισµένη Ο λόγος δύο τιµών περιέχει συγκριτική πληροφορία πχ βάρος, ύψος, διάρκεια σπουδών Κλίµακα διάταξης (ordl scle Μπορεί να υπάρχει κάποια διάταξη εν ορίζεται απόσταση ή είναι άνευ σηµασίας πχ "κατάσταση υγείας" : "άριστη", "καλή" "µέτρια" 3, "κακή" 4 Ι ηµόπουλος, ΤΕΙ Καλαµάτας

3 ΠΙΝΑΚΕΣ ΑΠΛΗΣ ΕΙΣΟ ΟΥ ΜΟΡΦΕΣ ΠΑΡΟΥΣΙΑΣΗΣ Ε ΟΜΕΝΩΝ πχ Πίνακας Πληθυσµός της γης κατά περιοχές (970 Περιοχή Πληθυσµός σε εκατοµ Ευρώπη 46 Ασία 056 Αµερική 5 Αφρική 344 Ωκεανία 9 Ρωσία 43 Πηγή: ΟΗΕ, Demogrphc Yerboo, 970 Πίνακες συχνοτήτων Πίνακας που περιέχει τις τάξεις ή τις τιµές µιας ποσοτικής µεταβλητής, ή τις κατηγορίες µιας κατηγορικής ή ποιοτικής µεταβλητής συνοδευόµενες µε τις αντίστοιχες συχνότητες - Περίπτωση διακριτής, κατηγορικής ή ποιοτικής µεταβλητής Συχνότητα µιας τιµής κάποιας διακριτής (ασυνεχούς µεταβλητής λέγεται το πλήθος των τιµών της µεταβλητής που είναι ίσες µε την τιµή αυτή Στην περίπτωση µιας κατηγορικής ή ποιοτικής µεταβλητή την θέση της τιµής έχει η κατηγορία Αν το πλήθος των τιµών της µεταβλητής είναι µικρό ο πίνακας συχνοτήτων έχει την ακόλουθη µορφή : Παράδειγµα Τιµές της µεταβλητής X Συχνότητα των τιµών της X 3 3 Αριθµός υπαλλήλων που απουσίαζαν λόγω ασθένειας από µία επιχείρηση σε ένα διάστηµα 00 εβδοµάδων Πίνακας Πίνακας συχνοτήτων ασθενών στην επιχείρηση Αριθµός ασθενών την εβδοµάδα ( Αριθµός των εβδοµάδων ( µε ( ασθενείς Αν το πλήθος των τιµών της διακριτής µεταβλητής είναι µεγάλος, ο πίνακας συχνοτήτων σχηµατίζεται µε τρόπο παρόµοιο µε αυτόν της συνεχούς µεταβλητής Ι ηµόπουλος, ΤΕΙ Καλαµάτας 3

4 - Περίπτωση συνεχούς µεταβλητής Συχνότητα (σχετική µιας τάξης κάποιας συνεχούς µεταβλητής λέγεται το πλήθος των τιµών της µεταβλητής που ανήκουν στην τάξη αυτή Αν η µεταβλητή παίρνει τιµές στο διάστηµα [α, α ] (α α µπορούµε να χωρίσουµε το διάστηµα αυτό σε κ ίσες τάξεις [α, α Η διαφορά δ (α -α - λέγεται εύρος της τάξης, το α κάτω όριο της τάξης, το α άνω όριο και το α α κεντρική τιµή (ή κεντρικός όρος της τάξης Στην περίπτωση αυτή ο πίνακας συχνοτήτων έχει την ακόλουθη µορφή : Τιµές της µεταβλητής Συχνότητα των τιµών της α 0 - α α α α α 3 3 α - α Η σχετική συχνότητα µιας τιµής ( ή µιας τάξης (α α είναι : ή Σχετική συχνότητα µιας τιµής ( ή µιας τάξης (α α (συχνότητα (απόλυτη της τιµής ( ή της τάξης (α α / (άθροισµα συχνοτήτων (απόλυτων όλων των τιµών ή τάξεων Σηµείωση : Καθορισµός του αριθµού των τάξεων, Κανόνας του Sturges : Αριθµός τάξεων (κ 33log 0 (όπου είναι ο αριθµός των παρατηρήσεων Παράδειγµα Πίνακας τιµών ενοικίασης δωµατίου (δρχ 00 σε 40 διαφορετικά πανδοχεία σε ένα νησί του Αιγαίου Πίνακας Πίνακας συχνοτήτων των τιµών ενοικίασης δωµατίου Τάξεις τιµών ενοικίασης Συχνότητες τάξεων δωµατίου (δρχ Ι ηµόπουλος, ΤΕΙ Καλαµάτας 4

5 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι γραφικές παραστάσεις των δεδοµένων επιτρέπουν να αντιληφθούµε τα κύρια χαρακτηριστικά της κατανοµής τους Ραβδόγραµµα παρουσίασης διακριτών, κατηγορικών ή ποιοτικών µεταβλητών (δεδοµένων - ιακριτή µεταβλητή Στον άξονα των τοποθετούνται οι τιµές της µεταβλητής ( Για κάθε φέρουµε µια κάθετη γραµµή που τέµνει τον άξονα των στο σηµείο και έχει ύψος ίσο µε τη συχνότητα ή τη σχετική συχνότητα του (τιµές του άξονα των y Συχνότητα Αριθµός ασθενούντων εβδοµαδιαίως Σχήµα - Ποιοτική, κατηγορική µεταβλητή Γραφική παράσταση Preto Οι κάθετες γραµµές στον άξονα των τοποθετούνται µε τρόπο ώστε η µεγαλύτερη γραµµή (συχνότητα να είναι πρώτη προς τα αριστερά Ιστόγραµµα και πολύγωνο συχνοτήτων για την παρουσίαση συνεχών µεταβλητών (δεδοµένων Ο κατακόρυφος άξονας αντιπροσωπεύει τις συχνότητες και ο οριζόντιος τις τάξεις του πίνακα συχνοτήτων Όλες οι τάξεις είναι ίσου πλάτους : αφού διαιρέσουµε τον άξονα των σε ίσα τµήµατα (µήκους ίσου µε το πλάτος κάθε τάξης, σχεδιάζονται ορθογώνιο µε βάση κάθε διάστηµα τάξης και ύψος ίσο µε την αντίστοιχη συχνότητα της τάξης Η βάση κάθε ορθογωνίου εκτείνεται από το κάτω όριο µέχρι το άνω όριο της αντίστοιχης τάξης 0 Συχνότητα (αριθµός δωµατίων Πολύγωνο συχνοτήτων Τιµ ή ενοικίασης δωµ ατίου (δρχ 00 Σχήµα Ι ηµόπουλος, ΤΕΙ Καλαµάτας 5

6 Προσοχή : Για να συγκρίνουµε δύο πολύγωνα συχνοτήτων που βασίζονται σε διαφορετικό αριθµό δεδοµένων ( δεν χρησιµοποιούµε τις συχνότητες ( αλλά τις σχετικές συχνότητες ( / ή τα ( / 00 Όλες οι τάξεις δεν είναι ίσου πλάτους : το ύψος του ορθογωνίου πρέπει να είναι ανάλογο της συχνότητας της αντίστοιχης τάξης Παίρνουµε δηλαδή στον άξονα των άνισα διαστήµατα, καθένα πλάτους ίσου µε το πλάτος της αντίστοιχης τάξης, και µε βάση τα άνισα αυτά διαστήµατα κατασκευάζουµε ορθογώνια παραλληλόγραµµα, τα ύψη των οποίων είναι ίσα µε το πηλίκο (συχνότητα τάξης/πλάτος τάξης Καµπύλη συχνοτήτων (requecy curve Αν το (εύρος πλάτος των τάξεων ενός ιστογράµµατος συνεχώς µικραίνει (δ 0 και το πλήθος το συχνοτήτων είναι πολύ µεγάλο, ώστε να µην υπάρχει τάξη µε συχνότητα µηδέν τότε το πολύγωνο συχνοτήτων τείνει να πάρει την µορφή µιας οµαλής καµπύλης που ονοµάζεται καµπύλη συχνοτήτων (requecy curve Αθροιστικές κατανοµές συχνοτήτων ή (α - α F ή (α 0 α ή (α - α 3 ή (α - α ή (α 3 - α ή (α - - α Αθροιστικές κατανοµές συχνοτήτων συνεχών µεταβλητών Τα αθροιστικά διαγράµµατα απεικονίζουν τις αθροιστικές κατανοµές συχνοτήτων και µας επιτρέπουν να υπολογίσουµε πόσες συχνότητες (ή τιµές της µεταβλητής βρίσκονται κάτω (ή πάνω από µια ορισµένη τιµή της εξεταζόµενης µεταβλητής Επιτρέπουν επίσης τη σύγκριση δύο ή περισσότερων κατανοµών Παράδειγµα Ενδιαφερόµαστε να γνωρίζουµε των αριθµό των δωµατίων των οποίων η τιµή ενοικίασης είναι µικρότερη από 7000 δρχ Κατασκευάζουµε των πίνακα συχνοτήτων : Τάξεις τιµών ενοικίασης δωµατίου (δρχ 00 Πίνακας 3 Πίνακας συχνοτήτων των τιµών ενοικίασης δωµατίου Συχνότητες τάξεων Αθροιστικές συχνότητες τάξεων Σχετικές συχνότητες τάξεων Σχετικές αθροιστικές συχνότητες τάξεων Ι ηµόπουλος, ΤΕΙ Καλαµάτας 6

7 ιαγράµµατα αθροιστικών κατανοµών συχνοτήτων συνεχών µεταβλητών Αθροιστικές συχνότητες (F Τιµ ές ενοικίασης δωµ ατίου (δρχ Σχετική αθροιστική συχνότητα ( Τιµ ή ενοικίασης δω µ ατίου (δρ χ 00 Σχήµα 3 - Αθροιστικές κατανοµές συχνοτήτων διακριτών µεταβλητών Πίνακας 4 Πίνακας συχνοτήτων ασθενών στην επιχείρηση Αριθµός των εβδοµάδων ( µε ( ασθενείς Αριθµός ασθενούντων την εβδοµάδα ( Αθροιστικές συχνότητες (F Σχήµα 4 Ι ηµόπουλος, ΤΕΙ Καλαµάτας 7

8 Κυκλικά διαγράµµατα Παραδείγµατα Πίνακας 5 Πίνακας συχνοτήτων των κατηγοριών ενοικιαζόµενων δωµατίων Κατηγορίες ενοικιαζόµενων δωµατίων Συχνότητες τάξεων Σχετικές συχνότητες τάξεων Γωνία κυκλικού διαγράµµατος Φτηνά o Μέτρια o Ακριβά o Πολύ ακριβά o Φτηνά Μέτρια Ακριβά Πολύ ακριβά Σχήµα 5 Πίνακας 6 Πληθυσµός της γης κατά περιοχές (970 Περιοχή Πληθυσµός σε εκατοµ Ευρώπη 46 Ασία 056 Αµερική 5 Αφρική 344 Ωκεανία 9 Ρωσία 43 Πηγή: ΟΗΕ, Demogrphc Yerboo, 970 Αφρική 9% Ωκεανία % Ρωσία 7% Αµερική 4% Ευρώπη 3% Ασία 56% Σχήµα 6 Ι ηµόπουλος, ΤΕΙ Καλαµάτας 8

9 ΠΑΡΑΜΕΤΡΟΙ (ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΘΕΣΗΣ ΚΑΙ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Παρατηρήσεις Παράµετρος είναι ένα αριθµητικό µέγεθος που περιγράφει κάποιο χαρακτηριστικό ενός στατιστικού πληθυσµού Οι παράµετροι συµβολίζονται µε γράµµατα του ελληνικού αλφαβήτου, πχ ο µέσος αριθµητικός συµβολίζεται µε µ και η διακύµανση µε σ Στατιστικό είναι ένα αριθµητικό µέγεθος που περιγράφει κάποιο χαρακτηριστικό των παρατηρήσεων ενός δείγµατος Τα στατιστικά (ή στατιστικά µέτρα συµβολίζονται µε γράµµατα του λατινικού αλφάβητου, πχ ο µέσος αριθµητικός συµβολίζεται µε και η διακύµανση µε s Οι µαθηµατικοί τύποι που ακολουθούν αναφέρονται σε κάποιο πληθυσµό (ή κάποιο δείγµα που το πλήθος των παρατηρήσεων (ή στοιχείων που περιέχει είναι Όπου δεν διευκρινίζεται οι τύποι αναφέρονται σε δείγµατα Οι παράµετροι ή τα στατιστικά µέτρα κεντρικής θέσης και κεντρικής τάσης είναι αντιπροσωπευτική αριθµοί που συνοψίζουν χαρακτηριστικά των δεδοµένων µας Μέσος αριθµητικός (Arthmetc Me Αστάθµητος µέσος αριθµητικός - Μέσος αριθµητικός αταξινόµητων δεδοµένων Παράδειγµα : τα ύψη πέντε ατόµων (σε µέτρα είναι : 67, 75, 84, 75, 79 Ο µέσος αριθµητικός των τιµών της µεταβλητής "ύψος" (δηλ το µέσο ύψος των 5 ατόµων είναι : ( / Μέσος αριθµητικός ταξινοµηµένων δεδοµένων Παράδειγµα : Πίνακας συχνοτήτων ασθενών/εβδοµάδα σε µια επιχείρηση κατά την διάρκεια 00 εβδοµάδων Αριθµός ασθενών/εβδοµάδα ( Αριθµός των εβδοµάδων ( µε ( ασθενείς Ο µέσος αριθµητικός των τιµών της µεταβλητής "αριθµός ασθενών/εβδοµάδα" (δηλ ο µέσος αριθµός ασθενών/εβδοµάδα είναι : ( /00 93 / Προσοχή : στην περίπτωση ενός πίνακα συχνοτήτων µιας συνεχούς µεταβλητής τα είναι οι κεντρικές τιµές (ή κεντρικοί όροι των τάξεων ΣΗΜΕΙΩΣΗ : Την σηµερινή εποχή, της γενικευµένης χρήσης των Η/Υ, σπάνια χρησιµοποιούµε την οµαδοποίηση των τιµών της µεταβλητής για την µέτρηση των διαφόρων παραµέτρων Ι ηµόπουλος, ΤΕΙ Καλαµάτας 9

10 Σταθµικός µέσος αριθµητικός w w w Χρησιµοποιείται όταν θέλουµε να δώσουµε στις διάφορες τιµές διαφορετική σηµασία (βαρύτητα που εκφράζεται από τον συντελεστή στάθµισης (βαρύτητας w Παράδειγµα : Μάθηµα Βαθµός Συντελεστής στάθµισης Μαθηµατικά 8 0 Φυσική 0 7 Χηµεία Έκθεση 8 6 Αρχαία Ελληνικά 9 0 w ( /( / Ο µέσος βαθµός που προκύπτει από τον σταθµικό µέσο αριθµητικό είναι µικρότερος από το µέσο που θα προέκυπτε από τον αστάθµητο µέσο αριθµητικό ( 34 επειδή ο µαθητής είχε µεγαλύτερου βαθµούς στα µαθήµατα που είχαν µικρότερους συντελεστές στάθµισης Μέσος αριθµητικός δύο ή περισσότερων κατανοµών Παράδειγµα : Τµήµα Αριθµός Φοιτητών Μέσος βαθµός στα Μαθηµατικά Τµήµα 40 6 Τµήµα 60 4 Τµήµα ( /( / Προσοχή : Ο µέσος βαθµός δεν είναι (6 4 8/3 6 Ι ΙΟΤΗΤΕΣ ΤΟΥ ΜΕΣΟΥ ΑΡΙΘΜΗΤΙΚΟΥ ( 0 ή ( 0 Αν προσθέσουµε (αφαιρέσουµε σε όλες τις τιµές της µεταβλητής µια σταθερή ποσότητα τότε ο µέσος αριθµητικός αυξάνεται (µειώνεται κατά τη σταθερή αυτή ποσότητα 3 Αν πολλαπλασιάσουµε (διαιρέσουµε όλες τις τιµές της µεταβλητής µε µια σταθερή ποσότητα τότε ο µέσος αριθµητικός πολλαπλασιάζεται (διαιρείται µε τη σταθερή αυτή ποσότητα 4 Αν όλες οι τιµές της µεταβλητής είναι ίσες µε µια σταθερή ποσότητα, τότε ο µέσος αριθµητικός είναι ίσος µε τη σταθερή αυτή ποσότητα Επικρατούσα τιµή (mode Είναι η τιµή της µεταβλητής που έχει την µεγαλύτερη συχνότητα (ή που παρουσιάζεται τις περισσότερες φορές µέσα στα δεδοµένα H Επικρατούσα τιµή συνήθως συµβολίζεται µε Mο και χρησιµοποιείται στις Ι ηµόπουλος, ΤΕΙ Καλαµάτας 0

11 κατηγορικές (ή ονοµαστικές µεταβλητές όπου τα άλλα µέτρα κεντρικής θέσης ή κεντρικής τάσης δεν έχουν νόηµα ιάµεσος (Med Όταν οι τιµές µιας µεταβλητής ταξινοµηθούν από την µικρότερη προς την µεγαλύτερη τότε η ιάµεσος είναι η τιµή εκείνη της µεταβλητής, η οποία κατέχει την κεντρική θέση Η ιάµεσος είναι δηλαδή, η τιµή της µεταβλητής, η οποία χωρίζει το σύνολο των τιµών της µεταβλητής σε δύο ισοπληθή υποσύνολα τιµών : το ένα υποσύνολο περιέχει όλες τις τιµές που είναι µικρότερες από την ιάµεσο (το 50% του συνόλου των τιµών της µεταβλητής και το άλλο υποσύνολο όλες τις τιµές που είναι µεγαλύτερες από την ιάµεσο (το υπόλοιπο 50% του συνόλου των τιµών της µεταβλητής Υπολογισµός της ιαµέσου : Αφού ταξινοµήσουµε τα δεδοµένα σε αύξουσα τάξη βρίσουµε πρώτα την θέση της διαµέσου και µετά την τιµή της - Παράδειγµα αταξινόµητων δεδοµένων : Αριθµός δεδοµένων ( περιττός άρτιος Ύψος 5 ατόµων σε µέτρα Ύψος 4 ατόµων σε µέτρα 75, 67, 84, 75, 79 67, 84, 75, 79 Θέση διαµέσου : (/ 6/3 Θέση ιαµέσου : (/ 5/ Θέση διαµέσου 79 Θέση διαµέσου Τιµή ιαµέσου Μ 75 Τιµή ιαµέσου Μ (7579/ 77 - Παράδειγµα ταξινοµηµένων δεδοµένων Ασυνεχής (ή διακριτή µεταβλητή Πίνακας κατανοµής χειρουργηθέντων σε ένα νοσοκοµείο σε διάστηµα 50 ηµερών Αριθµός χειρουργηθέντων ( Αριθµός ηµερών ( Αθροιστική συχνότητα (F Θέση διαµέσου Θέση ιαµέσου : Θέση της F µε τιµή ίση ή αµέσως µεγαλύτερη από / (50/ 5 Τιµή ιαµέσου η τιµή της µεταβλητής που αντιστοιχεί στην θέση της ιαµέσου : Μ 4 Ι ηµόπουλος, ΤΕΙ Καλαµάτας

12 Συνεχής µεταβλητή Πίνακας κατανοµής τιµών (00 δρχ ενοικίασης δωµατίου σε 40 πανδοχεία ενός νησιού Τάξεις τιµών ενοικίασης δωµατίου Αριθµός δωµατίων ( Αθροισ συχν τάξεων (F Θέση ιαµέσου Θέση ιαµέσου : F µε τιµή ίση ή αµέσως µεγαλύτερη από / (40/ 0 Τιµή ιαµέσου : όπου N 40 F 8 M L δ L : το κάτω όριο της τάξης στην οποία εντοπίζεται η διάµεσος, F - : η αθροιστική συχνότητα της τάξης που προηγείται εκείνης στην οποία εντοπίζεται η διάµεσος, : η συχνότητα της τάξης στην οποία εντοπίζεται η διάµεσος, δ : το πλάτος της τάξης στην οποία εντοπίζεται η διάµεσος Τεταρτηµόρια (Qurtles Γενικά τα Τεταρτηµόρια υποδιαιρούν το σύνολο των τιµών της µεταβλητής σε τέσσερα ισοπληθή υποσύνολα Το πρώτο Τεταρτηµόριο (Q είναι η τιµή της µεταβλητής, η οποία χωρίζει το σύνολο των τιµών της µεταβλητής σε δύο υποσύνολα τιµών : το ένα υποσύνολο περιέχει το 5% του συνόλου των τιµών της µεταβλητής που είναι µικρότερες από το Q και το δεύτερο υποσύνολο το υπόλοιπο 75% των τιµών που είναι µεγαλύτερες από το Q Το τρίτο Τεταρτηµόριο (Q 3 είναι η τιµή της µεταβλητής, η οποία χωρίζει το σύνολο των τιµών της µεταβλητής σε δύο υποσύνολα τιµών : το ένα υποσύνολο περιέχει το 75% του συνόλου των τιµών της µεταβλητής που είναι µικρότερες από το Q 3, ενώ το άλλο υποσύνολο το υπόλοιπο 5% των τιµών που είναι µεγαλύτερες από το Q 3 Υπολογισµός πρώτου (Q και τρίτου (Q 3 Τεταρτηµορίου Αφού ταξινοµήσουµε τα δεδοµένα σε αύξουσα τάξη βρίσουµε πρώτα την θέση των τεταρτηµορίων και µετά την τιµή τους Ι ηµόπουλος, ΤΕΙ Καλαµάτας

13 - Παράδειγµα αταξινόµητων δεδοµένων : Αριθµός δεδοµένων ( Ύψος 7 ατόµων σε µέτρα 75, 63, 67, 84, 75, 79, Θέση (Q Θέση (Q3 84 Θέση του Q : Θέση του Q3 : (/4 8/4 3(/4 4/46 Τιµή του Q 67 Τιµή του Q Παράδειγµα ταξινοµηµένων δεδοµένων Ασυνεχής (ή διακριτή µεταβλητή Πίνακας κατανοµής χειρουργηθέντων σε ένα νοσοκοµείο σε διάστηµα 50 ηµερών Αριθµός χειρουργηθέντων ( Αριθµός ηµερών ( Αθροιστική συχνότητα (F Θέση Q Θέση Q Θέση του Q : F µε τιµή ίση ή αµέσως µεγαλύτερη από /4 (50/4 5 Τιµή του Q 3 Θέση του Q 3 : F µε τιµή ίση ή αµέσως µεγαλύτερη από 3/4 (350/4375 Τιµή του Q 4 Ι ηµόπουλος, ΤΕΙ Καλαµάτας 3

14 Συνεχής µεταβλητή Πίνακας κατανοµής τιµών (00 δρχ ενοικίασης δωµατίου σε 40 πανδοχεία ενός νησιού Τάξεις τιµών ενοικίασης δωµατίου Αριθµός δωµατίων ( Αθροισ συχν τάξεων (F Θέση Q Θέση Q Θέση του Q : F µε τιµή ίση ή αµέσως µεγαλύτερη από /4 (40/4 0 N 40 F Τιµή του Q L δ Θέση του Q 3 : F µε τιµή ίση ή αµέσως µεγαλύτερη από 3/4 (340/430 Τιµή του 3N 0 F Q3 L δ όπου για τα L, F -,, δ ισχύουν οι επεξηγήσεις που δίνονται στην περίπτωση της ιαµέσου ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΑΡΑΜΕΤΡΩΝ (ΣΤΑΤΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΚΕΝΤΡΙΚΗΣ ΘΕΣΗΣ ΚΑΙ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Η τιµή του µέσου αριθµητικού επηρεάζεται ιδιαιτέρως από τις ακραίες τιµές (δηλ τις πολύ χαµηλές ή τις πολύ υψηλές τιµές Η διάµεσος, τα τεταρτηµόρια και η επικρατούσα τιµή δεν επηρεάζονται από τις ακραίες τιµές Όταν στα δεδοµένα υπάρχουν ακραίες τιµές, τότε η διάµεσος είναι η αντιπροσωπευτική παράµετρος που πρέπει να προτιµάται 3 Η τιµή του µέσου αριθµητικού είναι πάντα µεγαλύτερη από την µικρότερη τιµή της µεταβλητής και πάντα µικρότερη από την µεγαλύτερη τιµή της µεταβλητής 4 Ο µέσος αριθµητικός επιδέχεται αλγεβρικούς χειρισµούς, ενώ αυτό δεν είναι δυνατόν για την διάµεσο, τα τεταρτηµόρια και την επικρατούσα τιµή 5 Η επικρατούσα τιµή πρέπει να προτιµάται σαν αντιπροσωπευτική παράµετρος των δεδοµένων όταν µια κατανοµή συχνοτήτων παρουσιάζει έντονη θετική ή αρνητική ασυµµετρία 6 Η επικρατούσα τιµή έχει έννοια για κατανοµές που παρουσιάζουν µόνο µια κορυφή Ι ηµόπουλος, ΤΕΙ Καλαµάτας 4

15 ΠΑΡΑΜΕΤΡΟΙ (ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΙΑΣΠΟΡΑΣ Οι παράµετροι (ή µέτρα αυτοί µετράνε πόσο συγκεντρωµένα (οµοιογενή ή διασκορπισµένα (ανοµοιογενή είναι τα δεδοµένα γύρω από την µέση αριθµητική τιµή Γενικά όσο µεγαλύτερες είναι οι τιµές των µέτρων διασποράς για µια µεταβλητή τόσο περισσότερο διασκορπισµένες (και εποµένως λιγότερο οµοιογενείς είναι οι τιµές της γύρω από τον µέσο αριθµητικό της Εύρος µεταβολής (Rge Το Εύρος µεταβολής (αναφέρεται και σαν εύρος διασποράς είναι η διαφορά ανάµεσα στην µεγαλύτερη και την µικρότερη τιµή της µεταβλητής R m m Ηµιενδοτεταρτηµοριακό εύρος (Sem-terqurtle rge Q Q 3 Q ιακύµανση και τυπική απόκλιση Πληθυσµού ιακύµανση (vrce σ σ - ιακύµανση αταξινόµητων δεδοµένων ( µ - ιακύµανση ταξινοµηµένων δεδοµένων ( µ Τυπική απόκλιση (stdrd devto - Τυπική απόκλιση αταξινόµητων δεδοµένων σ ( µ - Τυπική απόκλιση ταξινοµηµένων δεδοµένων σ ( µ ιακύµανση και τυπική απόκλιση δείγµατος ιακύµανση (vrce - ιακύµανση αταξινόµητων δεδοµένων s ( Ι ηµόπουλος, ΤΕΙ Καλαµάτας 5

16 s - ιακύµανση ταξινοµηµένων δεδοµένων ( Τυπική απόκλιση (stdrd devto - Τυπική απόκλιση αταξινόµητων δεδοµένων s ( - Τυπική απόκλιση ταξινοµηµένων δεδοµένων s ( Προσοχή : στην περίπτωση ενός πίνακα συχνοτήτων µιας ασυνεχούς ή διακριτής ποσοτικής µεταβλητής τα είναι οι τιµές τις µεταβλητής ενώ στην περίπτωση µιας συνεχούς µεταβλητής τα είναι οι κεντρικές τιµές (ή κεντρικοί όροι των τάξεων Ι ΙΟΤΗΤΕΣ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ ΚΑΙ ΤΗΣ ΤΥΠΙΚΗΣ ΑΠΟΚΛΙΣΗΣ Αν όλες οι τιµές της µεταβλητής είναι ίσες µε µια σταθερή ποσότητα, τότε η διακύµανση και η τυπική απόκλιση είναι ίσες µε µηδέν Αν προσθέσουµε (αφαιρέσουµε σε όλες τις τιµές της µεταβλητής µια σταθερή ποσότητα τότε η διακύµανση και η τυπική απόκλιση δεν µεταβάλλονται 3 Αν πολλαπλασιάσουµε (διαιρέσουµε όλες τις τιµές της µεταβλητής µε µια σταθερή ποσότητα τότε η διακύµανση πολλαπλασιάζεται (διαιρείται µε και η τυπική απόκλιση πολλαπλασιάζεται (διαιρείται µε Συντελεστής µεταβλητικότητας (coecet o vrto s CV CV ( 00 % s Χρησιµοποιείται όταν θέλουµε να συγκρίνουµε τις διασπορές δύο διαφορετικών κατανοµών (πχ σύγκριση της διασπορά της κατανοµής των αναστηµάτων µιας οµάδας ατόµων και της διασποράς της κατανοµής των βαρών τους Χρησιµοποιείται ακόµα όταν θέλουµε να συγκρίνουµε τις διασπορές δύο κατανοµές της ίδιας µεταβλητής όταν αυτές εκφράζονται σε διαφορετικές µονάδες Ι ηµόπουλος, ΤΕΙ Καλαµάτας 6

17 ΜΕΤΡΑ ΑΣΥΜΜΕΤΡΙΑΣ ΚΑΙ ΚΥΡΤΩΣΗΣ Το σχήµα µιας καµπύλης (κατανοµής συχνοτήτων µιας µεταβλητής εξαρτάται από τον τρόπο που κατανέµονται οι τιµές τις µεταβλητής στο διάστηµα µεταβολής της Μια κατανοµή λέγεται συµµετρική όταν οι τιµές της "τοποθετούνται" συµµετρικά γύρω από την µέση αριθµητική τιµή Όταν αυτό δεν συµβαίνει η κατανοµή λέγεται ασυµµετρική Η κύρτωση µιας κατανοµής είναι ο βαθµός συγκέντρωσης των τιµών µιας µεταβλητής γύρω από την µέση αριθµητική τους τιµή Η κύρτωση "µετράει" την αιχµηρότητα ή την πλάτυνση µιας κατανοµής συχνοτήτων Μέτρα ασυµµετρίας 3 3 µ β µ όπου ( µ µ είναι η κεντρική ροπή (δειγµατική τάξης κ β >0 κατανοµή µε θετική ασυµµετρία, β <0 κατανοµή µε θετική ασυµµετρία, β 0 συµµετρική κατανοµή S ( Q3 M ( M Q ( Q M ( M Q 3 - S S >0 κατανοµή µε θετική ασυµµετρία, S <0 κατανοµή µε θετική ασυµµετρία, S 0 συµµετρική κατανοµή Μέτρα κύρτωσης µ β µ 4 β >3 κατανοµή λεπτόκυρτη, β <3 κατανοµή πλατύκυρτη, β 3 0 κατανοµή µεσόκυρτη M 0 M M M 0 Κατανοµή µε θετική ασυµµετρία β > 0 Κατανοµή µε αρνητική ασυµµετρία β <0 5% 5% 5% 5% Q M M 0 Q3 Συµµετρική κατανοµή β 0 Μεσόκυρτη β 3 Πλατύκυρτη β < 3 Λεπτόκυρτη β > 3 Σχήµα 7 Μερικές βασικές µορφές κατανοµής συχνοτήτων Ι ηµόπουλος, ΤΕΙ Καλαµάτας 7

18 Προσοχή : Όταν µια κατανοµή είναι συµµετρική η µέση αριθµητική τιµή (, η διάµεσος (Μ και η επικρατούσα τιµή (Μο συµπίπτουν Στην περίπτωση θετικής ασυµµετρίας έχουµε >Μ>Μο, ενώ στην περίπτωση αρνητικής ασυµµετρίας έχουµε <Μ<Μο Σε συµµετρικές κατανοµές συχνοτήτων (σχήµα καµπάνας µε µέση αριθµητική τιµή µ και τυπική απόκλιση σ ισχύει : το διάστηµα (µ-σ,µσ περιέχει το 687% των δεδοµένων το διάστηµα (µ-σ,µσ περιέχει το 9545% των δεδοµένων 3 το διάστηµα (µ-3σ,µ3σ περιέχει το 9973% των δεδοµένων ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΕΤΑΒΛΗΤΗ Έστω µια µεταβλητή µε τιµές,,, Η µεταβλητή z µε τιµές : z ( - /s, z ( - /s,, z ( - /s, όπου, s είναι αντίστοιχα η µέση αριθµητική τιµή και η τυπική απόκλιση της µεταβλητής, ονοµάζεται τυποποιηµένη µεταβλητή (stdrdzed vrble Μια τυποποιηµένη µεταβλητή έχει δύο βασικά χαρακτηριστικά : Η µέση αριθµητική της τιµή είναι ίση µε 0 Η τυπική της απόκλιση και η διακύµανσή της είναι ίσες µε Η τυποποίηση των τιµών χρησιµοποιείται όταν θέλουµε να συγκρίνουµε δύο τιµές µιας µεταβλητής που προέρχονται από σειρές δεδοµένων που διαφέρουν α ως προς την µέση τιµή τους ή την τυπική τους απόκλιση, ή β ως προς τις µονάδες µέτρησης Ι ηµόπουλος, ΤΕΙ Καλαµάτας 8

19 ΑΛΛΗΛΟΕΞΑΡΤΗΣΗ ΥΟ ΜΕΤΑΒΛΗΤΩΝ ύο µεταβλητές και y έχουν συναρτησιακή εξάρτηση, όταν σε κάθε τιµή της µεταβλητής αντιστοιχίζεται µια ορισµένη (και µοναδική τιµή της µεταβλητής y Στην περίπτωση αυτή η εξάρτηση των δύο µεταβλητών µπορεί να παρουσιαστεί µε τη µορφή κάποιας συναρτήσεως που περιγράφει µια σχέση αιτίου-αποτελέσµατος ύο µεταβλητές και y έχουν στοχαστική εξάρτηση, όταν σε κάθε τιµή της µεταβλητής δεν αντιστοιχίζεται µια ορισµένη (και µοναδική τιµή της µεταβλητής y, αλλά µια τιµή ανάµεσα σε ένα πλήθος πιθανών τιµών Πχ µπορούµε να πούµε ότι το βάρος (y µιας οµάδας ατόµων εξαρτάται από το ανάστηµά τους (, αλλά είναι αδύνατον να βρούµε µια και µοναδική σχέση µε τη µορφή συναρτήσεως που να αντιστοιχίζει σε κάθε τιµή της µεταβλητής µια και µοναδική τιµή της µεταβλητής y Η στοχαστική εξάρτηση µεταξύ δύο (ή περισσοτέρων µεταβλητών µπορεί να περιγραφεί από µαθηµατικές σχέσεις που συνδέουν τις συνεξεταζόµενες µεταβλητές και ονοµάζονται διµεταβλητά (ή πολυµεταβλητά στοχαστικά υποδείγµατα (ή πρότυπα ή µοντέλα Με τα διµεταβλητά στοχαστικά υποδείγµατα εξετάζουµε αν υπάρχει σχέση εξάρτησης µιας µεταβλητής y από µια άλλη µεταβλητή Η µεταβλητή,η οποία ενδέχεται να επιδρά και να διαµορφώνει τις τιµές της µεταβλητής y, ονοµάζεται ανεξάρτητη µεταβλητή (depedet vrble, ενώ η µεταβλητή y που επηρεάζεται από την µεταβλητή, ονοµάζεται εξαρτηµένη µεταβλητή (depedet vrble Προσοχή : Ενώ στη περίπτωση συναρτησιακής εξάρτησης µεταξύ δύο µεταβλητών µπορούµε µε ακρίβεια να πούµε ποια είναι η εξαρτηµένη και ποια η ανεξάρτητη µεταβλητή, στη περίπτωση στοχαστικής εξάρτησης µόνο κατά σύµβαση ονοµάζουµε την µία από τις δύο µεταβλητές ανεξάρτητη και την άλλη εξαρτηµένη ύο µέθοδοι µελέτης της αλληλεξάρτησης δύο µεταβλητών Ανάλυση παλινδρόµησης (Regresso lyss : προσδιορισµός µιας γενικής µαθηµατικής σχέσης εξαρτήσεως µεταξύ των συνεξεταζόµενων µεταβλητών, η οποία ονοµάζεται εξίσωση παλινδρόµησης (regresso equto Η εξίσωση παλινδρόµησης µπορεί να είναι γραµµική (γραµµική παλινδρόµηση, ler regresso ή µη γραµµική (µη γραµµική παλινδρόµηση, o ler regresso Συσχέτιση (Correlto : ποσοτικός προσδιορισµός του "βαθµού" και της "φύσης" εξάρτησης µεταξύ των µεταβλητών Ο προσδιορισµός αυτός γίνεται µε την χρησιµοποίηση της στατιστικής παραµέτρου που ονοµάζεται συντελεστής γραµµικής συσχέτισης (ler correlto coecet ή απλά συντελεστής συσχέτισης Ανάλυση παλινδρόµησης (Regresso Το κύριο µέρος της µελέτης της στοχαστικής εξάρτησης δύο µεταβλητών (,y µε την ανάλυση παλινδρόµησης συνοψίζεται στην εύρεση µιας καµπύλης η οποία να διέρχεται κοντά από τα σηµεία του διαγράµµατος διασποράς ιάγραµµα ιασποράς (Sctter plot Απεικονίζει τα ζεύγη τιµών (,y σ'ένα σύστηµα ορθογώνιων αξόνων Σχηµατισµός µιας πρώτης εικόνας για : - το τύπο εξάρτησης της µεταβλητής y από την µεταβλητή (το τύπο του στοχαστικού υποδείγµατος ή την µορφή της καµπύλης* - το βαθµό σχέσης µεταξύ της µεταβλητής y και της µεταβλητής * Το στοχαστικό υπόδειγµα που "συνδέει" τις δύο µεταβλητές µπορεί να είναι γραµµικό (δηλαδή να εκφράζεται από µια γραµµική εξίσωση της µορφής y b ή µη γραµµικό (δηλαδή να εκφράζεται από Ι ηµόπουλος, ΤΕΙ Καλαµάτας 9

20 µια µη γραµµική εξίσωση µε γενική µορφή y (, όπως πχ ybc ή y b ή y/(b, και ονοµάζεται εξίσωση παλινδρόµησης Παράδειγµα: Πίνακας του µέσου ετήσιου κατά κεφαλή εισοδήµατος (00 3 χιλ δρχ και της µέσης ετήσιας κατά κεφαλή κατανάλωσης ενός αγαθού (σε κιλά 0 ατόµων Εισόδηµα Κατανάλωση y Θέλουµε να δούµε µε την ανάλυση διασποράς εάν η κατανάλωση του αγαθού (y "εξαρτάται" από το εισόδηµα ( Από το διάγραµµα διασποράς των (,y (βλέπε Σχήµα 8( βλέπουµε ότι τα περισσότερα σηµεία βρίσκονται κατά µήκος µιας γραµµής Κάνουµε λοιπόν την υπόθεση ότι η σχέση µεταξύ και y είναι γραµµική (y b Για να βρούµε την εξίσωση της ευθείας που διέρχεται το πλησιέστερο δυνατόν από τα σηµεία του διαγράµµατος διασποράς χρησιµοποιούµε συνήθως την µέθοδο των ελαχίστων τετραγώνων Υπάρχουν διάφοροι µέθοδοι προσδιορισµού των συντελεστών της εξίσωσης παλινδρόµησης η επικρατέστερη όµως είναι η µέθοδος των ελαχίστων τετραγώνων Μέθοδος των ελαχίστων τετραγώνων Προσδιορισµός των συντελεστών παλινδρόµησης y ˆ Ελαχιστοποίηση του ( y ( b y Γραµµική παλινδρόµηση ( ( y Μη Γραµµική παλινδρόµηση ( y ( 0, ( y ( b 0 Εξισώσεις ελαχίστων τετραγώνων Ι ηµόπουλος, ΤΕΙ Καλαµάτας 0

21 Γραµµική παλινδρόµηση ΥΠΟΘΕΣΗ y b e e y -ŷ, b : Συντελεστές παλινδρόµησης : Τιµή του ŷ όταν 0 b : Γωνιακός συντελεστής ή συντελεστής κατεύθυνσης Απόλυτη µεταβολή της εξαρτηµένης µεταβλητής y όταν η ανεξάρτητη µεταβλητή µεταβληθεί κατά µία µονάδα b > 0 Θετική εξάρτηση της y και της (όταν το µεγαλώνει το y µεγαλώνει επίσης b < 0 Αρνητική εξάρτηση της y και της (όταν το µεγαλώνει το y µικραίνει 9 ( 9 (b Κατανάλ ωση (κιλ ά Κατανάλ ωση (κιλ ά ŷ r Εισ ό δ η µα (00^3 δρχ Εισ ό δ η µα (00^3 δρχ Σχήµα 8 Κάποιοι τρόποι ελέγχου της εγκυρότητας (ή ποιότητας της παλινδρόµησης ( y yˆ Μέσο τετραγωνικό σφάλµα s (Me Squre error - Τυπικό σφάλµα εκτίµησης s (Stdrd error o the estmte Η επιλεχθείσα εξίσωση παλινδρόµησης είναι τόσο καλύτερη όσο µικρότερο (πιο κοντά στο µηδέν είναι το s Ι ηµόπουλος, ΤΕΙ Καλαµάτας

22 Συντελεστή ς προσδιορισµού r yˆ y y - y (Coecet o Determto 0 r δείχνει το ποσοστό των µεταβολών της εξαρτηµένης µεταβλητής (y που ερµηνεύεται από τις µεταβολές της ανεξάρτητης µεταβλητής ( Όσο r είναι πιο κοντά στο τόσο η εξάρτηση του y από το είναι δυνατή Όταν r είναι ίσο µε 0 δεν υπάρχει καµιά εξάρτηση του y από το Επιπλέον : Οι ποσότητες e y -ŷ (δηλαδή τα σφάλµατα που προκύπτουν από την επιλογή µιας συγκεκριµένης εξίσωσης πρέπει : α να είναι τυχαία ακολουθούν την Κανονική Κατανοµή µε µέσο αριθµητικό 0 και διασπορά σ, β να είναι ανεξάρτητες µεταξύ τους, γ να είναι ανεξάρτητες από τις τιµές των (βλέπε Σχήµα 9(, δ να είναι ανεξάρτητες από τις τιµές των ŷ (βλέπε Σχήµα 9(b 05 ( 05 (b 0 0 e e Σχήµα ŷ ΣΥΝΤΕΛΕΣΤΗΣ ΓΡΑΜΜΙΚΗΣ ΣΥΣΧΕΤΙΣΗΣ Μετρά την ένταση (βαθµό γραµµικής σχέσης µεταξύ δύο τυχαίων µεταβλητών ( ( y y Συντελεστής συσχέτισης r (Correlto coecet ( ( y y Ι ηµόπουλος, ΤΕΙ Καλαµάτας

23 - r r > 0 Θετική συσχέτιση r Τέλεια θετική συσχέτιση Μεγαλώνοντας οι τιµές της µιας µεταβλητής µεγαλώνουν και οι τιµές της άλλης r<0 Αρνητική συσχέτιση r - Τέλεια αρνητική συσχέτιση Μεγαλώνοντας οι τιµές της µιας µεταβλητής µικραίνουν οι τιµές της άλλης r 0 Έλλειψη γραµµικής συσχέτισης Οι τιµές της µιας µεταβλητής µεταβάλλονται γραµµικά ανεξάρτητα των τιµών της άλλης r έχει το ίδιο πρόσηµο µε το συντελεστή γραµµική παλινδρόµησης b y y y r 0809 r r 008 ΠΡΟΣΟΧΗ Έλλειψη γραµµικής συσχέτισης (r 0µεταξύ δύο µεταβλητών και y δεν σηµαίνει και ανυπαρξία εξάρτησης µεταξύ τους Οι δύο µεταβλητές µπορεί να έχουν µη γραµµική εξάρτηση Παράδειγµα : y Ο συντελεστής συσχέτισης µεταξύ y και είναι 009 Ο συντελεστής προσδιορισµού που προκύπτει αν χρησιµοποιήσουµε σαν εξίσωση παλινδρόµησης : ŷ 038-0, είναι 0964 Ι ηµόπουλος, ΤΕΙ Καλαµάτας 3

24 Ι ηµόπουλος, ΤΕΙ Καλαµάτας 4 ΥΠΕΝΘΥΜΙΣΕΙΣ ΧΡΗΣΙΜΩΝ ΣΥΜΒΟΛΙΣΜΩΝ Άθροισµα από µέχρι των : Άθροισµα φορές της σταθεράς α : Άθροισµα από µέχρι των : Άθροισµα από µέχρι των λ : λ λ λ λ ( λ Άθροισµα από µέχρι των λ( - : ( ( ( ( λ λ λ λ Άθροισµα από µέχρι των : Γινόµενο από µέχρι των : Πολλαπλασιασµός φορές της σταθεράς α : Γινόµενο από µέχρι των : Γινόµενο από µέχρι των λ : λ λ λ λ λ Γινόµενο από µέχρι των λ(-α : ( ( ( ( λ λ λ λ ( ( ( λ Γινόµενο από µέχρι των :

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων ) Περιγραφή ιακριτών Ποσοτικών εδοµένων Για να περιγράψουµε διακριτά ποσοτικά δεδοµένα µε λίγες τιµές ( σε περίπτωση πολλών τιµών τα θεωρούµε ως συνεχή) κάνουµε: Πίνακας συχνοτήτων Ραβδόγραµµα, Κυκλικό

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ-3 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 003- ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΘΜΗΤΙΚΗ ΠΕΡΙΓΡΑΦΗ Ε ΟΜΕΝΩΝ ΑΤΑΞΙΝΟΜΗΤΑ

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ .Φουσκάκης- Περιγραφική Στατιστική ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Οι µεταβλητές µιας στατιστικής έρευνας αποτελούνται συνήθως από ένα µεγάλο πλήθος στοιχείων που αφορούν τον πληθυσµό που µας ενδιαφέρει. Για να

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ Εισαγωγή Στο κεφάλαιο 4 υπολογίζονται τα κυριότερα στατιστικά µέτρα θέσης και µεταβλητότητας, κατασκευάζονται ιστογράµµατα συχνοτήτων και θηκογράµµατα για

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 1. ο παρακάτω διάγραµµα παρουσιάζει την κατανοµή των οικογενειών ενός χωριού σε σχέση µε τον αριθµό των παιδιών τους. 40 35 Αριθµός οικογενειών 30 25 20 15 10 5 0 0 1

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Το σύνολο Α, που λέγεται πεδίο ορισµού της συνάρτησης,

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Το σύνολο Α, που λέγεται πεδίο ορισµού της συνάρτησης, ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ - ΘΕΩΡΙΑ Γιάννης Ζαμπέλης ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Τι ονοµάζεται συνάρτηση Συνάρτηση (functon) είναι µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων.

Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Στατιστική Ι Ενότητα: MέθοδοιΠεριγραφικής Στατιστικής Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Χ. Εμμανουηλίδης, cemma@eco.auth.gr Θεματολογία Παρουσίαση δεδομένων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ. Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΩΚΕΑΝΟΓΡΑΦΙΑ. Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο Κοκκομετρική ανάλυση

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Φεβρουάριος 2010 Περιγραφική Στατιστική 1. εδοµένα Θεωρούµε το ακόλουθο σύνολο δεδοµένων (data set): NUM1

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 04 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 015-016 1 . Διερευνητική Ανάλυση Μέτρα

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται .1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών, στη Στατιστική στο τέλος του β τριµήνου. Πήραµε τις επόµενες βαθµολογίες: 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Βασίλης Γατσινάρης ωρεάν υποστηρικτικό υλικό 1 Περί συναρτήσεων Έστω η ορισµένη στο διάστηµα D συνάρτηση f Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D Α Να αναφέρετε

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα