DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA. Paul C. Krause Purdue University School of Electrical and Computer Engineering

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA. Paul C. Krause Purdue University School of Electrical and Computer Engineering"

Transcript

1 DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA Paul C. Krause Purdue University School of Electrical and Computer Engineering

2 Naponska jednačina: u u = i + t = R i + ϕ t ( ϕ ) abcs s abcs abcs ( ) abcr r abcr abcr L L ϕ abcs s sri ( ) T abcs ϕ = abcr Lsr Lr iabcr U prethodnim jednačinama koristi se: f = f f f [ ] T abc? a? b? c?

3 Matrice induktivnosti: λ + M,5M,5M L =,5M λ + M,5M,5M,5M λ + M Ako uvedemo smenu: L s s s s s s s s s s s s s λ + M,5 M,5 M =,5M λ + M,5M 5,5 M 5,5 M λ + M r r r r r r r r r r r r r π α = 3 Matrica međusobne induktivnosti statora i rotora: L sr cosθ cos θ + α cos θ α = Lsr cos( θ α) cosθ cos( θ + α) cos( θ + α) cos( θ α) cosθ ( ) ( )

4 Svođenje rotorskih veličina na stator i = N N i u = N N u ϕ = ϕ ( / ) ( / ) ( N / N ) abcr r s abcr abcr s r abcr abcr s r abcr Na osnovu analogije sa magnetno spregnutim kolima ( / ) M = N N L s s r sr Može se napisati: θ ( θ + α ) ( θ α ) ( θ α) θ ( θ α) ( θ + α) ( θ α) θ cos cos cos Ns L sr = Lsr = M s cos cos cos + N r cos cos cos

5 Ponovo na osnovu analogije sa magnetno spregnutim kolima, može se napisati: M ( N N ) = M r r s s Ako se uzme: dobija se: gde je: ( N N ) L = L r s r r λr + M s,5ms,5ms L =,5Ms λr + Ms,5M r s,5m s,5ms λr + Ms ( N N ) λ = λ r s r r

6 Posle svođenja "rotora na stator" jednačine za fluks i naponske jednačina su: ϕ L L i abcs s sr abcs = ϕ abcr ( sr ) T L L r iabcr u s s L abcs R + pl p sr i ( ) T abcs u = abcr p sr r + p riabcr L R L Pri čemu važi relacija: ( N N ) R = R r s r r p = - operator diferenciranja t

7 JEDNAČINA MOMENTA Na osnovu relacija koje važe za elektro-mehaničku konverziju energije može se napisati izraz za električnu energiju koja se pretvara u mehaničku: T T T W = ( i ) ( L λ I) i + ( i ) L i + ( i ) ( L λ I) i e abcs s s abcs abcs sr abcr abcr r r abcr Mehanička snaga motora može se izraziti preko elektromagnetnog momenta i brzine obrtanja: W t θ m - stvarni mehanički položaj rotora. θ - položaj rotora izražen u el.rad/s. = m t θ e e m θ = P θ m W e = m e P θ t t

8 Elektromagnetni moment motora je: m P P i i θ θ W T P e P ( i ) e = = abcs [ L sr ] iabcr m e ( ) ( ) ( ) i as iar i br i sin cr + ibs i ar + ibr i cr + ics i ar i br + i cr θ + = P Ms 3 + ias ( ibr icr) + ibs ( icr iar) + ics ( iar ibr ) cosθ Dobijeni izraz je veoma komplikovan i praktično neupotrebljiv.

9 TRASFORMACIJA KOORDINATA U cilju uprošćenja analize uvodi se novi REFERENTNI q-d- -sistem koji može imati proizvoljnu brzinu. Prelazak iz realnog abc - sistema u qd - sistem vrši se pomoću matrice transformacije K. Izborom brzine referentnog sistema postižu se jednostavnije j analize prelaznih procesa.

10 Izbor referentnog sistema Stacionarni referentni sistem ω obezbeđuje rasprezanje namotaja rs = mašine, čime se pojednostavljuje matrica induktivnosti. Sinhrono rotirajući referentni sistem ωrs = pored rasprezanja koordinata, oslobađa matricu induktivnosti zavisnosti od ugla rotora, odnosno vremena Referentni sistem vezan za rotor pruža pogodnosti analize mašina sa dvostranim napajanjem. ωrs U slučaju simetričnog sistema, nulta komponenta je nula, u svim referentnim sistemima. = ω s ω

11 Transformacije statorskih veličina rs fqds = Ks fabcs fabcs = fas fbs fcs fqds = fqs fds fs [ ] T T

12 K Matrice transformacije ( ) ( + ) ( ) ( ) cosθrs cos θrs α cos θrs α = sin θ sin θ α sin θ + α 3,5,5,5 s rs rs rs K cosθ sinθ cos( θ α) sin ( θ α) cos( θrs + α) sin ( θrs + α) rs rs s = rs rs t ( ) θ () t = ω ξ dξ + θ () rs rs rs

13 Transformacije rotorskih veličina Trenutni položaj rotora u odnosu na referentni sistem. rsr rs θ = θ θ rsr rs fqd r = K r fabcr fabcr = far fbr fcr fqd r = fqr fdr f r [ ] T T

14 K Matrice transformacije ( ) ( + ) ( ) ( ) cosθrsr cos θrsr α cos θrsr α = sinθ sin θ α sin θ + α 3,5,5,5 r rsr rsr rsr K t cosθ sinθ = cos( θ α) sin ( θ α) cos( θrsr + α) sin ( θrsr + α) rsr rsr r rsr rsr ( ) ( ) θ () t ω ξ dξ θ () θ() t ω ξ dξ θ() = + = + rs rs rs t

15 Korišćene oznake α = π 3 θ rs - trenutni položaj referentnog sistema, θ - trenutni položaj rotora motora, ω rs - brzina referentnog sistema, ω - brzina motora, ω s - sinhrona brzina.

16 Stacionarni koordinatni sistem Kada je ω rs =, θ rs () = i K s t ( ) ππ α =, 3 θrs = dξ + θrs =, π π cos cos cos π π = sin sin sin ,5,5,5 Edith Clarke

17 Stacionarni koordinatni sistem Matrice transformacije statorskih veličina K s,5,5 3 3 = 3 5,5,5 5,5 5 K =,5 3,5 3 s

18 Stacionarni koordinatni sistem Matrice transformacije rotorskih veličina ( θ) ( θ α) ( θ + α) ( ) ( ) ( ) cos cos cos r sin sin sin 3 θ θ α θ α K = +,5,5,5 ( θ) ( θ) ( ) ( ) ( θ + α) ( θ + α) cos sin Kr = cos θ α sin θ α cos sin

19 Šta se postiže ovom transformacijom? Statorske veličine Primer simetričnog trofaznog sistema koji ima konstantnu učestanost: posle transformacije se dobija: ( ) ( ω θ ) fas = fmax s cos s t+ s ( ) ( ) ( ω α θ ) f = f cos t + bs max s s s ( ω α θ ) f = f cos t + + cs max s s s ( ) ( ω θ ) f = f cos t+ qs max s s s ( ) ( ω θ ) f ds = f max s sin s t + s f = f + f f = = const. s max s qs ds Umesto trofaznog naizmeničnog sistema dobijamo dvofazni sistem.

20 Statorske veličine ω rs = rs f as () t Na graficima ω s = f bs () t f cs () t 5 t..5 f s () t.5. 5 t f qs () t f ds () t 5 t

21 Šta se postiže ovom transformacijom? Rotorske veličine Kada je ω rs =, θ rs () = i θ rsr = θ = θ za simetričan rotorski sistem: posle transformacije dobija se: ( ω ω) θ ( ) ( ) + ( ) ( ) ( ) far = fmax r cos s t+ r fbr = fmax r cos ωs ω t+ θr α fcr = fmax r cos ωs ω t+ θr + α ( ) ( ω θ ) f qr = f max r cos s t + r ( ) ( ω θ ) fdr = fmax r sin s t+ r f = r

22 Rotorske veličine ω rs = rs f ar () t f br () t f cr () t 5..5 f r () t.5. 5 f qr () t f dr () t 5 t t t

23 Sinhrono rotirajući koordinatni sistem π Kada je ω rs = ω s, θ rs () =, θ s () = i α =, 3 t rs s s s ( ) θ = θ = ω ( ξ) dξ + θ K π π cosθs cosθs cosθs sin sin π π = θ θ sin θ ,5,5,5 s s s s Robert H. Park 9-994

24 Sinhrono rotirajući koordinatni sistem Matrice transformacije statorskih veličina K ( ) ( + ) ( ) ( ) cosθs cos θs α cos θs α = sin θ sin θ α sin θ + α 3,5,5,5 s s s s cosθs sinθs Ks = cos( θs α) sin ( θs α) cos( θs + α) sin ( θs + α)

25 K Sinhrono rotirajući koordinatni sistem Matrice transformacije rotorskih veličina ( θs θ ) ( θs θ α ) ( θs θ + α ) ( θ θ) ( θ θ α) ( θ θ α) cos cos cos = sin sin sin 3 + 5,5,5 5,5 5 r s s s ( θ s θ) ( θ s θ) ( θ θ α) ( θ θ α) ( θ θ + α ) ( θ θ + α ) cos sin Kr = cos s sin s cos s sin s

26 Šta se postiže ovom transformacijom? Statorske veličine Primer simetričnog trofaznog sistema koji ima konstantnu učestanost: posle transformacije se dobija: ( ) ( ω θ ) fas = fmax s cos s t+ s ( ) ( ) ( ) f = f cos ω t α + θ bs max s s s ( ω α θ ) f = f cos t+ + cs max s s s ( ) f = f cos θ ( ) f qs max s s ds max s s ( ) ( θ ) = f sin f = f + f f s = = const. Umesto trofaznog naizmeničnog sistema dobijamo dvofazni sistem. Transformisane veličine se ne menjaju u vremenu. max s qs ds

27 Statorske veličine ω rs = ω s f as () t Na graficima ω s = f bs () t f cs () t 5..5 f s () t.5. 5 t t.5 f qs () t f ds () t t

28 Šta se postiže ovom transformacijom? Rotorske veličine Kada je ω rs =ω s =const, θ s () = i θ rsr = θ r = θ s θ, za simetričan rotorski sistem: ( ω ω) θ ( ) ( ) + ( ) ( ) ( ) far = fmax r cos s t+ r fbr = fmax r cos ωs ω t+ θr α fcr = fmax r cos ωs ω t+ θr + α posle transformacije dobija se: ( ) ( ) f = f max cosθ qr r r fdr = fmax r sinθr f = r

29 Rotorske veličine ω rs = ω s f ar () t f br () t f cr () t 5..5 f r () t.5. 5 t t.5 f qr () t f dr () t t

30 TRANSFORMACIJE NAPONSKIH JEDNAČINA ASINHRONOG MOTORA Prvi karakterističan slučaj: u abc = R i abc Množeći ovu jednačinu sa desne strane sa K dobija se: u = K u = K R i = K R K i ( ) qd abc abc qd Kod simetričnih sistema je: ( ) R ( ) K R K = K I K = R I = R Prema tome dobija se: qd qd u = R i

31 Drugi karakterističan slučaj: d dt ϕ u abc = abc Posle množenja sa K dobija se: u ako je θ rs = ω rs. t, sledi: d u ( ) = K = K K ϕ = dt d d = K ( K ) ϕqd + K ( K) ϕ dt dt qd abc qd qd d dt sinθrs cosθrs ( K) = ω sin ( θ α) cos( θ α) rs rs rs sin ( θrs + α) cos( θrs + α)

32 d K ( K) = ωrs ωrs dt = W Konačno je: u ϕd ω ϕ d = + ϕ dt qd rs q qd Da bi bilo jasnije, j prethodna jednačina se može razbiti na: d uq = ωrs ϕ d + ϕq dt d u d = ω rs ϕ q + ϕ d dt d u = ϕ dt

33 Izvedene relacije primenjene na naponske jednačine asinhronog motora: u qd s R i qd s s = u + qd r Rr iqd r W ωrs ϕqds d ϕqd s + + W ( ωrs ω) ϕqd r dt ϕqd r - kvadratna (3 3) 3) nula matrica.

34 TRANSFORMACIJE JEDNAČINA FLUKSA ASINHRONOG MOTORA ϕ qd s Ks Ls ( Ks) Ks L sr ( Kr) iqd s = ϕqd r ( ) ( ) ( ) r sr s r r r i K L K K L K qd r λ ( ) s + M Ks Ls Κs = λs + M λs + M 3 M = M s

35 λ λ ( ) r + M Kr L r K r = λr + M λ r + M M ( ) Ks L sr Kr = Kr L sr ( Ks) = M U slučaju simetričnog sistema, nulta komponenta je nula u svim referentnim sistemima.

36 U tom slučaju naponska jednačina asinhronog motora je: Veza između flukseva i struja je: uqs Rs iqs u ds R s i ds = + uqr Rr i qr u R dr r idr p ω ϕ rs qs ωrs p ϕds + p ( ωrs ω ) ϕ qr ( ωrs ω) p ϕdr ϕqs λ M M i s + qs ϕ ds λs M M i + ds = ϕ M λ + M i qr r qr ϕ M λ dr r M + i dr

37 U nekim slučajevima je pogodno uvesti sledeće smene: ψ = ω b ϕ X? = ω b L? X m = ω b M - " fluks po sekundi " [ Wbs - = V]; - reaktansa [Ω]; - reaktansa magnećenja [Ω]; p' = p/ω b = d()/d(ω b t) - ovaj novi operator nema dimenziju.

38 Sada je naponska jednačina: ω p rs ω b uqs Rs iqs ωrs ψ qs p u R i ω ds ψ s ds b ds = + uqr Rr iqr ω p rs ωψ qr u R i ω dr r dr b ψ dr ω rs ω p ωb a izrazi za flukseve: ψ qs Xs Xm iqs ψ ds Xs X m ids = ψ qr Xm Xr i qr ψ Xm X dr r i dr X = X + X X = X + X Gde je: s λs m r λr m

39 Ekvivalentna šema asinhronog motora po q osi Rs ω rs ϕ ds λs ( ωrs ω) ϕ dr λ R r r iqs i qr uqs u qr

40 Ekvivalentna šema asinhronog motora po d osi Rs ω rs ϕ qs λs ( ωrs ω) ϕ qr λ R r r ids i dr uds u dr Ob titi ž j Obratiti pažnju na smerove u generatorima elektromotorne sile.

41 JEDNAČINE MOMENTA Ako se pođe od jednačine za moment (strana 8): m P i i θ T e = ( K s ) qds [ L sr ] ( K r ) qd r 3P P me = M iqs idr ids iqr 3 P m ( ) e = ϕqr idr ϕdr iqr 3 P m ( ) e = iqs ϕds ids ϕqs 3 P M m = i ϕ i ϕ L mogu se dobiti sledeći izrazi: ( ) 3P P me is ϕs = ( ) ( ) e qs dr ds qr r 3 P m ( ) e ψqr idr ψdr iqr = itd. ω b

42 NORMALIZACIJA Potrebno je na već poznate bazne vrednosti dodati: b U = U = U qdb s max fazno b I I I qdb = s max fazno = b ( 3/) P = U I Uqdb ψ = b qdb qdb jer imaju istu dimenziju. Važno je napomenuti da je sada i vreme normalizovano τ = ω b t odnosno p = ω = τ Sve ostalo je kao što je već pokazano. ( ) b t

43 Posle normalizacije naponska jednačina se može napisati u obliku pogodnom za modelovanje Ukoliko se izabere ω pogodnom za modelovanje. Ukoliko se izabere ω rs = ω s, dobijamo: N: ψ qs u qs R ψ s iqs ωs qs ψds u ds Rs i ds ωs ψds p = + ψ u R i ω ψ qr qr r qr r qr R ψ r r dr u dr i ω dr ψdr Jednačina za flukseve može se napisati i u obliku: i qs X r X m ψ qs i ds Xr X m ψ ds = iqr D Xm Xs ψ qr i Xm X dr s ψ dr gde je: s r m D = X X X

44 Elektromagnetni moment motora: ( ) m = X i i i i e m qs dr ds qr Na sličan način se normalizuju i ostali izrazi za moment. Normalizovana Njutnova jednačina je: gde je: T ω p ω = m m m b e m T m J ω = P M = b [ s ] b Mora se zapaziti da je u jednačini brzina obrtanja ω [rad.el./s], a ne mehanička ugaona brzina ω m [rad.meh./s].

45 Stacionarno a o stanje Posmatrajmo prethodni sistem jednačina u stacionarnom stanju p' =. Definišimo fazore promenljivih u abc sistemu preko odgovarajućih promenljivih po iz qd sistema. sste + F d Im d U skladu sa gornjom slikom može se napisati: F = F j F U skladu sa gornjom slikom može se napisati: a q d F q F a q Re +

46 Naponske jednačine u stacionarnom stanju su: U = R I + ω X I + ω X I N: qs s qs s s ds s m dr Napon u a fazi statora: U = R I ω X I ω X I ds s ds s s qs s m qr ( ω ω) ( ω ω) ( ω ω) ( ω ω) U = R I + X I + X I qr r qr s m ds s r dr U = R I X I X I dr r dr s m qs s r qr U = U j U = R + j Xλ I + j X I + I ( ) ( ω ) ω ( ) as qs ds s s s as s m as ar Napon u a fazi rotora: U ( ) ar = Uqr judr = = R + j X I + j X I + I ( ω ω) ( ω ω) ( ) r s λr ar s m as ar

47 s ω ω ω ω = = s klizanje Uvedimo smenu: s s r, Ekvivalentna šema je: N: Uar Rr = + j ω X I + j ω X I + I s s s ( ) s λ r ar s m as ar I = I j I ( ) s qs ds R jωsx λ s j sx λ r ω Rr s U as I as j ω X s m I ar U ar

48 Prelazni procesi Start motora u praznom hodu, promene opterećenja Vremenski dijagrami momenta i brzine Vremenski dijagrami promene faznih struja statora i rotora Mehanička karakteristika (m e (ω)) Vremenski dijagram promene qd-komponenti statorskih i rotorskih struja i flukseva Dijagrami prostornih vektora statorske i rotorske struje, statorskog i rotorskog fluksa

49 . Vremenski dijagram brzine i momenta [r.j.] Brzina r.j.] Moment [ m e m m Vreme [s]

50 Statička karakteristika i dijagram m e (ω) 4 3 Mom ment [r.j.] Brzina [r.j.]

51 Statička karakteristika i dijagram m e (ω) t [r.j.] Momen Brzina [r.j.]

52 i as [r.j.] Vremenski dijagrami statorskih struja i bs i cs [r.j.] j] [r.j.] Vreme [s]

53 Vremenski dijagrami statorskog faznog napona i struje u as [r.j.] i as [r.j.] Vreme [s]

54 Vremenski dijagrami statorskog faznog napona i struje... u as [r.j.] i as [r.j.] Vreme [s]

55 Vremenski dijagrami statorskog faznog napona i struje Napon Struja u as [r.j.] i as [r.j.] Vreme [s]

56 Vremenski dijagrami q i d komponente statorske struje 5 i qs [r.j.] 4 3 i ds [r.j.] Vreme [s]

57 Vremenski dijagrami q i d komponente statorskog fluksa.5.5 ψ ds [r.j.].75 ψ qs [r.j.] Vreme [s]

58 i ar [r.j.] Vremenski dijagrami rotorskih struja i br [r.j.] j] i i cr [r.j.] Vreme [s]

59 Vremenski dijagrami q i d komponente rotorske struje i qr [r.j.] i dr [r.j.] Vreme [s]

60 Vremenski dijagrami q i d komponente rotorskog fluksa.8.6 ψ dr [r.j.].4. ψ qr [r.j.] j] Vreme [s]

61 Vremenski dijagram statorske i rotorske struje i as i ar [r.j.] j] [r.j.] Vreme [s]

62 Dijagrami prostornih vektora statorske i rotorske struje q 5 4 i s [r.j.] j] 3 i r [r.j.] d 3 4 5

63 Dijagrami prostornih vektora statorskog i rotorskog fluksa.8 q.6.4 ψ s [r.j.]. ψ r [r.j.] d.4.6.8

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA bs as cs bs br cr br ar br ar cr ar cr bs cs as 1856-1943 cs as Asinhroni (indukcioni) motor Patent iz1888 godine Naponska jednačina: u u R i t

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Uvod. Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator.

Uvod. Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator. Asinhrone mašine Uvod Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator. Prednosti asinhronih mašina, u odnosu na ostale vrste električnih mašina,

Διαβάστε περισσότερα

4. Regulacija AM u KSP V. Ambrožič: Izabrana predavanja iz UEMP, TF Rijeka 4. VEKTORSKA REGULACIJA ASINKRONOG MOTORA

4. Regulacija AM u KSP V. Ambrožič: Izabrana predavanja iz UEMP, TF Rijeka 4. VEKTORSKA REGULACIJA ASINKRONOG MOTORA 4. VEKTORSKA REGULACIJA ASINKRONOG MOTORA 4.1 Regulacija istosmjernog stroja s neovisnom uzbudom ε mikroračunalo i/ili upravljačka elektronika energetski sklop motor ω α ω regulator brzine α* i * α regulator

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

= 6.25 Ω I B1 = 3U =529 Ω I B2 = 3U = 1905 Ω I B3G = 3U

= 6.25 Ω I B1 = 3U =529 Ω I B2 = 3U = 1905 Ω I B3G = 3U 1. Za EES dat na slici: a) odrediti bazne struje i impedanse elemenata ako je S B = 100 MVA, a naponi jednaki nominalnim vrijednostima napona pojedinih naponskih nivoa, b) Nacrtati ekvivalentne šeme direktnog,

Διαβάστε περισσότερα

IFOC_IREG. Matlab/Simulink model indirektne vektorske kontrole asinhronog motora u dq-koordinatnom sistemu sa diskretnom strujnom regulacijom

IFOC_IREG. Matlab/Simulink model indirektne vektorske kontrole asinhronog motora u dq-koordinatnom sistemu sa diskretnom strujnom regulacijom IFOC_IEG Matlab/Simulink model indirektne vektorske kontrole asinhronog motora u dq-koordinatnom sistemu sa diskretnom strujnom regulacijom Petar Marković Beograd, 27.2.27. SAŽAJ PEMET SIMULACIJE...2 2

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PP-talasi sa torzijom

PP-talasi sa torzijom PP-talasi sa torzijom u metrički-afinoj gravitaciji Vedad Pašić i Dmitri Vassiliev V.Pasic@bath.ac.uk D.Vassiliev@bath.ac.uk Department of Mathematics University of Bath PP-talasi sa torzijom p. 1/1 Matematički

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

BRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović

BRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović FAKULTET ZA POMORSTVO OSNOVNE STUDIJE BRODOMAŠINSTVA BRODSKI ELEKTRIČNI UREĐAJI Prof. dr Vladan Radulović ELEKTRIČNA ENERGIJA Električni sistem na brodu obuhvata: Proizvodnja Distribucija Potrošnja Sistemi

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Peta vežba Vektorsko upravljanje asinhronim motorom

Peta vežba Vektorsko upravljanje asinhronim motorom Peta vežba Vektorsko upravljanje asinhronim motorom Uvod Cilj vežbe je da se prouče statičke i dinamičke karakteristike pogona sa vektorskim upravljanjem. Kroz ovu vežbu, studenti će imati priliku da prouče

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Ogled zaustavljanja i zaletanja

Ogled zaustavljanja i zaletanja Ogled zaustavljanja i zaletanja Ogled zaustavljanja Koristi se za određivanje momenta inercije ili za određivanje gubitaka pri zaustavljanju Postupak podrazumeva da zaletimo mašinu, pa je isključimo sa

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

UNIVERZITET U BEOGRADU ELEKTROTEHNIČKI FAKULTET MASTER RAD PRIMENA DIREKTNOG UPRAVLJANJA MOMENTOM ASINHRONE MAŠINE NA DIGITALNOM SIGNALNOM KONTROLERU

UNIVERZITET U BEOGRADU ELEKTROTEHNIČKI FAKULTET MASTER RAD PRIMENA DIREKTNOG UPRAVLJANJA MOMENTOM ASINHRONE MAŠINE NA DIGITALNOM SIGNALNOM KONTROLERU UNIVERZITET U BEOGRADU ELEKTROTEHNIČKI FAKULTET MASTER RAD PRIMENA DIREKTNOG UPRAVLJANJA MOMENTOM ASINHRONE MAŠINE NA DIGITALNOM SIGNALNOM KONTROLERU Mentor: Student: Prof. dr Slobodan Vukosavić Dipl.

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα