Chapter 1 Complex numbers

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chapter 1 Complex numbers"

Transcript

1 Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i) ( i) e u v ( i)( + i) + i i 8i + 8i f u v i i + i i i i+ 8i i i 0 ( + 8 i) 0 ( + 8i) i g u ( i) ( i) 9 i + i i a v + i ( ) + (). b v + w + i + ( + i) + i + + 8i 9i 9 c v i d w+ v e ( + i+ ( + i) ( + i + i) ( + i) i w i () + ( ) 7. f vv ( + i)( i) + i i i g w w ( + i) ( + i) ( + 8i)( 8i) i + i i 8 h v v i + i i i i ( + i) 0. 0.i i w i + i i i i i 7 ( i) i a z a + bi Show that z z z LHS z a bi a+ bi a bi a bi a + b z a bi RHS z ( a + b ) z z z b zz LHS RHS z LHS RHS So zz z a Let z + i r () + () r 8 r zz (a + bi) (a bi) a b i a + b z ( a + b ) a + b a bi a + b LHS

2 MC Qld- Complex numbers θ tan π θ ( st quadrant) z cis z. cis b Let z i r () + ( ) r θ tan ( ) ( th quadrant) π θ π r cis π r. cis c z + i r ( ) + () r θ tan ( ) ( nd quadrant) θ π r cis π r. cis π d z + i r ( ) + () r + r 8 r 7 r.9 θ tan ( st quadrant) θ 0.8 z.9 cis(0.8) e z i r ( ) + ( ) r + r 8 r 7 r.9 θ tan ( th quadrant) θ 0.8 z.9 cis( 0.8) f z + i r () + () r + 9 r r θ tan ( st quadrant) θ 0. z cis(0.) g z i r ( ) + ( ) r r θ tan ( rd quadrant) θ ( π + 0.) θ.0 z cis(.0) h z + i r ( ) + () r r θ tan θ (π 0.) θ.0 z cis(.0) i z + i r () + () r r θ tan θ 0.9 z cis(0.9) a z cis ( nd quadrant) ( st quadrant) z cos + isin z 0. + i 0.8 z +.i b z cis z cos + isin z i 0. z.98 +.i z. +.i c z 0 cis π z 0cos + isin z i z i π d z 8 cis π π z 8cos + isin z i z..i e z i cis(π) z i (cos(π) + i sin(π)) i ( + 0) i

3 Complex numbers MC Qld- f z cis() z (cos() + i sin()) 0. + i i g z cis() z (cos() + i sin()) z 0. + i 0.9 z. +.7i h z cis( ) z (cos( ) + i sin( )) z 0. + i 0.8 z.08.8i See answers above 7 See answers above 8 a u v cis 8 cis π π ( 8) cis + cis π 8 π + cis π b u v 8 8 cis π cis π 8 π cis π c v u 8 8 cis π π cis 8 π π cis π d u cis cis π cis + cis e v 8 π cis cis(π) (cos(π) + i sin(π)) 9 a Let z + i r + r. tan(θ) θ tan θ 0. In polar form z. cis(0.) z b + i z. cis(0.) z. 0. z. cis(0.) c + i. cis(0.). (cos(0.) + i sin(0.)). + 0.i 0 a Let z + i r + r. tan(θ) θ tan () θ. z. cis(.) z z.. z. cis(0.) z. cos(0.) +. sin(0.)i z i i i i z i ( ) i i b i i (0 + i) c Let z r cis cos + isin i i + +

4 MC Qld- Complex numbers tan(θ) θ π π z z π z cis π z π π π ( th quadrant) π <θ π cos + isin i Operation on z Geometric relationship to z a z Reflection in x-axis b iz Anticlockwise rotation of 90 c z Rotation of 80 d iz Clockwise rotation of 90 Investigation Complex numbers and matrices a z + i A I + H b A + ( ) ( ) + ( ) + ( ) This corresponds to the complex number a + bi where 7 ai + BH ai + BH a b a b b a a b 7 So b a 7 Therefore a 7 and b, giving the complex number 7 + i z ( + i)( + i) 9 + i + i + i 7 + i So A corresponds to the complex number z c A ( ) 9 + A corresponds to the complex number c + di where ci + dh 0 0 ci + dh c d c d d c c d So d c c d d c Therefore c and d So A corresponds to the complex number i z ( + i) i + i i

5 Complex numbers MC Qld- a b i 9 i i i So the complex number corresponding to A is the inverse of z, z. a b 0 0 b a a b ai + bh which corresponds to the complex number a + bi a b T b a a b b a a 0 0 b 0 0 ai bh which corresponds to the complex number a bi, the complex conjugate of a + bi. So the transpose corresponds to the conjugate. a b b a a b a b b c + a b a b a b + + b a a + b a + b a 0 b 0 a b 0 a b a b I + a + b a + b which corresponds to the complex number a b i a + b a + b (a + bi) a bi a+ bi a bi a bi a b i a bi a + b a b a + b a + b which is the inverse of a + bi So the inverse of the matrix corresponds to the inverse of its corresponding complex number. a c det b b a a a b ( b) a + b a+ bi ( a + b ) a + b So the determinant corresponds to the modulus squared. Investigation e iθ Show that e iθ cos(θ)+ i sin(θ) LΗS e iθ n θ θ n θ ( ) +...!! ( n)! + n+ θ θ n θ i θ ( ) +...!! (n + )! i But n θ θ n θ cos(θ) ( ) +...!! ( n)! n+ θ θ n θ sin(θ) θ ( ) +...!! (n + )! So LHS (cos(θ)) + i(sin(θ)) cos(θ) + i sin(θ) RHS, as required iθ iθ e + e Show that cos(θ) iθ iθ RHS e + e ( ) ( iθ i θ e + e ) [(cos(θ) + i sin(θ)) + (cos( θ) + i sin( θ))] (cos(θ) + i sin(θ) + cos(θ) i sin(θ)) ( cos(θ)) cos(θ) LHS, as required To express sin(θ) in terms of e iθ and e iθ we first need to have an i sin(θ) term, so we multiply and divide by i. We also multiply and divide by, because we expect to have had two i sin(θ) terms added together, similarly to question. sin(θ) (i sin(θ)) i To have only a sin(θ) term remaining, the cos(θ) terms must cancel out so sin(θ) (cos(θ) + i sin(θ) cos(θ) + i sin(θ)) i [(cos(θ) + i sin(θ)) (cos(θ) i sin(θ))] i [(cos(θ) + i sin(θ)) (cos( θ) + i sin( θ))] i i (eiθ e iθ ) iθ iθ e e i θ Show that cos(iθ) e + e LHS cos(iθ) ii ( θ) ii ( θ) e + e e θ θ + e θ θ e + e RHS, as required log ( x ) xlog e () e θ x e e using the expansion for e x x xlog e () ( xlog e()) ( xlog e()) e + xlog e() !! x In e x x In e x In ( x In ) ( x In ) e + x In+ + +!!

6 MC Qld- Complex numbers By using the value of log e () from a table and by taking many terms from the expansion, an accurate value for x can be computed to a certain number of decimal places, depending on the amount of terms used. Investigation e iθ and de Moivre s theorem a Prove that v w rr cis( θ + θ ), where v r cis(θ ) and w r cis(θ ) LHS v w [r (cos(θ ) + i sin(θ ))] [r (cos(θ ) + i sin(θ ))] iθ iθ ( re )( r e ) rr i i e θ + θ ( ) rr i e θ + θ rr cis( θ + θ ) RHS, as required b Prove that v w rr cis( θ θ), where v r cis(θ ) and w r cis(θ ) LHS v w rcis( θ) r cis( θ ) iθ re iθ re r iθ iθ e r r i( θ θ ) e r r θ θ r cis( ) RHS, as required c Prove that v n n r cis nθ, where v r cis(θ ) LHS v n (r cis(θ )) n i ( n re θ ) n ni ( ) r e θ n in ( ) r e θ n r cis( nθ ) RHS, as required a Show that cos(θ) cos (θ) sin (θ) LHS cos(θ) ix ix ( ) ( ) ( i θ i θ e + e e + e ), since cos(x) ( iθ iθ e + e ) ( iθ ) ( iθ ) e + e (cos( θ ) + i sin( θ )) + (cos( θ ) + i sin( θ )) (cos( ) sin( )) (cos( ) sin( )) θ + i θ + θ i θ (cos ( θ ) + i sin( θ )cos( θ ) + i sin ( θ ) + cos ( θ) isin( θ)cos( θ) + i sin( θ)) (cos ( ) sin θ ( θ )) cos (θ) sin (θ) RHS, as required b Show sin(θ) sin(θ) cos(θ) LHS sin(θ) ( ) ( ) ( i θ i θ e e ), i Since sin(x) ix ix ( e e ) i ( iθ iθ e e ) i ( iθ ) ( iθ e e ) i (cos( θ ) + i sin( θ )) (cos( θ ) + i sin( θ )) i (cos( θ ) + i sin( θ )) (cos( θ ) i sin( θ )) i (cos ( θ ) + i sin( θ )cos( θ ) + i sin ( θ ) i cos ( θ) + isin( θ)cos( θ) i sin ( θ)) (i sin( θ)cos( θ )) i sin(θ) cos(θ) RHS, as required a i i i i 0 + i cos + isin e iπ i So i i ( e ) i π e π e b e π i e e π i e[ cos( π) + isin( π) ] e( + 0i) e c log ( i) e First express i in polar form Let z i r cis(θ) r ( ) + ( ) + tan(θ) tan(θ) θ tan, (th quadrant) π So z π π So log e( i) loge iπ e e log ( ) π iπ e + e e log() log( )

7 Complex numbers MC Qld- 7 π log e() i log e( e) iπ loge Exercise B Factorisation of polynomials in C a z + z i z (i) (z + i)(z i) b z + 7 z 7i z ( 7 i) ( z+ 7 i)( z 7 i) c z + 8z + (z + 8z + ) + (z + ) + 9 (z + ) 9i (z + ) (i) (z + + i)(z + i) d z z z z z + 7 z + 7i z 7 i z 7 7 z + i z i e z z + 7 z z+ + 7 z + z i (z ) (i) (z + i)(z i) f 9z + z 8 9z z z z + [(z ) i ] [(z ) (i) ] (z + i)(z i) a z 8 Let w z z 8 w 8 (w + 9)(w 9) (z + 9)(z 9) (z 9i )(z + )(z ) (z (i) )(z + )(z ) (z + i)(z i) (z + )(z ) b z z Let w z z z w w (w )(w + ) (z )(z + ) ( z ( ) )( z i ) ( z+ )( z )( z+ i)( z i) c z + 0z + Let w z z + 0z + w + 0w + (w + )(w + ) (z + )(z + ) (z i )(z i ) (z (i) )(z (i) ) (z + i)(z i)(z + i)(z i) d z + z 0 Let w z z + z 0 w + w 0 (w + )(w ) (z + )(z ) ( z + i )( z ( ) ) ( z + ( i) )( z ( ) ) ( z+ i)( z i)( z+ )( z ) a f(z) z z + z + 8 f( ) ( ) ( ) + ( ) So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz + q) So z z + z + 8 (z + )(z + pz + q) z z + z + 8 z + pz + qz + z + pz +q z z + z + 8 z + (p + )z + (p + q)z + q p + q 8 p q So f(z) (z + )(z z + ) (z + )(z z ) (z + )[(z ) + ] (z + )[(z ) i ] ( z+ )[( z ) ( i) ] ( z+ )( z + i)( z i) The three factors of f(z) are z +, z + i and z i b f(z) z + z + z f() () + () + () so (z ) is a factor of f(z) Let f(z) (z )(z + pz + q) So z + z + z (z )(z + pz + q) z + z + z z + pz + qz z pz q z + z + z z + (p )z + (q p)z q p q p q So f(z) (z )(z + z + ) (z )(z + z + + ) (z )[(z + ) + ] (z )[(z + ) i ]

8 MC Qld- 8 Complex numbers ( z )[( z+ ) ( i) ] ( z )( z+ + i)( z+ i) The three factors of f(z) are z, z+ + i and z+ i c f(z) z z z + 0 f( ) ( ) ( ) So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz +q) So z z z + 0 (z + )(z + pz + q) z z z + 0 z + pz + qz + z +pz + q z z z + 0 z + (p + )z + (p + q)z + q p + q 0 p q So f(z) (z + )(z z + ) 9 9 ( z+ ) z z ( z+ ) z + ( z+ ) z + ( z+ ) z i ( z+ ) z i ( z+ ) z + i z i The three factors of f(z) are z +, z + i and z i d f(z) z + z z f( ) ( ) + ( ) ( ) So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz + q) So z + z z (z + )(z + pz + q) z + z z z + pz + qz + z + pz +q z + z z z + (p + )z + (p + q)z + q p + q p So f(z) (z + )(z + z ) (z + )(z )(z + ) The three factors of f(z) are z +, z and z + e f(z) z z z f( ) ( ) ( ) ( ) + 0 So (z + ) is a factor of f(z) f() () () () So (z ) is a factor of f(z) Let f(z) (z + )(z )(z + pz + q) So z z z (z + )(z )(z + pz + q) z z z (z z + z )(z + pz + q) z z z (z z )(z + pz + q) z z z z + pz + qz z pz qz z pz z + 0z z z z + (p )z + (q p )z + ( q p)z q p 0 q p q So f(z) (z + )(z )(z + z + ) (z + )(z )(z + z + + ) (z + )(z )[(z + ) + ] (z + )(z )[(z + ) i ] (z + )(z )[(z + ) (i) ] (z + )(z )(z + + i)(z + i) The four factors of f(z) are z +, z, z + +i and z + i. f f(z) z Let w z Then z w (w + )(w ) So f(z) (z + )(z ) Let f(z) g(z)h(z) such that g(z) z + and h(z) z g(z) z + g( ) ( ) So (z + ) is a factor of g(z) Let g(z) (z + )(z +pz + q) So z + (z + )(z +pz + q) z + z + pz + qz + z + pz + q z + 0z + 0z + z + (p + )z + (p + q)z +q p + 0 q p So g(z) (z + )( z z +) ( z+ ) z z+ + ( z+ ) z + ( z+ ) z i ( z+ ) z i ( z+ ) z + i z i h(z) z h() () 0 So (z ) is a factor of h(z) Let h(z) (z )(z + rz + s) So z (z )(z + rz + s) z z + rz + sz z rz s z + 0z + 0z z + (r )z + (s r)z s r 0 s r s So h(z) (z )(z + z +) ( z ) z + z+ + ( z ) z+ + ( z ) z+ i ( z ) z+ i

9 Complex numbers MC Qld- 9 ( z ) z+ + i z+ i Since f(z) g(z)h(z), we can now write f(z) ( z+ ) z + i z i ( z ) z+ + i z+ i ( z )( z ) + z + i z i z i z i + + The six factors of f(z) are z +, z, z + i, z i, z+ + i and z+ i a + i is a zero of P(z) z + z 0z + Let z + i, then z i is another zero Let z be the third zero. Then P(z) (z z )(z z )(z z ) (z i)(z + i)(z z ) [(z ) + ](z z ) (z z + + )(z z ) (z z + )(z z ) so z + z 0z + (z z + )(z z ) Comparing the left- and right-hand sides: z z Therefore the two zeros required are i and b + i is a zero of P(z) z + 9z +z + Let z + i, then z i is another zero Let z be the third zero. Then P(z) (z z )(z z )(z z ) (z + i)(z + + i)(z z ) [(z + ) + ](z z ) (z + z + + )(z z ) (z + z + )(z z ) So z +9z + z + (z + z + )(z z ) Comparing the left- and right-hand sides: z z Therefore the two zeros required are i and c i is a root of P(z) z 0z + z Let z i, then z + i is another root let z be the third root, then P(z) (z z )(z z )(z z ) (z + i) (z i) (z z ) [(z ) + ](z z ) (z 8z + + )(z z ) (z 8z + 7)(z z ) So z 0z + z (z 8z + 7)(z z ) Comparing the left- and right-hand sides: 7 z z Therefore the two roots required are + i and z z + z z + 7 If z i is a factor, then z +i is a factor Let P(z) z z + z z + 7, then P(z) has factors (z i) and (z + i) Let P(z) (z i) (z + i)(z + pz + q) (z + 9)(z + pz + q) z + pz + qz + 8z + 9pz +9q z + pz + (q + 8)z + 9pz +9q So z z + z z + 7 z + pz + (q + 8)z + 9pz + 9q p 9q 7 q So P(z) (z i)(z + i)(z z + ) (z i)(z + i)(z z + ) (z i)(z + i)((z ) + ) (z i)(z + i) (( z ) i ) (z i)(z + i) z i z + i Therefore the remaining factors are z + i, z i, z + i and. P(z) z + ( + i)z + i P( i) ( i) + ( + i)( i) + i i i i + i 0, as required P( ) ( ) + ( + i)( ) + i 9 9 i + i 0, as required So i and are the zeros pf P(z) E 7 P(z) z ( + i)z + ( + i)z P(z) (z ) Q(z), where Q(z) is a polynomial Let Q(z) z + pz + q. Then P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q So z ( + i)z + ( + i)z z + (p )z + (q p)z q P ( + i) q P i q P i So Q(z) z iz + Q(i) (i) i(i) D 8 P(z) is a polynomial of degree so Let P(z) (z z )(z z )(z z )(z z ) ai and bi are roots, so let z ai and z bi If ai is a root so is ai, and if bi is a root so is bi, so let z ai and z bi The term that does not contain z is given by z z z z ai bi ai bi a b i a b E 9 P(z) z + z z + a, P( i) 0 P( i) ( i) + ( i) ( i) + a () () (i) + ()(i) (i) + ( i + i ) + i + a i + i + i + i + a 8 7i + 7i + a a 8 0 So a 8 C 0 a Let P(z) z + z + az + 8 If (z + ) is a factor of P(z), P( ) 0 So P( ) ( ) + ( ) + a( ) a a a

10 MC Qld- 0 Complex numbers b Let P(z) z + az + z If (z + i) is a factor of P(z), P( i) 0 So P( i) ( i) + a( i) + ( i) 0 i a i 0 a a c Let P(z) z + z +8z + a If (z + i) is a factor of P(z), P( + i) 0 So P( + i) ( + i) + ( + i) + 8( + i) + a 0 [( ) + ( ) (i) + ( )(i) + (i) ] + ( i + i ) 8 + i + a 0 ( + i + 8i) + ( i ) 8 + i + a 0 ( i) + ( i) 8 + i + a 0 i 9 i 8 + i + a 0 + a 0 a d Let P(z) z z i + az i If i is a root of P(z), P(i) 0 P(i) (i) (i) i + a(i) i 0 8i + 8i + ia i 0 ia i a a Let P(z) z + az + 8z + b If and are roots, P( ) 0 and P() 0 P( ) ( ) + a( ) + 8( ) + b 7 + 9a + b 9a + b 0 So 9a + b [] P() () + a() + 8() + b 8 + a + + b a + b + 0 So a + b [] Subtracting [] from [] gives 9a a + a 7 a Substituting back into [] gives 9() + b + b b 8 b Let P(z) z + az + bz 7z + If and are zeros of P(z), P() 0 and P() 0 P() () + a() + b() 7() + + a + b 8 + a + b So a + b 0 a + b [] P() () + a() + b() 7() + + a + b 7 + a + b + 0 So a + b [] Subtracting [] from [] gives a a + a 9 a Substituting back into [] gives ( ) + b + b b c Let P(z) z + aiz + bz i If i and i are roots of P(z), P(i) 0 and P(i) 0 P(i) (i) + ai(i) + b(i) i 8i ia + ib i ia + ib 0i 0 So ia + ib 0i a b 0 [] P(i) (i) + ai(i) + b(i) i 7i 9ia + ib i 9ia + ib 9i 0

11 Complex numbers MC Qld- So 9ia + ib 9i a b [] Subtracting [] from [] gives a a + 0 a Substituting into [] gives ( ) b 0 b 0 b a Let P(z) z iz + aiz + b If (z + ) is a factor of P(z), P( ) 0 P( ) ( ) i( ) + ai( ) + b i ai + b (b ) (a + )i 0 + 0i Therefore, b 0 a + 0 b a b Let P(z) az z + biz + i If (z i) is a factor, P(i) 0 P(i) a(i) (i) + bi(i) + i ai + b + i ( b) (a )i 0 + 0i Therefore, b 0 a 0 b a c Let P(z) z + aiz + iz + ( + i)b If (z + i) is a factor, P( i) 0 P( i) ( i) + ai( i) + i( i)+(+i)b 8i ai + + b + bi ( + b) + (8 + b a) 0 + 0i Therefore + b b a 0 b 8 a 0 a a Since complex roots occur in conjugate pairs, an odd number of roots must have at least one real root. Let P(z) (z z )(z z )(z z ) and i are zeros, so let z and z i. Since i is a zero, i must also be a zero, so let z i So P(z) (z )(z i)( z + i) (z )(z + ) z + z z z z + z a P(z) z + z + z + 08 ai is a solution to P(z), so P(ai) 0 P(ai) (ai) + (ai) + (ai) + 08 a i a + ai + 08 (08 a ) + (a a )i 0 + 0i So 08 a 0 a a 0 a 0 a(a ) 0 a ± a 0 a a ± a must be such that both real and imaginary parts equal zero, so we discard the a 0 solution. Therefore a ±. b P(z) z + iz z i If ai is a solution to P(z), P(ai) 0 P(ai) (ai) + i(ai) ai i a i a i ai i (a + a + a + )i 0i So a + a + a + 0 Let f(a) a + a + a + f( ) ( ) + ( ) + ( ) So a + is a factor of f(a) Let f(a) (a + )(a + pa + q) a + pa + qa + a + pa + q a + (p + )a + (p + q)a + q So a + a + a + a + (p + )a + (p + q)a + q p + q p So f(a) (a + )(a + a + ) (a + )(a + )(a + ) 0 a, a, a Let P(z) z + i P(i) (i) + i i + i 0 So (z i) is a factor of P(z) Let P(z) (z i)[z + (a + bi)z + (c + di)], where a, b, c, d R P(z) (z i)[z + (a + bi)z + (c + di)] z + (a + bi)z + (c + di)z iz i(a + bi)z i(c + di) z + (a + bi)z + (c + di)z iz + (b ai)z + (d ci) z + (a + bi i)z + (c + di + b ai)z + (d ci) z + [a + (b )i]z + [(c + b) + (d a)i]z + (d ci) So z + z + [a + (b )i]z + [(c + b) + (d a)i]z + (d ci) a + (b ) 0 + 0i d ci 0 + i so a 0 b 0 d 0 c b c Therefore P(z) (z i)[z + (0 + i)z + ( + ci)] (z i)(z + iz ) 7 a P(z) z ( + i)z + (i )z + (7 + i)z i Show P() 0 P() () ( + i)() + (i )() + (7 + i)() i + i + i i i 0 + 0i 0, as required b P(z) (z ) Q(z) Let Q(z) [z + (a + bi)z + (c + di)z + (e + fi)], where a, b, c, d, e, f R So P(z) (z )[z + (a + bi)z + (c + di)z + (e + fi)] z + (a + bi)z + (c + di)z + (e + fi)z z (a + bi)z (c + di)z (e + fi) z + (a + bi )z + [(c + di) (a + bi)]z + [(e + fi) (c + di)]z (e + fi) z + [(a ) + bi]z + [(c a) + (d b)i]z + [(e c) + (f d)i]z (e + fi) So z ( + i)z + (i )z + (7 + i)z i z + [(a i) + bi]z + [(c a) + (d b)i]z + [(e c) + (f d)i] (e + fi) Equation coefficients gives ( + i) (a ) + bi i (a ) + bi So a b a 0 (i ) (c a) + (d b)i + i (c a) + (d b)i So c a d b c 0 d + c d 0 i (e + fi) + i e + fi So e f Therefore Q(z) z + (a + bi)z + (c + di)z + (e + fi) z + (0 i)z + ( + 0i)z + ( + i) z z i z + + i c Q(z) (z a) + b, where a c and b R Let a c + di, where c, d R Q(z) (z a) + b [z (c + di)] + b z + z (c + di) + z(c + di) (c + di) + b z (c + di)z + (c + cdi d )z [c + c di + c(di) + (di) ] + b

12 MC Qld- Complex numbers z (c + di)z + [(c d ) + cdi]z (c + c di cd d i) + b z (c + di)z + [(c d ) + cdi]z [(c cd b) + (c d d )i] So z iz z + + i z (c + di)z + [(c d ) + cdi]z [(c cd b) + (c d d )i] i (c + di) + i [(c cd b) (c d d )i] i c + di So (c cd b) So c 0 d (0 (0)() b) So a 0 + i b a i b 8 Let P(z) z + z + 8z + 0z + Since ( z+ i) is a factor of P(z), ( z i) must also be a factor since P(z) has real coefficients Let P(z) ( z+ i)( z i)( z + pz+ q) (z + )(z + pz + q) z + pz + qz + z + pz + q z + pz + (q + )z + pz + q So z + z + 8z + 0z + z + pz + (q + )z + pz + q p q q So P(z) ( z+ i)( z i)( z + p+ ) ( z+ i)( z i)[( z + p+ ) + ] ( z+ i)( z i)[( z+ ) + ] ( z+ i)( z i)[( z+ ) i ] ( z+ i)( z i)[( z+ ) ( i) ] ( z+ i)( z i)( z+ + i)( z+ i) 9 P(z) 9z + (9i )z + ( i)z + i If P( i) 0, (z + i) is a factor of P(z) Let P(z) (z + i)[9z + (a + bi)z + (c + di)], where a, b, c, d R P(z) (z + i)[9z + (a + bi)z + (c + di)] 9z + (a + bi)z + (c + di)z + 9iz + i(a + bi)z + i(c + di) 9z + (a + bi)z + (c +di)z + 9iz + ( b + ai)z + ( d + ci) 9z + [a + (b + 9)i]z + [(c b) + (d + a)i]z + ( d + ci) So 9z + (9i )z + ( i)z + i 9z + (a + (b + a)i)z + [(c b) + (d + a)i]z + ( d + ci) a + (b + a)i 9i d + ci i a + (b + a)i +9i d + ci 0 + i So a b So d 0 c b 0 d 0 Therefore p(z) (z +i)[9z + ( + 0i)z + ( + 0i)] (z + i)(9z z + ) (z + i) 9z z+ + 9 ( z+ i) z + ( z+ i) (z ) i (z + i)(z + i)(z i) 0 a + z a z az + z a z + az + a 0 Let P(z) z + az + a We want to solve for a such that P(z) 0. If i is a zero of P(z), then P ( i) 0. So P ( i) ( i) + a( i) + a 0 9 a + a 0 a a Investigation The exact values of cos and sin z x +yi, z z (x + yi) x + x (yi) + 0x (yi) + 0x + (yi) + x(yi) + (yi) x + x yi 0x y 0x y i + xy + y i So x + x yi 0x y 0x y i + xy + y i x + x yi 0x y 0x y i + xy + y i (x 0x y + xy ) + (x y 0x y + y )i Equating the real parts gives x 0x y + xy z x + y z So z kπ kπ z cis(θ) Therefore z So x + y x + y y x x 0x y + xy x 0x y + x(y ) x 0x ( x ) + x( x ) x 0x + 0x + x( x + x ) x 0x + 0x + x 0x + x x 0x + x x 0x + x 0 The two exact positive solutions for x are and z kπ, k N kπ kπ x + yi cos + isin k x + yi cos + isin So x cos, from part We reject the x solution because this would be when k 0, giving x cos(0). 7 Pythagoras theorem gives cos + sin + sin + + sin

13 Complex numbers MC Qld- + sin sin sin π + π 0 + sin 0 + sin + The positive square root was taken because the angle π is in the first quadrant, so sin must be positive. Exercise C Solving equations in C a x + x + 0 (x + x + ) + 0 (x + ) + 0 (x + ) x + ± x ± i b x 8x + 0 (x 8x + ) + 0 (x ) (x ) 9 x ± 9 x ± i c x x (x x + 9) (x 7) (x 7) 00 x 7 ± 00 x 7 ± 0i d x x + 0 x x x x x x ± x ± i e x x + 0 x x + 0 x x + 0 x x + 0 x x+ + 0 x + 0 x x x ± ± i x ± i a z z z Let P(z) z z z P( ) ( ) ( ) ( ) So z is a solution So (z + ) is a factor Let P(z) (z + )(z + pz + q) z + pz + q + z + pz + q z + (p + )z + (p + q)z + q So z z z + 0 z + (p + )z + (p + q) + q p + q 0 p q So P(z) (z + )(z z + ) 0 So z + 0 z z + 0 z a b c ( ) ± ( ) z z ± 9 0 z ± z i ± b z z + z 0 Let P(z) z z + z 0 P() () () + () + 0 So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q So z z + z z + (p )z + (q p)z q p q p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a b c ( ) ± ( ) z z ± 8 z ± 7 z 7 ± i c z 7z + 0z 8 0 Let P(z) z 7z + 0z 8 0 P() () 7() + 0() So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q

14 MC Qld- Complex numbers So z 7z + 0z 8 z + (p )z + (q p)z q p 7 q 8 p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a, b, c ( ) ± ( ) z z ± 9 z ± z ± i d z z + z 0 Let P(z) z z + z 0 P() () () + () So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z p q z + (p )z + (q p)z q So z z + z z + (p )z + (q p)z q p q p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a, b, c ( ) ± ( ) z z ± z ± z i ± e z 0z + z 0 0 Let P(z) z 0z + z 0 0 P() () 0() + () So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz 8z pz q z + (p 8)z + (q p)z q So z 0z + z 0 z + (p 8)z + (q p)z q p 8 0 q 0 p q 0 So P(z) (z )(z z + 0) 9 (z ) z z (z ) z + (z )[(z ) i ] (z )(z + i)(z i) 0 So z 0 z + i 0 z i 0 z z i z + i z i i f(z) z, g(z) z z +, h(z) z z + z Show that f(z) g(z) h(z) f(z) g(z) (z )(z z + ) z z + z z + z z z + z h(z), as required h(z) 0 So f(z) g(z) 0 (z )(z z + ) 0 So z 0 z z + 0 z a b c ( ) ± ( ) z z ± z ± z i a x + x + 0 y + y + 0, with y x (y + )(y + 9) 0 (x + )(x + 9) 0 x + 0 x x x 9 x ± x ± 9 x ±i x ± i b z z 0 y y 0, with y z (y )(y + ) 0 (z )(z + ) 0 z 0 z + 0 z z z ± z ± z ± z ± i c 9z + z 0 9y + y 0, with y z (9y )(y + ) 0 (9z )(z + ) 0 9z 0 z + 0 z 9 z z ± 9 z ± z ± z ± i d x + x y + y + 9 0, with y x (y + )(y + ) 0 (y + ) 0 (x + ) 0 x + 0 x x ±

15 Complex numbers MC Qld- (z ) + 0 (z ) i x ± x ± z ± z ± i z ± i B a + i i Let z + i. Take a and b x + + ( ) x + x + x x ± x ± x ± y y y ± y ± y ± Therefore the two roots z, z are z + i and z i So + i is ( + i) or ( + i ) b + 0i Let z + 0i. Take a and b 0 x x + 7 x + x 7 x x ± y y y ± Therefore the two roots z, z are z + i and z i So + 0i is + i or i c + i Let z + i. Take a and b x + + x + x + x 8 8 x ± 9 x ± 9 x ± y 8 y 8 y 9 y ± 9 7 y ± y 7 ± Therefore the two roots z and z are z 9 7 i and z i So + i is (9 + 7 i ) or (9 + 7 i ) 7 Let z i z i. Take a 0 b x x x ± x ± x ± y 0 y y ±

16 MC Qld- Complex numbers y ± y ± Therefore the two roots z and z are z z So i i is ( + i ) and ( + i ) + i and 8 One root of a ( + i) is a 8 Let z a 8 and z be the other root The root z is obtained by rotating z through an angle of π c So z a π 8 7π a C 8 (Note that we subtract π c rather than adding it to give an angle such that π < Arg(z) π) 9 a z i If w i r cis(θ) r tan(θ) ( ) + ( ) tan π ( th quadrant) π So w + kπ Let z π + kπ π z + kπ π + π k k 0 z cis π π k z + π The two square roots of i in polar form are cis π and b z + i If w + i r cis(θ) r + tan(θ) tan θ θ tan () ( st quadrant) π So w + kπ Let z + kπ k 0 z z + kπ () + kπ 8 + kπ 8 cis 8 π k z + π 8 9 π 8 9 π π 8 7 π 8 The two square roots of + i in polar form are 8 and 7 π 8 c z + i If w + i r cis(θ) r ( ) + ( ) tan(θ) tan(θ) θ π + tan ( ) ( nd quadrant) π π π So w 8 + kπ Let z 8 + kπ z 8 + kπ kπ + 9 k 0 z 9 π k z + 9

17 Complex numbers MC Qld- 7 + π 9 8π cis 9 π k z π 9 π 9 π π 9 π 9 The three cube roots of + i are 9, 8π 9 and π 9 d z i If w i r cis(θ) r 0 + sin(θ), cos(θ) 0 π θ So w + kπ Let z + kπ z + kπ kπ + k 0 z π k z + + π π π k z + + 8π 9π π π π π e z i If w i r cis(θ) r ( ) + ( ) tan(θ) tan(θ) θ π + tan () ( rd quadrant) π π + π π So w + kπ Let z k 0 z π + kπ π + kπ π kπ + z π π π k z + 8 π + π π π π k z + π + π π π π π The three cube roots of i are π, π and π 0 Let z ( i) So z i Let z w w i r cis(θ) r sin(θ) 0 + ( ), π θ cos(θ) 0 π So w + kπ

18 MC Qld- 8 Complex numbers So z π + kπ π z + kπ π kπ + π k 0 z π π cos + isin i i π π k z + π π π cos + isin i π π k z + 7π 7π 7π cos + isin π π cos isin i i Sum i+ i i i + i 0 i+ i i So ( i) is i, i or i and they sum to zero. a Let z If w r cis(θ) r sin(θ) 0 cos(θ) θ 0 So w cis(kπ) Let z cis(kπ) z [ cis( kπ )] kπ b k 0 z cis(0) (cos(0) + i sin(0)) k z cos + isin cos + isin i + + i π k z π π cos + isin cos isin i i The three cube roots of are, + i and i a z z cis(kπ) z (cis( kπ )) kπ kπ k 0 z cis(0) k z i k z cis(π) k z π i The four solutions in Cartesian form are, i, and i b z z cis(kπ) z (cis( kπ )) kπ kπ

19 Complex numbers MC Qld- 9 k 0 z cis(0) k z i k z cis( π ) k z π i The four solutions in Cartesian form are,, i and i c z z cis(kπ) z (cis( kπ )) kπ kπ k 0 z cis(0) k z z cos + isin + i + i k z cos + isin cos + isin i + + i k z cis(π) π k z π π cos + isin cos isin i i π k z π π cos + isin cos isin i i The six solutions in Cartesian form are, + i, + i,, i and. i d z 7 z 7 cis(kπ) z (7cis( kπ )) 7 kπ kπ k 0 z cis(0) k z cos + isin k z z + i + i cos + isin cos + isin i + + i k z cis ( π ) k z π π π cos + isin cos isin k z i i π π π cos + isin

20 MC Qld- 0 Complex numbers cos isin i i The six solutions in Cartesian form are, z z cis(kπ) z (cis( kπ )), + i, + i, i and i kπ k 0 z cis(0) k z π k z π k z π π π 8π k z 8π π π The five solutions in polar form are cis(0),, π, π and π Investigation Current and voltage iωt V Reiω L+ R+ Ice iωc I cos(0t) A I 0 cos(ω t) A So I 0 s and ω 0 R 80 Ω L 0. H C 0 F V i 0t Re i e i 0 0 0it Re 9.i e (.9 0 ) i i Re 9.i (cos(0 t) isin(0 t)) + (.9 0 ) i i Re (cos(0 ) sin(0 )) (.9 0 ) i t i t (cos(0 t)) + i 9. sin(0 t) (.9 0 ) 00 cos(0 t) 9. sin(0 t) (.9 0 ) 00 cos(0t) + 70 sin(0t)

21 Complex numbers MC Qld- Exercise D Graphs of complex relations: rays, lines and circles a b f g g h c h 7 a d i b c e j d f a a C b E B D a e f b b g c c h d d e 8 a e f b

22 MC Qld- Complex numbers c d e f g h 9 a b c d e f 0 B D a b c d e f g h Chapter review a u ( i) 8 i b u + v ( i) + ( + i) + i c u v ( i) ( + i) 8 + 0i i i + i u d v i i + i i 8 0i i+ i i 7 i i e u + v ( i) + (+i) 9i + + 0i + i f u + v + i, from part (e) a z b w + ( ) + c z i d z + w ( + i) + ( + i) + i e zw ( + i)( i) i i 8i 0i f w ( + i) i + i i i i i i z + i r +

23 Complex numbers MC Qld- 8 tan(θ) tan(θ) θ tan () ( st quadrant) π z cos + sin + i + i a u v π π π + 9π + π π π π π u b v π cis π π cis 9 π π cis π c v d π 8 cis(π) u π π π π 8 a Let z + i and w i + z + i r tan(θ) + + θ θ π z So w z tan ( ) ( st quadrant) π cis(π) cos(π)+ isin(π) b Let z i and w i z i r + 8 tan(θ) tan(θ) θ tan ( ) ( th quadrant) π π z 8 So w z z π 8 π 8 cis 8 8

24 MC Qld- Complex numbers i cos sin i 7 x + x + (x + x + 9) 9 + (x + ) 8 ( x + ) ( 8) (x + + 8)(x + 8) ( x + + ) ( x + ) A 8 Let P(z) z 8 z + z If i is a zero, then i must also be a zero. From the multiple choice the other zero must be either or, so we test them P() () () + () P( ) ( ) ( ) + ( ) So the third zero must be. A 9 a P(z) z z + 89 (z z + ) + 89 (z 8) + (z 8) i (z 8) (i) (z 8 + i)(z 8 i) b P(z) z + z 7z + P( ) ( ) + ( ) 7( ) So (z + ) is a factor of p(z) Let P(z) (z + )(z + pz + q) z + pz + qz + 8z + pz + q z + (p + 8)z + (q + p)z + q So z + z 7 + z + (p + 8)z + (q + p)z + q p + 8 q p q So P(z) (z + )(z z + ) (z + )(z z + ) (z + ) z z+ + (z + ) z + (z + ) z i (z + ) z i (z + ) z + iz i 0 P(z) z + z + az + 9z 9, P(i) 0 P(i) (i) + (i) + a(i) + 9(i) 9 8 7i 9a + 7i 9 8 7i 9a+ 7i 9 7 9a 0 7 a 9 a 8 Let z i So z i, Take a and b x x + + ( ) x + 00 x + 0 x x ± ± ± 0 y y y ± ± ± 0 So i is D z + i If w r + i r cis(θ) ( ) + tan(θ) θ tan π So w cis + kπ Let z cis + kπ z + kπ 0 0 i ± ( st quadrant) π kπ + 8 k 0 z π 8 k z π π π 8

25 Complex numbers MC Qld- π 8 k z π π π 8 π 8 C π π 8 π 8 z 8 will have 8 solutions which will be evenly spaced on an Argand diagram, so they will be spaced 0 apart 8 E a x x + 0 a, b, c ± ( ) x ± 0 ± ± i ± i b z 8 + i. Take a 8 and b x x x x x x ± ± ± y 8 y 9 y ± 9 y ± ± Therefore z i ± + ± ( + i ) c z z 8 z 8 cis(kπ) z ( 8 cis(kπ) ) 8 kπ kπ k 0 z cis(0) k z cos + isin cos + isin i + i π k z π π cos + isin cos isin i + i The three cube roots of 8 are, i and + i The graph is a ray with angle π clockwise from the horizontal and shifted in the positive direction of the Im(z) axis so E vertical line at Re(z) 7 So B 7 Ray with angle π anticlockwise from the horizontal and shifted units in the negative direction of the Re(z) axis and units in the positive direction of the Im(z) axis. So C 8 Circle of radius with centre at 0 + i. So A ( ) 9 Circle of radius with centre at i. So D 0 Sketch the graph of π z:arg( z i) on an Argand diagram.

26 MC Qld- Complex numbers Sketch the graph of {z: Im (z i) } on the complex plane. Illustrate {z: z + i } on the complex plane. Modelling and problem solving a z w π π π π cis π π cos + sin i b z cos + isin c + i + i w cos + isin i + z w + i + i + i i + i i i+ i i i ( + ) + ( ) i d i Equating the results from parts (a) and (c) gives π π cos + sin i + + i Equating the real parts gives π + cos ii Equating the imaginary parts of part (d) i gives π sin π sin π iii tan π cos + + ( ) ( + ) (8 ) c z, w cos zw π + π + π π π π cos sin i + π π cos + sin i z cos + isin i + + i + i w cos + isin i + + i zw ( + i) ( + i) + i+ i+ i ( ) + ( + )i Therefore ( ) π π cos + sin i ( ) + ( + ) i

27 Complex numbers MC Qld- 7 Equating the real and imaginary paths gives π cos π sin + π cos π sin + π tan π sin π cos ( + ) , as required a z + z i z (8i) (z + 8i)( z 8i) b z + y i y (8i), with y z (y + 8i)(y 8i) (z + 8i)(z 8i) c i Show that ( + i) 8i ( + i) + i + i + 8i 8i, as required ii Show that ( i) 8i ( i) + i + i 8i 8i, as required d z + (z + 8i)(z 8i) [z ( i) ][z ( + i) ] (z + i)(z + i)(z + + i)(z i) e z + (z + i)(z + i)(z + + i)(z i) [(z + i)(z + + i)][(z + i)(z i)] [z + ( + i) z + ( i) z + ( i)( + i)] [z + ( i) z + ( + i) z + ( + i)( i)] [z + ( + i + i)z + + i i i ] [z + ( i + i) z + + i i i ] (z + z + 8)(z z + 8)

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Not for reproduction

Not for reproduction COMPLEX NUMBERS Thomson Brooks-Cole copyright 7 _+i _-i FIGURE Complex numbers as points in the Argand plane i _i FIGURE i _i +i z=a+bi z=a-bi -i A complex number can be represented by an expression of

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα