ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ"

Transcript

1

2

3

4

5 ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας, τουλάχιστον αριθμός χ ο (α,β), ώστε f(χ ο)=η. (ΜΟΝΑΔΕΣ 5) Β) Έστω οι αριθμοί α,β,λ R με α<β και η παραγωγίσιμη στο R συνάρτηση f. Να χαρακτηρίσετε με σωστό (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: α. Αν για την f ισχύει το θεώρημα του Rolle στο διάστημα [α,β], τότε η γραφική παράσταση της f έχει σ ένα τουλάχιστον σημείο της οριζόντια εφαπτομένη. β. Υπάρχουν χ, χ [α,β] με f( ) f ( ) f( ), για κάθε χ [α,β]. γ. Αν f(α)f(β)>, τότε η f δεν έχει ρίζα στο (α,β). β δ. Ισχύει: f ( ) d = f '( ). α ' ε. λ f ( ) d = λ f ( ) d, για κάθε λ R. (ΜΟΝΑΔΕΣ ) Γ) Δίνονται οι μιγαδικοί z, z και έστω Α, Β οι εικόνες τους στο μιγαδικό επίπεδο. Να αποδείξετε ότι: α. Η εξίσωση z z = z z τμήματος ΑΒ., παριστάνει την μεσοκάθετο του ευθύγραμμου (ΜΟΝΑΔΕΣ ) β. Αν z =iz το τρίγωνο ΟΑΒ είναι ορθογώνιο και ισοσκελές. (Ο είναι η αρχή των αξόνων) (ΜΟΝΑΔΕΣ 3) Δ) Να αποδείξετε ότι αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο χ ο του πεδίου ορισμού της, τότε είναι συνεχής στο σημείο αυτό. (ΜΟΝΑΔΕΣ 5)

6 ΘΕΜΑ ο Δίνεται η παραγωγίσιμη συνάρτηση f: R R, για την οποία ισχύουν: lim f ( ) = +, lim f ( ) = και f ()= + f ( ) e για κάθε χ R με f ()=. + Α) Να αποδείξετε ότι η f: α. είναι γνησίως αύξουσα στο R και να βρείτε το σύνολο τιμών της. β. στρέφει τα κοίλα κάτω στο R γ. έχει μοναδική ρίζα την χ=. (ΜΟΝΑΔΕΣ 3) (ΜΟΝΑΔΕΣ ) (ΜΟΝΑΔΕΣ ) Β) Να αποδείξετε ότι: α. ισχύει f(χ)+e f() =+, για κάθε χ R. (ΜΟΝΑΔΕΣ 4) β. η f αντιστρέφεται και να ορίσετε την αντίστροφή της. (ΜΟΝΑΔΕΣ ) γ. οι γραφικές παραστάσεις των f και f έχουν κοινή εφαπτομένη στην αρχή των αξόνων. (ΜΟΝΑΔΕΣ 4) Γ) α. Να βρείτε την πλάγια ασύμπτωτη της γραφικής παράστασης της f στο. (ΜΟΝΑΔΕΣ 4) β. Να αποδείξετε ότι η f δεν έχει πλάγια ασύμπτωτη στο +. (ΜΟΝΑΔΕΣ 4) ΘΕΜΑ 3 ο z Δίνεται ο μιγαδικός z i και θεωρούμε τον f(z)= z + i όρισμα του μιγαδικού z+i.. Έστω ρ το μέτρο και θ ένα α. Βρείτε τις συντεταγμένες της εικόνας Α του μιγαδικού z ο στο μιγαδικό επίπεδο, για τον οποίο ισχύει f(z ο)=3+i. (ΜΟΝΑΔΕΣ 3) β. Να βρείτε συναρτήσει των ρ και θ, το μέτρο και ένα όρισμα του μιγαδικού f(z). (ΜΟΝΑΔΕΣ 5) γ. Αν f ( z ) =, να αποδείξετε ότι η εικόνα Μ του z στο μιγαδικό επίπεδο ανήκει σε κύκλο c, του οποίου να βρείτε το κέντρο και την ακτίνα του. (ΜΟΝΑΔΕΣ 7) π δ. Αν Arg(f(z) )=, να αποδείξετε ότι η εικόνα Μ του z στο μιγαδικό επίπεδο ανήκει σε 4 μία ημιευθεία ε. (ΜΟΝΑΔΕΣ 8) ε. Να αποδείξετε ότι το σημείο Α ανήκει στον κύκλο c και στην ημιευθεία ε. (ΜΟΝΑΔΕΣ )

7 ΘΕΜΑ 4 ο Δίνεται η συνάρτηση f: R R με f(χ)= + F()= e f ( t ) dt, G()= Να αποδείξετε ότι: e f ( t ) dt t, >. Α) α. f =f() για κάθε χ R*. β. f '( ), για κάθε χ R. 8 και έστω οι συναρτήσεις F, G με (ΜΟΝΑΔΕΣ ) (ΜΟΝΑΔΕΣ 6) Β) Για τους πραγματικούς αριθμούς α,β με <α<β ισχύει: f f β α. β α (ΜΟΝΑΔΕΣ 4) Γ) Ο τύπος της συνάρτησης g με g(χ)=f()+g(), > είναι g()=ln+, >. (ΜΟΝΑΔΕΣ 4) π Δ) Αν η συνάρτηση h είναι συνεχής στα σημεία, και h(χ)=f(εφχ)+g(σφχ) με π <χ<, τότε είναι σταθερή στο π, και να βρεθεί η τιμή της. (ΜΟΝΑΔΕΣ 5) Ε) Το εμβαδόν του χωρίου που ορίζεται από τις γραφικές παραστάσεις των συναρτήσεων f (), h() και την ευθεία χ= είναι ίσο με. (ΜΟΝΑΔΕΣ 4)

8 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη =. ΜΟΝΑ ΕΣ 8 β) Έστω οι συναρτήσεις f, g συνεχείς σε ένα διάστηµα για τις οποίες ισχύει: f '( ) = g' ( ) για κάθε εσωτερικό σηµείο του. Να αποδείξετε ότι υπάρχει σταθερά c τέτοια ώστε να ισχύει: f ( ) = g ( ) + c για κάθε ΜΟΝΑ ΕΣ 5 γ) Έστω µια συνάρτηση f µε πεδίο ορισµού Α. Να δώσετε τον ορισµό : Πότε η f παρουσιάζει στο A τοπικό ελάχιστο. ΜΟΝΑ ΕΣ 3 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν µε την ένδειξη Σωστό ή Λάθος. α) Αν µια συνάρτηση f : A R έχει αντίστροφη συνάρτηση γνησίως µονότονη στο Α. β) Αν µια συνάρτηση f είναι συνεχής στο τις τιµές του κοντά στο. f, τότε η f είναι και f ( ) >, τότε f ( ) > για γ) Αν η συνάρτηση f είναι παραγωγίσιµη και γνησίως αύξουσα στο [ α, β] τότε, υπάρχει ( α β ) τέτοιος ώστε να ισχύει ( ), f ' >. δ) Έστω η συνάρτηση f η οποία είναι κυρτή στο διάστηµα και δύο φορές παραγωγίσιµη σε αυτό. Τότε ισχύει f ''( ) > για κάθε. ε) Αν f συνεχής στο [ aβ, ] µε f ( ) και ισχύει f ( ) d> [ α β] τέτοιος ώστε ( ), f >. β a, τότε υπάρχει στ) Αν η συνεχής συνάρτηση f δεν είναι παντού ίση µε µηδέν στο [ α, β] και β ισχύει ( ) = a f d, τότε η f παίρνει δύο τουλάχιστον ετερόσηµες τιµές. ΜΟΝΑ ΕΣ 9

9 Θέµα ο Έστω η συνάρτηση ( ) ln ( a) f =, a>. Α. Αν η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο Μ(, f ( ) ) είναι παράλληλη στην ευθεία y =, να βρείτε την τιµή του α. Β. Για a= : α) Να µελετήσετε τη µονοτονία και να βρείτε τα ακρότατα της f. β) Να βρείτε το σύνολο τιµών και τις ασύµπτωτες. κ γ) Να αποδείξετε: ότι ( κ ) ( κ ) Θέµα 3ο ίνονται συνάρτηση f παραγωγίσιµη στο [, ] αριθµοί z= a+ βi και w f ( α ) + i f ( β) Α. Να αποδείξετε ότι: α) Ο αριθµός z κ + > + για κάθε θετικό ακέραιο κ 8 = µε ( ) + β i z ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 7 ΜΟΝΑ ΕΣ 8 α β µε < α< β και οι µιγαδικοί f β. = είναι πραγµατικός αν και µόνο αν f ( a) + f ( β ) i w ΜΟΝΑ ΕΣ 5 β) Αν z = iw τότε οι εικόνες των z, w στο µιγαδικό επίπεδο και η αρχή των αξόνων, είναι κορυφές ορθογωνίου και ισοσκελούς τριγώνου. Β. Έστω ότι ισχύει α) a f ( β ) β f ( α ) = z iw = z + iw. Να αποδείξετε ότι: β) Οι εικόνες των z, w και η αρχή είναι συνευθειακά σηµεία. γ) Υπάρχει ένα τουλάχιστον ( aβ, ) παράστασης της f στο σηµείο (, ( )) = a ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 4 ΜΟΝΑ ΕΣ 3 τέτοιο ώστε, η εφαπτοµένη της γραφικής M f να διέρχεται από το σηµείο (,). ΜΟΝΑ ΕΣ 8

10 Θέµα 4ο ίνεται η συνάρτηση f µε f ''( ) συνεχή στο R τέτοια ώστε να ισχύουν: ( t + ) f ''( t) dt = t f '( t) dt 4 t f ( ) dt για κάθε R f ( ) = και ( ) f ' =. α) Να αποδείξετε ότι ο τύπος της είναι f ( ) =, R +, µε ΜΟΝΑ ΕΣ β) Έστω E ( a ) το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f, τον άξονα και τις ευθείες = και = a>. Αν το a µεταβάλλεται µε ρυθµό cm / sec, να βρείτε το ρυθµό µεταβολής του 3 E a, τη χρονική στιγµή κατά την οποία a= 3cm. εµβαδού ( ) γ) Θεωρούµε συνεχή συνάρτηση g για την οποία ισχύει: ( ) ( ) g + f για κάθε R. ΜΟΝΑ ΕΣ 5 (i) Να αποδείξετε ότι η ευθεία y = + είναι ασύµπτωτη της γραφικής παράστασης της g όταν + ΜΟΝΑ ΕΣ 5 (ii) Αν Ε είναι το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της g, την πλάγια ασύµπτωτη της στο + και τις ευθείες = και =, να αποδείξετε ότι: E ln 5 ΜΟΝΑ ΕΣ 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΙΣ ΓΕΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

11 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 4 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θ Ε Μ Α ο Α. Ν α α π ο δ ε ί ξ ε τ ε τ ο θ ε ώ ρ η µ α : Έ σ τ ω µ ι α σ υ ν ά ρ τ η σ η f, η ο π ο ί α ε ί ν α ι ο ρ ι σ µ έ ν η σ ε έ ν α κ λ ε ι σ τ ό δ ι ά σ τ η µ α [ α, β ]. Α ν η f ε ί ν α ι σ υ ν ε χ ή ς σ τ ο [ α, β ] κ α ι f ( α ) f ( β ) τ ό τ ε, γ ι α κ ά θ ε α ρ ι θ µ ό η µ ε τ α ξ ύ τ ω ν f ( α ) κ α ι f ( β ) υ π ά ρ χ ε ι έ ν α ς, τ ο υ λ ά χ ι σ τ ο ν ( α, β ) τ έ τ ο ι ο ς, ώ σ τ ε f ( ) = η Μ Ο Ν Α Ε Σ 5 Β. Η σ υ ν ά ρ τ η σ η f, π ο υ η γ ρ α φ ι κ ή τ η ς π α ρ ά σ τ α σ η φ α ί ν ε τ α ι σ τ ο σ χ ή µ α, ε ί ν α ι δ ύ ο φ ο ρ έ ς π α ρ α γ ω γ ί σ ι µ η σ τ ο π ε δ ί ο ο ρ ι σ µ ο ύ τ η ς µ ε σ υ ν ε χ ή δ ε ύ τ ε ρ η π α ρ ά γ ω γ ο. y y = f () 3 y Ν α β ρ ε ί τ ε, α ν η τ ι µ ή τ ω ν ο λ ο κ λ η ρ ω µ ά τ ω ν I, I, I 3 ε ί ν α ι θ ε τ ι κ ή ή α ρ ν η τ ι κ ή. 3 I = f () d Μ Ο Ν Α Ε Σ I = 3 f '() d Μ Ο Ν Α Ε Σ 3 3= Μ Ο Ν Α Ε Σ 3 I f ''() d

12 Γ. Ν α α ν τ ι σ τ ο ι χ ί σ ε τ ε κ α θ έ ν α α π ό τ α ό ρ ι α τ η ς σ τ ή λ η ς Α µ ε τ η ν τ ι µ ή τ ο υ τ η ς σ τ ή λ η ς Β. Σ Τ Η Λ Η Α Σ Τ Η Λ Η Β. lim ηµ α.. lim ηµ 3. lim ln + 4. lim e β. γ. δ. + Μ Ο Ν Α Ε Σ 8. Έ σ τ ω η σ υ ν ά ρ τ η σ η f ( ) = ν, ν IN -{, }. Ν α α π ο δ ε ί ξ ε τ ε, ό τ ι η σ υ ν ά ρ τ η σ η f ε ί ν α ι π α ρ α γ ω γ ί σ ι µ η σ τ ο IR κ α ι ι σ χ ύ ε ι f ( ) = ν ν -. ΜΟΝΑ ΕΣ 5 Θ Ε Μ Α ο. Ο ι σ υ ν α ρ τ ή σ ε ι ς f, g ε ί ν α ι ο ρ ι σ µ έ ν ε ς κ α ι π α ρ α γ ω γ ί σ ι µ ε ς σ τ ο IR µ ε Α ν σ τ ο ό ρ ι ο L = f ( ) g ( ) =, f ( ) γ ι α κ ά θ ε IR... g() + ε φ α ρ µ ό σ ο υ µ ε τ ο ν κ α ν ό ν α τ ο υ ο ρ ί ο υ π η λ ί κ ο υ, + f() lim π α ρ ο υ σ ι ά ζ ε τ α ι α π ρ ο σ δ ι ο ρ ι σ τ ί α τ η ς µ ο ρ φ ή ς. α. i ) Ν α υ π ο λ ο γ ί σ ε τ ε τ ο ό ρ ι ο L. Μ Ο Ν Α Ε Σ 6 i i ) Ν α β ρ ε ί τ ε τ ι ς α σ ύ µ π τ ω τ ε ς τ ω ν γ ρ α φ ι κ ώ ν π α ρ α σ τ ά σ ε ω ν τ ω ν σ υ ν α ρ τ ή σ ε ω ν f κ α ι g σ τ ο +. Μ Ο Ν Α Ε Σ 6 β. Ν α α π ο δ ε ί ξ ε τ ε ό τ ι η g έ χ ε ι τ ο π ο λ ύ µ ι α ρ ί ζ α σ τ ο IR. Μ Ο Ν Α Ε Σ 6 γ. Ν α α π ο δ ε ί ξ ε τ ε ό τ ι : f ( ) g ( ) = + 4 γ ι α κ ά θ ε IR. Μ Ο Ν Α Ε Σ 7

13 Θ Ε Μ Α 3 ο Γ ι α κ ά θ ε IR. ο ρ ί ζ ο υ µ ε τ η ν σ υ ν ά ρ τ η σ η g() = t α+ e dt, α > κ α ι τ ο ν µ ι γ α δ ι κ ό z = g ( ) + i µ ε z + i z. Α. Ν α α π ο δ ε ί ξ ε τ ε, ό τ ι i ) η g α ν τ ι σ τ ρ έ φ ε τ α ι κ α ι i i ) ο ι ε ι κ ό ν ε ς τ ο υ z α ν ή κ ο υ ν σ τ η ν γ ρ α φ ι κ ή π α ρ ά σ τ α σ η τ η ς g -. Μ Ο Ν Α Ε Σ 4 Β. Ν α α π ο δ ε ί ξ ε τ ε, ό τ ι : α. R e ( z ) I m ( z ), γ ι α κ ά θ ε IR Μ Ο Ν Α Ε Σ 7 β. α =. Μ Ο Ν Α Ε Σ 7 γ. < dt dt < t t + e α + e α + e + e Μ Ο Ν Α Ε Σ 7 Θ Ε Μ Α 4 ο Ο ι σ υ ν α ρ τ ή σ ε ι ς f, g ε ί ν α ι ο ρ ι σ µ έ ν ε ς κ α ι π α ρ α γ ω γ ί σ ι µ ε ς σ τ ο IR µ ε g ( ) = κ α ι f ( ) = g ( ), f ( ) + g ( ) = γ ι α κ ά θ ε IR. α. Ν α α π ο δ ε ί ξ ε τ ε ό τ ι : i ) g ( ) = g ( ) f ( ), IR.. Μ Ο Ν Α Ε Σ 4 i i ) Η g ε ί ν α ι γ ν η σ ί ω ς µ ο ν ό τ ο ν η σ ε κ α θ έ ν α α π ό τ α δ ι α σ τ ή µ α τ α (, ], [, + ) κ α ι έ χ ε ι α κ ρ ό τ α τ ο τ ο. Μ Ο Ν Α Ε Σ 5 β. i ) Ν α µ ε λ ε τ ή σ ε τ ε τ η ν σ υ ν ά ρ τ η σ η f ω ς π ρ ο ς τ η ν κ υ ρ τ ό τ η τ α κ α ι ν α β ρ ε ί τ ε τ α σ η µ ε ί α κ α µ π ή ς τ η ς. Μ Ο Ν Α Ε Σ 6 i i ) Ν α γ ρ ά ψ ε τ ε τ η ν ε ξ ί σ ω σ η τ η ς ε φ α π τ ο µ έ ν η ς τ η ς γ ρ α φ ι κ ή ς π α ρ ά σ τ α σ η ς τ η ς f σ τ ο σ η µ ε ί ο τ η ς Ο (, ). Μ Ο Ν Α Ε Σ 3 γ. Α ν Ε ε ί ν α ι τ ο ε µ β α δ ό ν τ ο υ χ ω ρ ί ο υ, π ο υ ο ρ ί ζ ε τ α ι α π ό τ η ν γ ρ α φ ι κ ή π α ρ ά σ τ α σ η τ η ς f κ α ι τ ι ς ε υ θ ε ί ε ς y =, =, ν α δ ε ί ξ ε τ ε, ό τ ι Ε = ln[ g ()] +. Μ Ο Ν Α Ε Σ 7

14 Επαναληπτικά Θέµατα ΟΕΦΕ 5 Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 5 ΕΚΦΩΝΗΣΕΙΣ Θέµα ο Α. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Να αποδείξετε ότι: Αν f ( ) ' > σε κάθε εσωτερικό σηµείο του, τότε η f είναι γνησίως αύξουσα σε όλο το. f Β. Έστω η συνάρτηση ( ) Να αποδείξετε ότι: '( ) >. a = µε α και f a a =. Μονάδες 9 Γ. Να απαντήσετε αν είναι Σωστή ή Λάθος κάθε µια από τις παρακάτω προτάσεις.. Μια συνάρτηση f : A είναι << >> αν και µόνο αν για κάθε, Α ισχύει η συνεπαγωγή: αν = τότε f ( ) = f ( ). Αν lim f ( ) < lim g ( ) τότε f ( ) < g ( ) κοντά στο. 3. Αν η συνάρτηση f είναι συνεχής στο [ aβ, ] και υπάρχει ( aβ, ) τέτοιο ώστε f ( ) =, τότε f ( a) f ( β ) <. 4. Αν η συνάρτηση f είναι παραγωγίσιµη στο [, ] υπάρχει ( aβ ) τέτοιο ώστε f '( ) <. β, 5. Αν ( ) = a aβ και γνησίως αύξουσα, τότε f d και η συνάρτηση f δεν είναι παντού ίση µε µηδέν στο [ aβ, ], τότε f ( ) για κάθε [ aβ, ]. Μονάδες Θέµα ο f = ln, > Έστω η συνάρτηση ( ) ( ) α) Να αποδείξετε ότι: ( ) β) Να βρείτε το lim f '( ) + ln f ' =, >.. Μονάδες 4

15 Επαναληπτικά Θέµατα ΟΕΦΕ 5 Μονάδες 3 γ) Να µελετήσετε τα κοίλα της f και να βρείτε το σηµείο της καµπής της. Μονάδες 8 δ) Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης g ( ) και Θέµα 3 ο = e. ln ίνεται ο µιγαδικός z = e + ( ) i,. α) Να αποδείξετε ότι: Re( z) Im( z) =, τον άξονα και τις ευθείες > για κάθε.. β) Να αποδείξετε ότι υπάρχει ένας τουλάχιστον ( ), w z z i = + + να είναι πραγµατικός. = e Μονάδες Μονάδες 8 τέτοιος ώστε ο αριθµός γ) Να βρείτε το µιγαδικό z του οποίου το µέτρο να γίνεται ελάχιστο. Θέµα 4 ο ίνεται συνάρτηση f παραγωγίσιµη στο για την οποία ισχύουν ( ) και e f ( ) + f '( ) + ηµ = f '( ) για κάθε. f ) = συν + e f + f = συν για κάθε.. Μονάδες 8 Μονάδες 9 f = α) Να αποδείξετε ότι ο τύπος της f είναι (, και ότι ισχύει ( ) ( ) β) Να βρείτε το lim f ( ) + γ) Να υπολογίσετε το ολοκλήρωµα ( ) δ) Να αποδείξετε ότι: f ( ). π π I= f d. π π d 4. Μονάδες 7

16 Επαναληπτικά Θέµατα ΟΕΦΕ 6 Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα Α. α) Έστω µια συνάρτηση f ορισµένη σ ένα διάστηµα και ένα εσωτερικό σηµείο του. Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε ότι: f '( ) =. Μονάδες β) Πότε η ευθεία = λέγεται ασύµπτωτη της γραφικής παράστασης µιας συνάρτησης f ; Μονάδες 4 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν µε την ένδειξη Σωστό ή Λάθος. α) Μια συνάρτηση f : Α R είναι << >> όταν για κάθε, Α ισχύει η συνεπαγωγή: f ( ) = f ( ) τότε =. lim f g τότε κατ ανάγκη υπάρχουν τα ( ) β) Αν υπάρχει το ( ) ( ) lim f ( ) και lim ( ) g γ) Αν lim f ( ) = + ή τότε ( ). f για τις τιµές του κοντά στο. δ) Αν µια συνάρτηση f είναι δύο φορές παραγωγίσιµη σ ένα διάστηµα και δεν παρουσιάζει καµπή σε κανένα σηµείο του, f '' για κάθε. τότε ( ) β f d και a β ε) Αν ( ) = a κάθε [ aβ, ]. f = για < τότε κατ ανάγκη ισχύει ( ) Μονάδες

17 Επαναληπτικά Θέµατα ΟΕΦΕ 6 Θέµα ίνονται οι µιγαδικοί z και z+ i w= όπου z i. + i z α) Να αποδείξετε ότι: w i = z w + i Μονάδες 5 β) Αν z= και Μ η εικόνα του w στο µιγαδικό επίπεδο, να αποδείξετε ότι το σηµείο Μ ανήκει στον άξονα. γ) Να αποδείξετε την ισοδυναµία: w φανταστικός z φανταστικός. Μονάδες 7 f a > και έστω δ) Θεωρούµε συνάρτηση f συνεχή στο [ aβ, ] µε ( ) z = f ( a) i και w f ( β ) i έχει µια τουλάχιστον λύση στο (α,β). Θέµα 3 =. Να αποδείξετε ότι η εξίσωση ( ) f = Μονάδες 7 ίνεται η συνάρτηση f ( ) = e a όπου a>. α) Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης, f. ( ) της f στο σηµείο ( ) Μονάδες 4 β) Να αποδείξετε ότι η f παρουσιάζει ελάχιστο το οποίο είναι αρνητικό. Μονάδες 8 γ) Έστω ( a) παράσταση της f, την εφαπτοµένη της στο, ( ) = a>. Ε το εµβαδόν του χωρίου που περικλείεται από τη γραφική i) Να αποδείξετε ότι: ( ) ii) Να βρείτε το lim ( a) a + a a Ε a = e a. Ε. ( ) f και την ευθεία Μονάδες 7

18 Επαναληπτικά Θέµατα ΟΕΦΕ 6 Θέµα 4 Έστω συνάρτηση f συνεχής στο R µε f ( ) > και έστω ( ) ( ) g = t f t dt, t, R. Να αποδείξετε ότι: g t f t dt για κάθε. α) ( ) = ( ) β) Η g είναι συνεχής στο =. γ) g ( ) ( ) < f t dt για κάθε >. δ) Αν ( ) = 3 ( ) Μονάδες 7 t f t dt t f t dt τότε υπάρχει ένας τουλάχιστον ξ (, ) τέτοιος ώστε: g ( ξ ) f ( ξ ) =.

19 Επαναληπτικά Θέµατα ΟΕΦΕ 7 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Θέµα ο Α. α) Να διατυπώσετε το θεώρηµα του Fermat. Μονάδες 4 β) Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα και f ' > για κάθε εσωτερικό σηµείο του. ισχύει ( ) Να αποδείξετε ότι η f είναι γνησίως αύξουσα στο. Μονάδες 9 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν µε την ένδειξη Σωστό ή Λάθος.. Αν για µια συνάρτηση A R f : ισχύει ( ) f κ όπου κάθε Α, τότε το κ είναι η µέγιστη τιµή της f. κ R για. Αν υπάρχει το lim f ( ) =, τότε υπάρχει το όριο της ( ) lim =. και είναι f ( ) f στο 3. Αν για µια συνάρτηση f ισχύουν f ( a ) f ( β ) < και f ( ) για κάθε ( a, β ), τότε η f δεν είναι συνεχής στο [ a, β ]. 4. Αν για δύο συναρτήσεις f, g συνεχείς στο διάστηµα ισχύει ( ) = ' ( ) για κάθε εσωτερικό σηµείο του, τότε f ( ) = g ( ) f ' g για κάθε. 5. Αν για µια συνάρτηση f υπάρχει παράγουσα στο διάστηµα, τότε για κάθε λ R ισχύει: λ f ( ) d = λ f ( ) d 6. Αν οι συναρτήσεις,. f g είναι συνεχείς στο [, ] a β και ισχύει f ( ) < g ( ) για κάθε [ a, β], τότε ( ) < ( ) β f d g d. a β a Μονάδες

20 Επαναληπτικά Θέµατα ΟΕΦΕ 7 Θέµα ο Έστω η συνάρτηση f ( ) = ( + a) e. Αν η ευθεία y = +, R εφάπτεται στη γραφική παράσταση της f στο σηµείο (, f ( )) α) Να αποδείξετε ότι: a=. β) Να µελετήσετε τη µονοτονία της f. γ) Να υπολογίσετε τα όρια: lim f lim f i) ( ) ii) ( ) + δ) Να αποδείξετε ότι η εξίσωση ( ) 7 Μ τότε: Μονάδες 7 f = έχει ακριβώς µια λύση στο R. Θέµα 3 ο ίνονται οι µιγαδικοί z, w µε z w για τους οποίους ισχύει: Να αποδείξετε ότι: α) ( z w ) Re =. z + w = z w. β) Ο αριθµός z w είναι φανταστικός. Μονάδες 5 γ) Το τρίγωνο µε κορυφές τις εικόνες των z, w στο µιγαδικό επίπεδο και την αρχή Ο των αξόνων, είναι ορθογώνιο στο. Μονάδες 7 a β µε < a< β και δ) Αν η συνάρτηση f είναι παραγωγίσιµη στο [, ] z = a + i f ( a ), w = f ( β ) βi τότε η εξίσωση f ' ( ) = f ( ) έχει µια τουλάχιστον λύση στο ( a, β ). Θέµα 4 ο ίνεται η συνάρτηση g ( ) = d t όπου t, R. + t α) Να µελετήσετε ως προς τα κοίλα τη συνάρτηση g. + β) Να αποδείξετε ότι: g ( ) γ) Να αποδείξετε ότι: g ( ) g ( ) για κάθε + = για κάθε R. Μονάδες 7 Μονάδες 4 Μονάδες 7

21 Επαναληπτικά Θέµατα ΟΕΦΕ 7 δ) Να αποδείξετε ότι το εµβαδόν Ε του χωρίου που περικλείεται από τη γραφική παράσταση της g, τον άξονα και τις ευθείες =, = είναι Ε = g ( ) ln τ.µ. Μονάδες 8 Καλή Επιτυχία στις Γενικές εξετάσεις

22 Επαναληπτικά Θέµατα ΟΕΦΕ 8 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () = g () για κάθε εσωτερικό σηµείο του, να αποδείξετε ότι υπάρχει σταθερά c τέτοια, ώστε για κάθε να ισχύει: f () = g() + c ΜΟΝΑ ΕΣ 6 β. Να αποδείξετε ότι η συνάρτηση f () = ν, ν IN {, } είναι παραγωγίσιµη στο IR και ισχύει: f () = ν ν ΜΟΝΑ ΕΣ 5 Β. Έστω οι µιγαδικοί αριθµοί z, z. Να χαρακτηρίσετε καθεµιά από τις επόµενες προτάσεις ως Σωστή (Σ) ή Λανθασµένη (Λ): α. Η διανυσµατική ακτίνα του αθροίσµατος των z και z είναι το άθροισµα των διανυσµατικών τους ακτίνων. ΜΟΝΑ ΕΣ β. Είναι: z + z= z+ z γ. Είναι: z z z + z z + z ΜΟΝΑ ΕΣ ΜΟΝΑ ΕΣ δ. Η εξίσωση z z = z z µε z z παριστάνει τη µεσοκάθετο του τµήµατος µε άκρα τα σηµεία Α(z ) και Β(z ). ΜΟΝΑ ΕΣ

23 Επαναληπτικά Θέµατα ΟΕΦΕ 8 Γ. Έστω η συνάρτηση F() = f(t) dt, όπου f η συνάρτηση του διπλανού σχήµατος που η γραφική της παράσταση αποτελείται από τα ευθύγραµµα τµήµατα ΟΑ και ΑΒ. Το εµβαδό του γραµµοσκιασµένου χωρίου Ω είναι Ε(Ω) = 36 τ.µ. Να συµπληρώσετε τις ισότητες: α. F() = β. F(4) = γ. F() = y B 4 A Ω Ο 4 ΜΟΝΑ ΕΣ 6 ΘΕΜΑ ο ίνεται η συνάρτηση f µε ηµ + λ, αν > f() = µε λ, µ IR (µ ) +, αν α. Να βρείτε την τιµή του λ, ώστε η f να είναι συνεχής. ΜΟΝΑ ΕΣ 6 β. Να βρείτε την τιµή του µ, ώστε η f να είναι παραγωγίσιµη στο =. ΜΟΝΑ ΕΣ 8 γ. Να αποδείξετε ότι η f δεν είναι -. δ. Για λ = και µ =, να υπολογίσετε το ολοκλήρωµα f() d. π ΜΟΝΑ ΕΣ 3 ΜΟΝΑ ΕΣ 8 ΘΕΜΑ 3 ο ίνεται η συνάρτηση f µε f () = e e, IR. α. i. Να την µελετήσετε ως προς την µονοτονία. ΜΟΝΑ ΕΣ 4 + e ii. Να αποδείξετε ότι f () = (e ) e, να µελετήσετε την f ως προς την κυρτότητα και να βρείτε το σηµείο καµπής της γραφικής της παράστασης. ΜΟΝΑ ΕΣ 5 β. Να βρείτε τις οριζόντιες ασύµπτωτες της γραφικής παράστασης της f. ΜΟΝΑ ΕΣ 6 γ. Να παραστήσετε γραφικά την f. ΜΟΝΑ ΕΣ 4 δ. Να βρείτε το εµβαδόν του χωρίου που ορίζεται από την γραφική παράσταση της f (), τους άξονες, y y και την ευθεία = ln. ΜΟΝΑ ΕΣ 6

24 Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ 4 ο Οι συναρτήσεις f, g: IR IR είναι συνεχείς και για κάθε πραγµατικό αριθµό ισχύουν: Να αποδείξετε ότι: f(t) dt = g(t) dt () και g() () α. Η f είναι παραγωγίσιµη στο = και f () = g() β. g() < για κάθε IR γ. f(t) dt f(t)dt για κάθε IR ΜΟΝΑ ΕΣ 6 ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 7 δ. H εξίσωση f () = g() + έχει τουλάχιστον µια ρίζα στο διάστηµα (, ). ΜΟΝΑ ΕΣ 7

25 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, να δείξετε ότι: f ( ) = Μονάδες 9 B..Πότε η ευθεία ψ = λ +β λέγεται ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 α, β ;.Πότε μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [ ] Μονάδες 3 Γ. Να χαρακτηρίσετε καθεμία από τις επόμενες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ): f = l f + h =l lim lim. Ισχύει ( ) ( ) h lim. Αν < α < τότε a =. 3. Αν η f είναι συνεχής στο [, ] ακρότατα τα f ( α ) και f ( β ). Μονάδες Μονάδες α β τότε η f έχει υποχρεωτικά ολικά Μονάδες α, β 4. Για τις συναρτήσεις f και g που έχουν συνεχείς παραγώγους στο [ ] ισχύει: β α α ( ) ( ) ( ) ( ) ( ) ( ) f g d f g d = f g 5. Αν για κάθε στοιχείο ψ του συνόλου τιμών της f ( ), η ( ) λύση ως προς τότε η f είναι -. β β α Μονάδες f χ = ψ έχει Μονάδες ΘΕΜΑ ο Δίνεται η εξίσωση z+ =, z C z 3 Α. z z = και z =. 9 9 Β. ( z ) + z R και z, z οι ρίζες της. Να αποδείξετε ότι: Μονάδες 4 Μονάδες 4

26 Γ. z + + = 8 z Μονάδες 4 Δ. Αν f ( ) συνάρτηση παραγωγίσιμη στο [, ] με z z f ( ) = z + z και () f = z + 3 z τότε υπάρχει ένα τουλάχιστον (,), ώστε f ( ) = 3. Μονάδες 7 Ε. Αν Γ είναι η εικόνα του μιγαδικού w= z+ z και Α, Β οι εικόνες των z και z αντίστοιχα, να δείξετε ότι το τρίγωνο ΑΒΓ είναι ισισκελές. ΘΕΜΑ 3ο Δίνεται η συνάρτηση f ( ) ln = + +. Α. Να μελετηθεί ως προς την μονοτονία και να βρείτε τα διαστήματα στα οποία είναι κυρτή ή κοίλη. Β. Να βρείτε το σύνολο τιμών και το πλήθος των ριζών της f. Γ. Αν g( ) ln = να δείξετε ότι υπάρχει > ώστε: + g( ) g( ) για κάθε > Μονάδες 7 > f ( ) < f ( + ) f ( + 4). Δ. Να δείξετε ότι για κάθε ισχύει: ΘΕΜΑ 4ο Έστω συνάρτηση f ορισμένη και παραγωγίσιμη στο (, + ) για την οποία ισχύουν οι σχέσεις: + f = και f () = e e f = e Α. Να δείξετε ότι ( ) / Μονάδες 8 Β..Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο με τετμημένη =. ( ).Να δείξετε ότι f ( ) d> e f ( ) Γ. Αν g( ) =, να βρείτε το εμβαδόν ( t) Μονάδες Μονάδες 7 Ε του χωρίου που περικλείεται 3 από τη C, τον και τις ευθείες = και = t με t >. g Μονάδες 5

27 lim () Δ. Να βρείτε το E t. t + Μονάδες 3

28 Επαναληπτικά Θέµατα ΟΕΦΕ ΘΕΜΑ ο Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Α. Έστω f µία συνεχής συνάρτηση σ ένα διάστηµα [α, β]. Αν G είναι µία β παράγουσα της f στο [α, β], τότε f ( t) dt = G( β ) G( α ). B.. B.. α (Μονάδες ) Πότε λέµε ότι µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο του πεδίου ορισµού της. (Μονάδες 3) Να δώσετε την γεωµετρική ερµηνεία του παράγωγου αριθµού στο σηµείο Μ, f της γραφικής παράστασης της f. ( ( ) (Μονάδες ) Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α) Αν z z + = και z, z C αναγκαστικά z =z =. g α lim g α lim f y = l τότε β) Αν ( ) κοντά στο µε ( ) = και ( ) ( ( )) lim f g = l. γ) Αν η f είναι παραγωγίσιµη στο [α, β] και ( ) συνάρτησης, τότε κατ ανάγκη θα είναι ( ) =. y α f β µέγιστη τιµή της f β δ) Αν µία συνάρτηση f είναι κυρτή και δύο φορές παραγωγίσιµη στο διάστηµα, τότε f ( ) >. ε) Αν µία συνάρτηση f είναι συνεχής στο [, 5 ] και f ( ) στο [ ] f d. τότε ( ) 5, 5, (Μονάδες )

29 Επαναληπτικά Θέµατα ΟΕΦΕ ΘΕΜΑ ο + w Οι µιγαδικοί αριθµοί z, w συνδέονται µε τη σχέση z = και η εικόνα του w w Κ και ακτίνα ρ =. ανήκει στον κύκλο µε κέντρο (,) α) Να δείξετε ότι η εικόνα του z ανήκει σε κύκλο µε κέντρο το Ο(, ) και ακτίνα ρ =. () β) Αν z= () και z, z, z 3 οι εικόνες τριών µιγαδικών αριθµών για τους οποίους ισχύει η σχέση () να δείξετε ότι: z+ z z+ z3 z+ z3 i) Ο αριθµός α= + + είναι πραγµατικός. z3 z z (Μονάδες 7) ii) Αν επιπλέον z +z +z 3 = τότε να αποδείξετε ότι: z z z 3 3 Re + + = z z z 3 (Μονάδες 7) γ) ίνεται η ευθεία (ε): 3 + 4y =. Να βρεθεί η µέγιστη και η ελάχιστη απόσταση των εικόνων του µιγαδικού w από την ευθεία (ε). (Μονάδες 5) ΘΕΜΑ 3 ο Έστω η παραγωγίσιµη συνάρτηση f :(, ) + ισχύουν f ( ) = f ( ) e + και ( ) f =. α) Να δείξετε ότι η συνάρτηση g( ) = e + είναι -. β) Να δείξετε ότι f ( ) ln = για κάθε >. γ) Να µελετήσετε τη συνάρτηση h( ) βρεθεί το σύνολο τιµών της. + R τέτοια, ώστε για κάθε > ( ) (Μονάδες ) () f = ως προς την µονοτονία και να ()

30 Επαναληπτικά Θέµατα ΟΕΦΕ συν ηµ ηµ συν δ) Να λύσετε την εξίσωση π = αν e e,. (Μονάδες 5) ε) Να εξετασθεί η h ως προς κυρτότητα και να δείξετε ότι για κάθε, µε h( ) h( ) > > ισχύει. 5 e () ΘΕΜΑ 4 ο Έστω συνάρτηση f : R R η οποία είναι παραγωγίσιµη και τέτοια, ώστε u ( ) f t dt du 6 για κάθε R. Να αποδείξετε ότι: 3 α) 3 f ( t) dt=. (Μονάδες 7) β) Αν η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο Α (, f ()) είναι η ευθεία 4 + y 3 = να υπολογίσετε το γ) Αν για κάθε ισχύει f ( ) > και ότι για κάθε > ισχύει h( ) h ( ) >. 3 t f ( t) dt lim. 4 (Μονάδες 5) h( ) = f ( t) dt, να αποδείξετε δ) Να δείξετε ότι υπάρχει ένα τουλάχιστον (,3) f ( ξ ) + 3= ξ. (Μονάδες 7) ξ τέτοιο, ώστε ()

31 Επαναληπτικά Θέµατα ΟΕΦΕ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των και υπάρχει ένας, τουλάχιστον, ) τέτοιος, ώστε ΜΟΝΑ ΕΣ 7 Β. Πότε η ευθεία λέγεται κατακόρυφη ασύµπτωτη της γραφικής παράστασης µιας συνάρτησης ; ΜΟΝΑ ΕΣ 4 Γ. Να δώσετε την γεωµετρική ερµηνεία του θεωρήµατος του Rolle. ΜΟΝΑ ΕΣ 4. Να χαρακτηρίσετε καθεµιά από τις επόµενες προτάσεις ως σωστή (Σ) ή λανθασµένη (Λ).. Για κάθε µιγαδικό αριθµό z είναι.. Είναι. ΜΟΝΑ ΕΣ ΜΟΝΑ ΕΣ 3. Για οποιεσδήποτε συναρτήσεις f : A ΙR και g : B ΙR, αν ορίζεται η συνάρτηση, τότε έχει πεδίο ορισµού την τoµή. ΜΟΝΑ ΕΣ 4. Αν µια συνάρτηση δεν είναι συνεχής στο σηµείο του πεδίου ορισµού της, τότε δεν είναι παραγωγίσιµη στο. ΜΟΝΑ ΕΣ 5., όπου, είναι συνεχείς στο,. ΜΟΝΑ ΕΣ Οµοσπονδία Εκπαιδευτικών Φροντιστών Ελλάδος (ΟΕΦΕ)

32 Επαναληπτικά Θέµατα ΟΕΦΕ ΘΕΜΑ ίνεται η συνάρτηση f : ΙR ΙR µε 4, για κάθε ΙR. όπου λ ΙR, η οποία παρουσιάζει στο = καµπή. α. i. Να αποδείξετε ότι. ii. β. Να βρείτε το όριο Να βρείτε τα διαστήµατα στα οποία η είναι κυρτή ή κοίλη. lim ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 5 γ. i. Να βρείτε την αρχική της της οποίας η γραφική παράσταση διέρχεται από το σηµείο,. ΜΟΝΑ ΕΣ 6 ii. ΘΕΜΑ 3 Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από την γραφική παράσταση της και τον άξονα. ΜΟΝΑ ΕΣ 4 Έστω µια συνεχής συνάρτηση f : ΙR ΙR για την οποία ισχύει α. Να αποδείξετε ότι: ηµ συν, για κάθε ΙR.. και ΜΟΝΑ ΕΣ 4 ii. Υπάρχει, τέτοιο, ώστε: ΜΟΝΑ ΕΣ 7 β. Έστω, επιπλέον, ότι η είναι παραγωγίσιµη και για κάθε IR., i. Να βρείτε την και να γράψετε την εξίσωση της εφαπτοµένης της στο σηµείο της µε τετµηµένη. ΜΟΝΑ ΕΣ 6 ii. Να υπολογίσετε το όριο: ΜΟΝΑ ΕΣ 8 Οµοσπονδία Εκπαιδευτικών Φροντιστών Ελλάδος (ΟΕΦΕ)

33 Επαναληπτικά Θέµατα ΟΕΦΕ ΘΕΜΑ 4 Α. Να αποδείξετε ότι, για κάθε IR. Πότε ισχύει η ισότητα ; ΜΟΝΑ ΕΣ 3 Β. Έστω µια συνεχής συνάρτηση :,,. Για κάθε θεωρούµε το µιγαδικό z, µε: όπου. Να αποδείξετε ότι:.. και,, για κάθε. ΜΟΝΑ ΕΣ 5 ii., για κάθε. β. Η είναι γνησίως αύξουσα. γ. Η έχει αντίστροφη και να βρείτε την αντίστροφή της. ΜΟΝΑ ΕΣ 4 ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 4 δ. Αν η είναι παραγωγίσιµη στο διάστηµα (,, τότε υπάρχει ένα, τουλάχιστον,, τέτοιο, ώστε. ΜΟΝΑ ΕΣ 4

34 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ A. Να αποδείξετε ότι, αν µια συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο, τότε είναι συνεχής στο σηµείο αυτό. Μονάδες 5 A. Πότε µια συνάρτηση f µε πεδίο ορισµού Α παρουσιάζει ολικό µέγιστο στο Α; Μονάδες 4 A3. Nα αποδείξετε ότι η συνάρτηση f () = α, α > είναι παραγωγίσιµη στο ΙR. και ισχύει f () = α lnα A4. Να βρείτε ποιοι από τους επόµενους ισχυρισµούς είναι αληθείς και ποιοι ψευδείς: i. Μια συνάρτηση είναι, αν και µόνο αν δεν υπάρχουν σηµεία της γραφικής της παράστασης µε ίδια τεταγµένη. Μονάδες ii. i 4ν + 3 = i, για κάθε ν ΙΝ. iii. Αν lim f () > iv., τότε f () > κοντά στο. Μονάδες Μονάδες Αν δύο µεταβλητά µεγέθη, y συνδέονται µε τη σχέση y = f (), όταν f είναι µια συνάρτηση παραγωγίσιµη στο, τότε o ρυθµός µεταβολής του y ως προς στο σηµείο είναι η παράγωγος y = f ( ). Μονάδες v. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα, τότε τα εσωτερικά σηµεία του, στα οποία f ( ), δεν είναι θέσεις τοπικών ακρότατων της f. Μονάδες

35 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_3.Μλ3ΘΤ(ε) ΘΕΜΑ Β ίνονται οι συναρτήσεις f() = e και g() = ln+. B. Να βρείτε τις συνθέσεις fog και gof και να εξετάσετε αν είναι ίσες. B. Να αποδείξετε ότι η f έχει αντίστροφη και να βρείτε την f. B3. Να αποδείξετε ότι η εξίσωση e = ln + έχει µία, τουλάχιστον, ρίζα στο διάστηµα (e, ). B4. Να αποδείξετε ότι: f () g() lim = lim = (gof )() + (fog)() ΘΕΜΑ Γ Η συνάρτηση f: IR IR είναι συνεχής και για κάθε IR ισχύει όπου α IR {}. Γ. Να αποδείξετε ότι: t f (t) dt (+ 3α ) f () = e, Μονάδες 7 i. Η f είναι παραγωγίσιµη µε f ' () = f (), για κάθε IR. Μονάδες 4 ii. f () = + 3α, για κάθε IR. Γ. Να αποδείξετε ότι η τιµή του ολοκληρώµατος του α. Γ3. Να µελετήσετε και να παραστήσετε γραφικά την f. α Μονάδες 4 t f (t) dt είναι ανεξάρτητη Μονάδες 4 Μονάδες 8 Γ4. Αν Ε είναι το εµβαδό του χωρίου που ορίζεται από τους άξονες, την γραφική παράσταση της f και την ευθεία = α, να αποδείξετε ότι: < E < 4 α 3 α Μονάδες 5

36 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_3.Μλ3ΘΤ(ε) ΘΕΜΑ Η συνάρτηση f είναι δύο φορές παραγωγίσιµη στο IR µε f () =, + f () e lim = και f () <, για κάθε IR. + Να αποδείξετε ότι:. f ( ) = και f () + 4, για κάθε IR.. Η f παρουσιάζει µέγιστο σε σηµείο (, ). 3. Η εξίσωση ( 5) ( ) f f (t )dt = f () έχει µοναδική λύση στο IR την = Ο µιγαδικός αριθµός z για τον οποίο ισχύει f( z + i ) f( z + ) είναι φανταστικός. Μονάδες 7

37 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο οποίο όµως η f είναι συνεχής. Να αποδείξετε ότι, αν f ( ) > στο ( a, ) (,β), τότε το f( ) δεν είναι τοπικό ακρότατο και η f είναι γνησίως αύξουσα στο (α,β). Μονάδες 9 Α. α. Πότε το σηµείο Α(, f( )) ονοµάζεται σηµείο καµπής της γραφικής παράστασης µιας συνάρτησης f. Μονάδες 3 β. Αν f, g συναρτήσεις µε πεδίο ορισµού Α, Β αντιστοίχως, τι ονοµάζουµε σύνθεση της f µε την g και ποιο είναι το πεδίο ορισµού της; Μονάδες 3 Α3. Να χαρακτηρίστε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α) Αν f, g είναι συνεχείς συναρτήσεις στο [α,β] τότε, ο τύπος της ολοκλήρωσης κατά παράγοντες γράφεται β f ( ) g ( ) d β f ( ) g ( ) d = [ f ( ) g ( )] β a a a β) Για κάθε µιγαδικό αριθµό z ισχύει v v * =, N. z z ν γ) Κάθε συνάρτηση, είναι γνησίως µονότονη. δ) Αν < a< τότε lim log a + = +. * ε) Για κάθε ν N η συνάρτηση f( ) = v * είναι παραγωγίσιµη στο R µε v f ( ) = v. Μονάδες

38 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΘΕΜΑ Β Θεωρούµε τους µιγαδικούς αριθµούς z και w για τους οποίους ισχύουν οι επόµενες σχέσεις: z ( z + ) = i z 3 και w= z i, Β. Να βρείτε τον γεωµετρικό τόπο των εικόνων των µιγαδικών z. Ποιος είναι ο γεωµετρικός τόπος των εικόνων του z ; Μονάδες 7 Β. Να βρείτε την µέγιστη τιµή του z z και τις τιµές του z για τις οποίες επιτυγχάνεται. Β3. Αν για τους µιγαδικούς z των προηγούµενων ερωτηµάτων ισχύει z z= και Im( z ) >, τότε να υπολογίσετε την τιµή του z z 3. B4. Να βρείτε τον γεωµετρικό τόπο των εικόνων των µιγαδικών w και να αποδείξετε ότι η απόσταση των εικόνων των z και w είναι ίση µε την απόσταση της εικόνας του z από το σηµείο Α(,). ΘΕΜΑ Γ, αν ίνεται η συνάρτηση f ( ) = e. ln a, αν = Γ. Βρείτε τον a (, + ) ώστε η f να είναι παραγωγίσιµη και δείξτε ότι f () =. Μονάδες 7 Έστω α = e. Γ. α. Να µελετήσετε την f ως προς τη µονοτονία. β. Να βρείτε το σύνολο τιµών της και τις ασύµπτωτες της γραφικής της παράστασης, εφόσον υπάρχουν. Γ3. Να αποδείξτε ότι η εξίσωση dt= έχει µοναδική ρίζα στο f ( t) + 3 (, ).

39 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΘΕΜΑ ίνονται οι συναρτήσεις f, G και F, οι οποίες είναι ορισµένες στο διάστηµα [, + ) µε f παραγωγίσιµη και G δύο φορές παραγωγίσιµη στο ίδιο διάστηµα. Έστω ότι ισχύουν: f () =, G() = και για κάθε είναι f ( ) >, G '( ) > και =. F( ) f ( t) dt. Να αποδείξετε ότι F( ) και G( ) για κάθε.. Να υπολογίσετε το όριο lim [ F( )ln ] τέτοιο, ώστε 3. ίνεται, επιπλέον, ότι F( ξ ) f ( ξ ) ln ξ+ =. ξ Μονάδες 5 και να αποδείξτε ότι υπάρχει ξ (, ) [ ] [ ] f ( ) F( ) + f ( ) = G ( ) G( ) + G ( ), για κάθε. Να αποδείξετε ότι: Μονάδες 7 α. F( ) = G( ), για κάθε. Μονάδες 7 β. Για κάθε >, οι εφαπτόµενες των γραφικών παραστάσεων C F, CG στα Β, F και Γ, G αντιστοίχως, τέµνονται σε σηµεία τους ( ( ) ) ( ( ) ) σηµείο Α του άξονα y y (µονάδες 3) και το τρίγωνο ΑΒΓ είναι ισεµβαδικό µε το χωρίο, που ορίζεται από τις C F, C G και την ευθεία = (µονάδες 3).

40 Γενικό Λύκειο Νεστορίου Σχολικό έτος 3-4 Βοηθητικό Υλικό της Γ Λυκείου

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ θεματα Α-Β-Γ-Δ Βαγγέλης Α Νικολακάκης Μαθηματικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ 0 ΣΥΝΟΠΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 3-4 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΘΕΜΑ Α) 5-7 ΑΣΚΗΣΕΙΣ (ΘΕΜΑ Β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περιέχει: Όλη την ύλη της Γ Λυκείου, σύμφωνα με το αναλυτικό πρόγραμμα του Υπουργείου Παιδείας σε () ΒΙΒΛΙΟμαθήματα που το καθένα περιέχει: Α. Απαραίτητες

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 5 Μαΐου 5 Απαντήσεις Θεμάτων Θέμα Α Α. Θεωρία, βλ. σχολικό βιβλίο σελ. 94

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 0 MAΪΟΥ 0 Λύσεις των θεμάτων Έκδοση

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

log( x 7) log( x 2) log( x 1)

log( x 7) log( x 2) log( x 1) ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 01-13 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 013 Ημερομηνία: 0/5/013 Ημέρα:Δευτέρα Μάθημα (Μαθηματικά Κατεύθυνσης) Τάξη Β Ώρα:10.30-13.00 Χρόνος:,5 ώρες Οδηγίες:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ ο Α. α Έστω μια συνάρτηση, η οποία είναι συνεχής σε ένα διάστημα Δ. Να αποδείξετε ότι, αν > σε κάθε εσωτερικό σημείο του Δ, τότε η είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.Φλ1(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Να

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού Ινστιτούτου υγγραφή και η επιμέλεια του βιβλίου

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Αριστοτέλης Μακρίδης Μαθηµατικός, Επιµορφωτής των Τ.Π.Ε Αποσπασµένος στην ενδοσχολική

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα