Sortiranje spajanjem (Merge( Sort) Algoritam sortiranja spajanjem: ulaz je lista a 1. ,,, a n/2. , izlaz sortirana lista

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sortiranje spajanjem (Merge( Sort) Algoritam sortiranja spajanjem: ulaz je lista a 1. ,,, a n/2. , izlaz sortirana lista"

Transcript

1 Sortiranje spajanjem (Merge( Sort) Algoritam sortiranja spajanjem: ulaz je lista a 1,,, a n, izlaz sortirana lista 1. podijeli listu na dva jednaka dijela 2. sortiraj listu a 1,,, a n/2 3. sortiraj listu a n/2+1,,, a n 4. spoji liste a 1,,, a n/2 i a n/2+1,,, a n Algoritam spajanja: ulaz su dvije sortirane liste b 1,,, b k i c 1,,, c l, izlaz je sortirana lista a 1,,, a k+l 1. i = 1, j = 1 2. ponavljaj korak 3 sve dok je i k i j l 3. ako je b i < c j onda a i+j-1 = b i, i=i+1, inače e a i+j-1 = c j, j=j+1 4. ponavljaj korak 5 sve dok je i k 5. a i+j-1 = b i, i=i+1 6. ponavljaj korak 7 sve dok je j l 7. a i+j-1 = c j, j=j+1 Složenost ovog algoritma je O(n lg n) Nedostatak: potrebno pomoćno polje 1

2 #include <stdlib.h> #include <stdio.h> #include <time.h> typedef int tip; // udruzivanje LPoz:LijeviKraj i DPoz:DesniKraj void Merge (tip A [], tip PomPolje [], int LPoz, int DPoz, int DesniKraj) D { int i, LijeviKraj, BrojClanova, PomPoz; LijeviKraj = DPoz - 1; PomPoz = LPoz; BrojClanova = DesniKraj - LPoz + 1; while (LPoz <= LijeviKraj && DPoz <= DesniKraj) { // glavna petlja if (A [LPoz] <= A [DPoz]) PomPolje [PomPoz++] = A [LPoz++]; else PomPolje [PomPoz++] = A [DPoz++]; while (LPoz <= LijeviKraj) // Kopiraj ostatak prve polovice PomPolje [PomPoz++] = A [LPoz++]; while (DPoz <= DesniKraj) // Kopiraj ostatak druge polovice PomPolje [PomPoz++] = A [DPoz++]; for (i = 0; i < BrojClanova; i++, DesniKraj-- --)) // Kopiraj PomPolje natrag A [DesniKraj] = PomPolje [DesniKraj]; 2

3 // MergeSort - rekurzivno sortiranje podpolja void MSort (tip A [], tip PomPolje[], int lijevo, int desno ) { int sredina; if (lijevo < desno) { sredina = (lijevo + desno) / 2; MSort (A, PomPolje, lijevo, sredina); MSort (A, PomPolje, sredina + 1, desno); Merge (A, PomPolje, lijevo, sredina + 1, desno); // MergeSort - sort udruzivanjem void MergeSort (tip A [], int N) { tip *PomPolje; PomPolje = malloc (N * sizeof (tip)); if (PomPolje!= NULL) { MSort (A, PomPolje, 0, N - 1); free (PomPolje); else { printf ("Nema mjesta za PomPolje!"); exit(1); 3

4 void main (void) { tip *Polje1,maxcl; int Duljina,brojac; printf ("Unesi broj clanova polja >"); scanf ("%d", &Duljina); if ((Polje1 = (tip *) malloc (Duljina * sizeof (tip)))== NULL) { printf("\nnema nnema dovoljno memorije!\n"); exit(1); srand(time(null)); printf("\nunesi nunesi maksimalnu vrijednost clanova>"); scanf("%d", &maxcl); for (brojac=0; brojac<duljina; brojac++){ Polje1[brojac]=(tip) maxcl * ((float)rand() / (RAND_MAX + 1)); printf("\n n Prije sortiranja:\n"); n"); for (brojac=0; brojac<duljina; brojac++) printf("polje[%d]=%d ",brojac,polje1[brojac]); printf("\n"); n"); MergeSort(Polje1,Duljina); printf("\n n Nakon sortiranja:\n"); n"); for (brojac=0; brojac<duljina; brojac++) printf("polje[%d]=%d ",brojac,polje1[brojac]); printf("\n"); n"); system( PAUSE PAUSE ); exit(0); 4

5 Sortiranje Shellovim algoritmom (Shell( Sort) Nazvan po D. L. Shellu koji ga je napravio Shellovo sortiranje je vrsta algoritma sortiranja koje, u prosjeku, treba a manje od O(n 2 ) operacija usporeñivanja i zamjene elemenata Jednostavan algoritam, ali vrlo komplicirano odreñivanje složenosti algoritma Ovaj algoritam je poboljšana verzija sortiranja umetanjem (insertion( sort) ) ili mjehuričastog sortiranja (bubble( sort) Ta dva algoritma su efikasna ako su nizovi gotovo sortirani, a neefikasni n jer pomiču elemente, uglavnom, za po jedno mjesto Shellovo sortiranje radi tako da sortira u većim koracima koji se postupno smanjuju na korak od jedne pozicije, ali do tada je niz već gotovo sortiran, pa je i sortiranje umetanjem/mjehuri mjehuričasto sortiranje efikasno Ideja Shellovog sortiranja: prvo se niz podataka složi i u dvodimenzionalno polje, a zatim se stupci sortiraju Time se dobije djelomično sortirano polje Proces se ponavlja tako da u svakom koraku polje ima sve manje stupaca, s u zadnjem koraku ostaje samo jedan stupac u kojem su podaci sortirani 5

6 Svakim korakom sortiranost niza je sve veća Broj operacija sortiranja u svakom koraku je ograničen, jer je niz već djelomično sortiranim u prethodnim koracima Primjer: zadan niz , složi i se u npr. polje od 7 stupaca i stupci se sortiraju: > U slijedećem em koraku se podaci preslože e u polje s 3 stupca: > U završnom koraku se dobije 1 stupac gotovo sortiranih podataka (prvih 11 elemenata je već sortirano) koji se lako sortira (pomiču u se samo 3 elementa) 6

7 U praktičnom algoritmu se koristi jednodimenzionalno polje, uz adekvatno indeksiranje Npr. elementi na pozicijama 0, 5, 10, 15, tvore prvi red; svaki tako dobiveni stupac se sortira algoritmom sortiranja umetanjem Izbor koraka indeksiranja (broja stupaca u 2D polju koji se sortiraju) odreñuje ukupan broj operacija u sortiranju niza, dakle i vrijeme izvršavanja algoritma Primjer funkcije (originalna Shellova): void ShellSort (int a[], int n) { int i, j, k, h, v; int cols[] = { , , , 86961, 33936, 13776, 4592, 1968, 861, 336, 112, 48, 21, 7, 3, 1 ; for (k=0; k<16; k++) { h=cols[k]; for (i=h; i<n; i++) { v=a[i]; j=i; while (j>=h && a[j-h]>v) { a[j]=a[j-h]; j=j-h; a[j]=v; 7

8 Drugi primjer izbora koraka: uzet ćemo da je broj stupaca N/2 i u svakom koraku raspolovimo taj broj: void ShellSort2 (tip A [], int N) { int i, j, korak; tip pom; for (korak = N / 2; korak > 0; korak /= 2) { // Insertion Sort s većim korakom for (i = korak; i < N; i++) { pom = A [i]; for (j = i; j >= korak && A[j-korak] > pom; j -= = korak) { A [j] = A [j - korak]; A [j] = pom; #include <stdio.h> #include <stdlib.h> #include <time.h> typedef int tip; 8

9 void main(){ tip *polje1, *polje2; int bel, ind; printf ("Unesi broj clanova polja:"); scanf ("%d", &bel); if (!(polje1 = (tip *) malloc (bel * sizeof (tip)))) exit(1); if (!(polje2 = (tip *) malloc (bel * sizeof (tip)))) exit(1); srand ((unsigned) time (NULL)); for( ind = 0; ind < bel; ind++ ) { polje1[ind]=rand()%1000; polje2[ind]=polje1[ind]; printf("%d ",polje1[ind]); printf("\n\n"); n"); ShellSort(polje1,, bel); for( ind = 0; ind < bel; ind++ ) printf("%d ",polje1[ind]); printf( \n ); ShellSort2(polje (polje2,, bel); for( ind = 0; ind < bel; ind++ ) printf("%d ",polje2[ind]); printf( \n ); exit(0); 9

10 Algoritam brzog sortiranja (Quicksort( Quicksort) Najbrži i poznati algoritam sortiranja, koji u prosjeku treba Θ(n lg n) ) operacija o usporeñivanja za sortiranje niza duljine n U najgorem slučaju složenost mu je Θ(n 2 ) To je algoritam strategije podijeli pa vladaj, koji dijeli niz u dva podniza tako da izabere poseban element pivot (stožer) i onda preuredi niz tako da se svi elementi manji od pivota prebace na pozicije prije njega, a svi veći i se nalaze iza pivot elementa, nakon ovog koraka pivot se nalazi na mjestu na kojem mora biti u sortiranom ranom nizu Postupak se rekurzivno ponavlja za ta dva podniza (manji i veći i od pivota),, sve s dok se ne doñe do podniza od 1 elementae Algoritam brzog sortiranja usporeñuje elemente u nizu pa spada u algoritme sortiranja usporeñivanjem rezultat je pokušaja ubrzavanja faze spajanja u algoritmu sortiranja spajanjem (Merge( Sort); ovdje je spajanje u potpunosti izbjegnuto, jer nakon što su elementi u podnizovima sortirani, zbog ureñenosti polja,, svi su elementi iz drugog podniza veći i od svakog elementa iz prvog podniza Izvedba algoritma ovisi o izboru pivot (stožer) elementa: najjednostavnija varijanta uzima prvi element za pivot, no on se može e odrediti na bilo koji način koji se može e izračunati u O(1) vremenu 10

11 Razmotrimo slučaj kad je pivot prvi element u nizu. Za premještanje elemenata niza potrebna su dva kursora, prvi je iniciran na drugi element u nizu u i raste, a drugi na zadnji i pada Kreće e se s prvim kursorom koji se pomiče e sve dok se ne nañe element veći i od pivota, tada se kreće e od drugog kursora koji se pomiče e dok se ne nañe element manji od kursora Zamijene se mjesta ta dva elementa i nastavlja se traženje od prvog kursora Pretraživanje završava ava kad je prvi kursor iza drugoga, tada drugi kursor pokazuje na n poziciju na kojoj će e u sortiranom nizu biti pivot element, pa se zamijene mjesta tog elementa i pivot elementa Nakon toga se ponavlja postupak na dva podniza: za elemente prije e pivot elementa i one iza pivot elementa Primjer: niz , pivot je 7 Kreće e se od početka, prvi element veći i od 7 je 8, sa stražnje strane prvi manji je 6, pa im se zamijene mjesta: Sljedeći i element veći i od 7 je 9, odostraga prvi manji je 2. No drugi kursor je ispred d prvog pa ovaj korak završava. ava. Niz se dijeli na dva dijela, od početka do drugog kursora, te od prvog kursora do kraja 11

12 Pivot i element na koji pokazuje drugi kursor zamijene mjesta, kako k su svi elementi u prvoj listi manji od njega, on je na pravom mjestu i više e ga se ne dira Ponavljanje postupka na prvom podnizu: pivot je 2, sprijeda prvi veći i od njega je 3, straga prvi manji je Nastavljamo: sprijeda 5, straga 1, ali je prvi kursor iza drugoga, pa se mijenjaju pivot i element na koji pokazuje drugi kursor Drugi podniz (zadnja 2 elementa): pivot je 9 prvi kursor ne nalazi veći i od njega nego prelazi drugi kursor, pa 9 i 8 mijenjaju mjesta: Jedini preostao niz je u sredini: pivot je 5, sprijeda nalazimo 6, straga Sprijeda nalazimo 6 i sad je prvi kursor iza drugog: 5 i 4 zamijene mjesta 12

13 Zadnji korak: niz od 2 elementa, pivot je 4, pretraga sprijeda ne nalazi veći i od njega nego se prvi kursor pomiče e iza drugog: Algoritam brzog sortiranja: ulaz je lista a 1, a n i kursori i (početak) i j (kraj),a izlaz sortirana lista 1. k = i+1, l = j 2. sve dok je k <= l radi korake dok je ((k<=l) i (a i >= a k )) k = k+1 4. dok je ((k<=l) i (a i <= a l )) l = l-1l 5. ako je k < l, zamjeni(a k, a l ) 6. ako je l > i zamjeni(a i, a l ) 7. ako je l > i quicksort(a, i, l-1) l 8. ako je k < j quicksort(a, k, j) Najgori slučaj za ovaj algoritam: već sortirana lista i lista sortirana obrnutim rasporedom. Tada se u svakom koraku lista dijeli na podliste od jednog i n-1 n elemenata 13

14 void quick(tip polje[], int l, int d) { int i,j; tip pom; i = l+1; j = d; if (l>=d) return; while ((i <= j) && (i<=d) && (j>l)) { while (polje[i] <= < polje[l]) i++; while (polje[j] > polje[l]) j--j --; if (i<j) { pom = polje[i]; polje[i] = polje[j]; polje[j] = pom; if (i>d) { // stozer je najveci u polju pom = polje[d]; polje[d] = polje[l]; polje[l] = pom; quick(polje, l, d-1); d else if (j<=l) { // stozer je najmanji u polju quick(polje, l+1, d); else { // stozer je negdje u sredini pom = polje[j]; polje[j] = polje[l]; polje[l] = pom; quick(polje, l, j-1); j quick(polje, j+1, d); 14

15 #include <stdio.h> #include <stdlib.h> #include <time.h> typedef int tip; void main(){ tip *polje; int bel, ind; printf ("Unesi broj clanova polja:"); scanf ("%d", &bel); if (!(polje = (tip *) malloc (bel * sizeof (tip)))) exit(1); srand ((unsigned) time (NULL)); for( ind = 0; ind < bel; ind++ ) { polje[ind]=rand()%100; printf("%d ",polje[ind]); printf("\n\n"); n"); quick(polje,0,bel-1); for( ind = 0; ind < bel; ind++ ) printf("%d ",polje[ind]); system( PAUSE PAUSE ); exit(0); 15

16 Poboljšani algoritam brzog sortiranja Optimizacija algoritma: bolji izbor pivot elementa Može e se uzeti medijan od prvog, srednjeg i zadnjeg elementa (usporede se ta tri i izabere se srednji meñu njima za pivot) Najbolja izvedba algoritma: za indeks pivot elementa se uzima slučajni broj, to je algoritam slučajnog brzog sortiranja (randomized quicksort) Druga mogućnost optimizacije je upotreba nekog drugog algoritma sortiranja za kratke podnizove, npr. kad se u dijeljenju niza doñe do podnizova od recimo 5 elemenata, njihovo sortiranje se izvede sortiranjem umetanjem (ili mjehuričastim sortiranjem) Primjer za složeniju verziju koda: za pivot se uzima srednji po veličini ini od elemenata koji su na prvom, srednjem i zadnjem mjestu u nizu, a sortiranje podnizova kraćih od četiri elementa se provodi algoritmom sortiranja umetanjem 16

17 #define Cutoff (3) void Zamijeni (tip *lijevo, tip *desno) {// zamjena vrijednosti *lijevo i *desno tip pom = *lijevo; *lijevo = *desno; *desno = pom; // QuickSort - medijan i stozer,v,vrati medijan od lijevo, sredina i desno, poredaj ih i sakrij stozer tip medijan3 (tip A [], int lijevo, int desno) { int sredina = (lijevo + desno) / 2; if (A [lijevo] > A [sredina]) Zamijeni (&A[lijevo], &A[sredina]); if (A [lijevo] > A [desno]) Zamijeni (&A [lijevo], &A [desno]); if (A [sredina] > A [desno]) Zamijeni (&A [sredina], &A [desno]); // Sada je: A[lijevo]<=A[sredina]<=A[desno], Sakrij stozer Zamijeni (&A [sredina], &A [desno - 1]); // Vrati stozer return A [desno - 1]; 17

18 void Qsort (tip A [], int lijevo, int desno) {// QuickSort - rekurzivno sortiranje podpolja int i, j; tip stozer; if (lijevo + Cutoff <= desno) { stozer = medijan3 (A, lijevo, desno); i = lijevo; j = desno - 1; while (1) { while (A [++i] < stozer); while (A [--[ --j] > stozer); if (i < j) Zamijeni (&A [i], &A [j]); else break; Zamijeni (&A [i], &A [desno - 1]); // Obnovi stozer Qsort (A, lijevo, i - 1); Qsort (A, i + 1, desno); else { // Sortiraj podpolje InsertionSort (A + lijevo, desno - lijevo + 1); // QuickSort void QuickSort (tip A [], int N) { Qsort (A, 0, N - 1); 18

19 void main(){ tip *polje; int bel, ind; printf ("Unesi broj clanova polja:"); scanf ("%d", &bel); if (!(polje = (tip *) malloc (bel * sizeof (tip)))) exit(1); srand ((unsigned) time (NULL)); for( ind = 0; ind < bel; ind++ ) { polje[ind]=rand()%100; printf("%d ",polje[ind]); printf("\n\n"); n"); QuickSort(polje,bel); for( ind = 0; ind < bel; ind++ ) printf("%d ",polje[ind]); exit(0); void InsertionSort (tip A [], int N) {// sort ubacivanjem int i, j; tip pom; for (i = 1; i < N; i++) { pom = A[i]; for (j = i; j >= 1 && A[j-1] > pom; j--j --)) A[j] = A[j-1]; A[j] = pom; 19

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Računanje sume članova polja

Računanje sume članova polja Računanje sume članova polja Zadatak: napisati funkciju koja računa sumu članova polja. Najjednostavnije rješenje: enje: int suma1 (int polje[], int n) { složenost O(n) int i, suma = 0; for (i = 0; i

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Metode sortiranja nizova

Metode sortiranja nizova Metode sortiranja nizova Sortiranje niza u neopadajućem ili nerastućem poretku podrazumeva nalaženje jedne permutacije elemenata niza u kojoj se elementi pojavljuju u neopadajućem tj. nerastućem poretku.

Διαβάστε περισσότερα

Sortiranje izborom. Sortiranje izborom (Selection( lista koja se sortira kraća a za jedan element Primjer:

Sortiranje izborom. Sortiranje izborom (Selection( lista koja se sortira kraća a za jedan element Primjer: Sortiraje podataka Sortiraje izborom Sortiraje izborom (Selectio( Sort) ) je vrlo jedostava algoritam sortiraja Algoritam: u listi se añe ajmaji elemet i o mijeja mjesto s prvim elemetom liste, postupak

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Algoritmi i strukture podataka (450)

Algoritmi i strukture podataka (450) Algoritmi i strukture podataka (450) Analiza složenosti algoritama Sadržaj Algoritmi Analiza složenosti algoritma T(N) složenost algoritma Određivanje reda algoritma Algoritmi i strukture podataka 2 1

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Oblikovanje algoritama

Oblikovanje algoritama Oblikovanje algoritama Iskustveno je nañeno nekoliko općenitih strategija za oblikovanje algoritama Razmotrit ćemo, na nekoliko primjera, najvažnije nije strategije: Podijeli-pa pa-vladaj Dinamičko programiranje

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Binarno stablo (BinaryTree)

Binarno stablo (BinaryTree) Binarno stablo (BinaryTree) Binarno stablo T je konačan skup podataka istog tipa (čvorova) koji je ili prazan ili ima istaknuti čvor (korijen), a ostali čvorovi su podijeljeni u dva podskupa T L i T R

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Οι πίνακες στη C (μονοδιάστατοι πίνακες) Γενικά για τους πίνακες Ο πίνακας είναι μια αρκετά διαδεδομένη δομή που προσφέρεται από σχεδόν κάθε γλώσσα προγραμματισμού. Πρόκειται

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εργαστήριο 8η σειρά ασκήσεων. Κοζάνη, 7 Δεκεμβρίου 2007. Κάθε πρόγραμμα εξαρτάται από αλγόριθμους και δομές δεδομένων, αλλά μόνο λίγα απαιτούν κάποια καινοτομία

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Algoritmi i strukture podataka - 1.cas

Algoritmi i strukture podataka - 1.cas Algoritmi i strukture podataka - 1.cas Aleksandar Veljković October 2016 Materijali su zasnovani na materijalima Mirka Stojadinovića 1 Složenost algoritama Približna procena vremena ili prostora potrebnog

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Προχωρημένες έννοιες προγραμματισμού σε C

Προχωρημένες έννοιες προγραμματισμού σε C Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα

EXIT. Programski jezik C - 6. deo. Funkcija exit. (materijal sa predavanja D. Vitasa)

EXIT. Programski jezik C - 6. deo. Funkcija exit. (materijal sa predavanja D. Vitasa) Programski jezik C - 6. deo (materijal sa predavanja D. Vitasa) EXIT Funkcija exit Funkcija exit se nalazi u sa prototipom void exit( status ); Izaziva normalan završetak programa (zatvaranje

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

ΠΙ Ν Α Κ Ε Σ (arrays)

ΠΙ Ν Α Κ Ε Σ (arrays) ΠΙ Ν Α Κ Ε Σ (arrays) ΤΑΞΙΝΟΜΗΣΗ Η μέθοδος της φυσαλίδας (bubble sort) Η μέθοδος της επιλογής (selection) Η μέθοδος της γρήγορης ταξινόμησης (quicksort) Η μέθοδος της συγχώνευσης (merge sort) ΠΙ Ν Α Κ

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 1

Εργαστηριακή Άσκηση 1 Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ (ΤΛ2007 )

Προγραμματισμός Η/Υ (ΤΛ2007 ) Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Έκτη (6 η ) τρίωρη διάλεξη. Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Κεφάλαιο , 3.2: Συναρτήσεις II. (Διάλεξη 12)

Κεφάλαιο , 3.2: Συναρτήσεις II. (Διάλεξη 12) Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II (Διάλεξη 12) 12-1 Ανασκόπηση Δομής Προγράμματος με Συναρτήσεις 1 void PrintMessage (); Πρότυπο (Δήλωση) Συνάρτησης (Δηλώνουν τι επιπλέον συναρτήσεις θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 1

Αλγόριθμοι Ταξινόμησης Μέρος 1 Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 12-1 Ανασκόπηση οµής Προγράµµατος µε Συναρτήσεις #include 1 void PrintMessage (); Πρότυπο ( ήλωση) Συνάρτησης (

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Αλγόριθμοι ταξινόμησης

Αλγόριθμοι ταξινόμησης Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα