2-REGULARITY AND 2-NORMALITY CONDITIONS FOR SYSTEMS WITH IMPULSIVE CONTROLS
|
|
- Ἀελλώ Μανιάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Yugoslav Jounal of Opeaons Reseach 7 007), Nube, DOI: 0.98/YUJOR07049P -REGUARITY AND -NORMAITY ONDITIONS FOR SYSTEMS WITH IMPUSIVE ONTROS Naal'ya PAVOVA Nonlnea Analyss and Opzaon Depaen, Peoples Fendshp Unvesy of Russa, Moscow, Russa naashaussa@al.u Receved: July 006/ Acceped: May 005 Absac: In hs pape a conolled syse wh pulsve conols n he neghbohood of an abnoal pon s nvesgaed. The se of pas u, μ) s consdeed as a class of adssble conols, whee u s a easuable essenally bounded funcon and μ s a fne-densonal Boel easue, such ha fo any Boel se B, μb) s a subse of he gven convex closed poned cone. In hs acle he conceps of -egulay and -noaly fo he absac appng Φ, opeang fo he gven Banach space no a fne-densonal space, ae noduced. The conceps of -egulay and -noaly play a gea ole n he couse of devaon of he fs and he second ode necessay condons fo he opal conol poble, conssng of he nzaon of a cean funconal on he se of he adssble pocesses. These conceps ae also poan fo obanng he suffcen condons fo he local conollably of he nonlnea syses. The convenen ceon fo -egulay along he pescbed decon and necessay condons fo -noaly of syses, lnea n conol, ae noduced n hs acle as well. Keywods: Ipulsve conol, -egulay condon, -noaly condon.
2 50 N. Pavlova / -Regulay and -Noaly ondons. PROBEM DEFINITION onsde a conollable dynac syse dx ) = f x ), u ),) d Gd ) μ), [, ], ) x ) = x, x ) = x, ) W x, x ) = 0, μ K. 3) Hee [, ] s e, < ae gven, x s a phase vaable, whch acceps n value n he n -densonal ahecal space R, u = u, u,..., u ) R s a conol, f, GW, ae especvely n-densonal, n -densonal, and w-densonal vecofuncons n,, w ae naual nubes). The funcon W s assued o be wce connuously dffeenable. The funcon f s assued o be pece-wse connuously dffeenable, ha s, he neval [, ] s pesenable n es of a fne nube of n nevals [ τ, τ ] so, ha he escon of f a R R [ τ, τ ] s nfnely dffeenable. The se K s defned by 0 K= μ [, ]; R ) : connuous ϕ: ϕ ) K, ϕ ) dμ 0 Boel B [, ], B 0 whee K R s a gven convex closed poned cone, and K s s dual. In ohe wods, μ s a -densonal Boel easue such ha μ B) K fo all Boel subses B. An adssble conol s any pa u, μ): μ K, u [, ]. The ple x ), u ), μ )) [, ], s called an adssble pocess, f u), μ)) s an adssble conol, and x) s a coespondng soluon of equaon ), sasfyng he endpon consans. x ) = x ) f x τ), u τ), τ) dτ G τ) μ τ) τ [, ] [, ] Fo devng he suffcen condons fo local conollably of he syse )- 3), and also n he couse of devaon of he fs and he second ode necessay condons fo he opal conol poble, conssng n he nzaon of a cean funconal on he se of adssble pocesses )-3) conceps of egulay, -egulay and -noaly n consdeed pon xˆ ˆ ˆ, u ), μ )) play a gea ole. Befoe gvng sc defnons of hese conceps fo he syse )-3), we shall explan he essence of hese defnons fo he absac appng Φ, opeang fo he gven Banach space Z o R. e ẑ be a gven pon fo Z, and le he appng Φ be wce connuously dffeenable n a neghbohood of ẑ.
3 N. Pavlova / -Regulay and -Noaly ondons 5 Defnon. Mappng Φ s called egula noal) a he pon ẑ, f Φ ' zˆ ) = R 4) whee s he age of he lnea opeao Φ '. I s nown, ha f he appng Φ s egula a he pon ẑ, hen he plc funcon heoe holds. Besdes, fo he nzaon poble: ϕ z) n, Φ z) = 0, 5) whee ϕ s a gven sooh funcon, he agange pncple s vald fo λ 0 = ) well as he as necessay condons of he second ode. If he pon ẑ s abnoal, ha s Φ' zˆ ) R, hen he saeen of he classcal heoe of plc funcon, does no hold. Slaly, fo he nzaon poble 5) he agange pncple s no nfoave λ 0 = 0 ), and he classcal second-ode necessay condons can be false. Thus hee s a poble of fndng condons oe delcae han he condon 4), whch would guaanee local esolvably of he equaon Φ z) = y fo any z close o he pon yˆ =Φ zˆ ), and also ply subsanal necessay condons of he fs and he second ode fo he poble 5). ondons of ha ype ae -egulay obaned n []) and -noaly []. e us defne hese condons. e T zˆ) = { h Z : Φ zˆ) h = 0, Φ zˆ)[ h, h] Φ ' zˆ)}, and le h T zˆ ). Defne a lnea opeao Gzh, ˆ ): Z Ke Φ ) zˆ R accodng o: Gzh, ˆ )[ ξ, ξ ] =Φ ) zˆ ξ Φ )[, zˆ hξ ]. Defnon. The appng Φ s called -egula a he pon ẑ n he decon h, f Gzh ˆ, ) = R. 6) As s nown [], he exsence of veco h T zˆ ), along whch he appng Φ s -egula a he pon ẑ, guaanees esolvably of he equaon Φ z) = y fo any y close enough o yˆ =Φ zˆ ). Besdes ha, n he poble 5) fo any such h soe necessay condons of he fs and he second ode ae vald also n an abnoal case ha s when Φ' zˆ ) R ). e F ˆ z) be a cone, conssng of λ R, λ 0, such ha Φ ' zˆ ) λ = 0 and hee exss a subspace Π=Π λ) nsde of Z : Π Ke Φ zˆ ), cod Π ; λ, Φ zˆ ) [ zz, ] 0 z Π. z
4 5 N. Pavlova / -Regulay and -Noaly ondons We should noe ha he cone F ˆ z) can be epy. Fo exaple s obvously epy f he appng Φ s noal a he pon ẑ, snce fo 4) follows ha Φ' zˆ ) λ 0 λ 0. Besdes ha, afe jonng zeo o F zˆ ) becoes closed, bu no necessaly convex. Defnon 3. The appng Φ s called -noal a he pon ẑ, f he cone conv F ˆ z) s poned,.e. does no conan nonzeo subspaces he case F ˆ z) s no excluded, snce an epy cone s poned by he defnon). The goal of he pesen pape consss n devng he condons of -egulay and -noaly fo he consdeed dynac syse )-3). To hs end we shall pesen he syse )-3) n an absac fo. e us fx a pon ˆ, ˆ), ˆ)) n x u μ R [, ] K, so ha, ˆ xuμ, ˆ, ˆ) s an adssble pocess, and xˆ ˆ ) = x. Fo any, ), )) n x u μ R [, ] K, close enough o xˆ, uˆ ), ˆ μ )), by vue of he heoes of exsence and connuous dependence of he soluon of he auchy poble on nal condons and gh pa hee s a unque decson x) of he auchy poble. dx ) = f x ), u ),) d Gd ) μ), x ) = x, [, ]. 7) Fo he specfed x, u ), μ )), le us defne he appng w R accodng o he foula Φ x, u ), μ )) = W x, x ; x, u ), μ ))). n Φ : R [, ] Hee x; x, u), μ)), [, ] s a soluon of he auchy poble 7). To nepe he conceps of -egulay and -noaly fo he syse )-3), s necessay o deve foulas fo calculaon of devaves of he appng Φ wh espec o u ), μ )). Fo he gven ξ ) [, ], v K le us denoe by δ x ξv ) he soluon of he syse d δ ˆ ˆ ˆ ˆ xξv)) = x), u),) δxξv) d x), u),) ξ) d G) dv) 8) wh he nal condon δ x ) = 0. 9) ξv Φ ea. The devave opeao xˆ, uˆ), ˆ)): [, ] u, μ) foula Φ xˆ ˆ ˆ ˆ ˆ, u ), μ )) ξ, v) = x, x) δxξ v ), u, μ) whee δ x ξv ) s he soluon of8)-9), ξ ) [, ], v K. w μ R sasfes he
5 N. Pavlova / -Regulay and -Noaly ondons 53 Poof: Usng he heoe of connuous dependence of he soluon on paaees n he n space R [, ], n cean neghbohood U xˆ ) V uˆ) O ˆ μ) of he pon xˆ, uˆ, ˆ μ ) s an opeao n F : x, u, μ) U xˆ ) V uˆ) O ˆ μ) x ) R, whch s defned assocaes wh he ple x, u, μ ) he value of he coespondng soluon x) of he equaon ) a pon x )), and hs opeao s connuous a he pon x ˆ, ˆ, ˆ) u μ hs also ples, ha wll be connuous a all pons of he gven neghbohood). e u V uˆ), μ O ˆ μ), and le x be a soluon of he equaon ). e ξ = u uˆ, v = μ ˆ μ, x = x xˆ, so ha u = uˆ ξ, μ = ˆ μ v, x = xˆ x. Then we have x ˆ ) x ) = xˆ f xˆ τ) x τ), uˆ τ) ξ τ), τ) dτ G τ) d ˆ μ v) τ ), [, ] x ˆ ) = xˆ f xˆ τ), uˆ τ), τ) dτ G τ) dˆ μ τ). [, ] Subacng he second equaon fo he fs one and facozng f up o lnea es, we ge x ) = f xˆ τ), uˆ τ), τ) x τ) f xˆ τ), uˆ τ), τ) ξ τ ) χ τ, x τ), ξ τ))) dτ [, ] x G τ) dv τ), u whee χ = o x ξ ) when x 0, 0. ξ e us consde he funcon δ x ), whch s he soluon of 8)-9), ha s ξv 0) δ x ) = f xˆ τ), uˆ τ), τ) δ x τ) f xˆ τ), uˆ τ), τ) ξ τ)) dτ ξv x ξv u [, ] G τ) dv τ). ) e us esae he dffeence ) = x ) δxξ v ). Fo 0)-) we ge ) = f xˆ τ), uˆ τ), τ) τ)) χ τ, x τ), ξ τ)) dτ. x Fo Gonwall's nequaly [4] follows, ha hen cons χ, x, ξ),
6 54 N. Pavlova / -Regulay and -Noaly ondons and so o x ξ ). On he ohe hand x = δ x ξv, so ha o ) o δx ξ v ξ ). Fo 8)-9) and agan fo Gonwall's nequaly follows, ha δ x cons ξ V [ v]), so ha o)) o ξ V [ v]), and ξv hence o ξ V [ v]), whch eans, ha δ x ) s he an lnea pa of quany x) ha s nceen of a phase vaable x), geneaed by nceen F ξ = u uˆ X v = μ ˆ μ. Thus x ˆ ˆ ˆ, u ), μ )) ξ, v) = = δxξ v ). Ths ples he u, μ) saeen of he lea. Fo he gven ξ), η) [, ], v, θ K le us denoe by δ x ξη v θ ) he soluon of he syse of he equaons n vaaons d δ x ) ) ξηvθ f = xˆ), uˆ),) δ ˆ ˆ xξηvθ ) d x), u),)[ δ xξ v), δxηθ )] f f ) xˆ), uˆ),)[ δ ˆ ˆ xξv ), η)] x), u),)[ δxηθ), ξ)] xu xu f x ˆ), u ˆ),)[ ξ), η)] u wh he nal condon δ x ) = 0. 3) ξηvθ ξv ea. The opeao sasfes he foula Φ u, μ) xˆ, uˆ), ˆ)): [, ] [, ] w μ R Φ u, μ) xˆ, uˆ ), μ ))[ ξ, v), η, θ)] = W xˆ, xˆ )[ δ x ), δ x )] xˆ, xˆ ) δ x ), x ηθ ξv ξηvθ x whee δ ) s he soluon of )-3), ξ), η) [, ], v, θ K. x ξη v θ Poof: Slaly as n he poof of ea, we shall consde he funcon δ x ), whch s he soluon of )-3) a η= ξ, θ = v. Then, facozng f x ˆ ) x, u ˆ ) ξ, ) f x ˆ ), u ˆ ), ) up o he es of he second ode, we ge ξξvv
7 N. Pavlova / -Regulay and -Noaly ondons 55 x ) = f xˆ τ), uˆ τ), τ) x τ) f xˆ τ), uˆ τ), τ) ξ τ) f ˆ ), ˆ ), )[ ), )] ˆ ), ˆ xx x τ u τ τ x τ x τ fxu x τ u τ), τ)[ x τ), ξ τ)] f ˆ ), ˆ uu x τ u τ), τ)[ ξ τ), ξ τ)] ς τ, x τ), ξ τ))) dτ [, ] x G τ) dv τ), u 4) o x ) ) ς = ξ when x 0, 0. ξ e us esae he dffeence R ) = x ) δ x ) δ x ), whee δ xξξvv ) s he soluon of )-3) unde η = ξ, θ = v, ha s ξv ξξvv δx ˆ ˆ ˆ ˆ ξξvv ) = fx x τ), u τ), τ) δxξξvv τ) fxx x τ), u τ), τ)[ δxξ v τ), δxξ v τ)] 5) f xˆ τ), uˆ τ), τ)[ δ x τ), ξ τ)] f xˆ τ), uˆ τ), τ)[ ξ τ ), ξ τ)] dτ. xu ξv uu Fo ), 4) and 5) we have R ) = f ˆ ), ˆ ), ) ) ˆ ), ˆ x xτ uτ τ Rτ fxx xτ u τ), τ)[ x τ), x τ)] f ˆ ), ˆ xx x τ u τ), τ)[ δxξv τ), δxξv τ)] f ˆ ), ˆ xu x τ u τ), τ)[ x τ) δxξ v τ), ξ τ)] ςτ, x), τ ξτ ))) dτ. Fo Gonwall's nequaly follows ha hen R ς, x, ξ) x δxξv 3 x δxξv ξ, whee,, 3 ae soe consans. Usng he nequaly deved n he poof of ea x δx ξ o ξ V [ v]), we ge R ) ) [ ]) ). o x ξ o ξ V v Bu x = R δ x δ x so ξv ξξvv, R o R δ xξv δ xξξvv ξ V [ v]) ). Fo ), 5) and fo Gonwall's nequaly follows ha δ x δ x δ x ξ ξ, ξξvv 4 ξv 5 ξv 6
8 56 N. Pavlova / -Regulay and -Noaly ondons δ x ξ V [ v]), ξv 7 whee 4, 5, 6, 7 ae soe consans. Then Hence and follows Thus ) ) ξ [ ]) ξ [ ] R o R V v V v. ξ ) R o R ) o V [ v]) o ξ V [ v]), ξ ) R o V [ v]). F u, μ) xˆ, uˆ ), ˆ μ ))[ ξ, v), η, θ)] = δ x ), whee δ ) s a soluon ξηvθ x ξη v θ of he syse of he equaons n vaaons ) wh he nal condon 3). The saeen of he lea follows fo hee.. -REGUARITY ONDITION Defnon 4. e h [, ], g K. Fo he poble )-3) a he pon xˆ ˆ ˆ, u ), μ )) he -egulay condon n he decon hg, ) s sasfed f y R ξ, ξ [, ], v, v K: W xˆ, xˆ ˆ ˆ ˆ ˆ ) δxξ v ) x, x)[ δxhg ), δxξ v )] x, x) δxh ξ gv ) = y, x ˆ ˆ, x ) δ x ξ v ) = 0. Fo eas and obvously follows ha -egulay n es of defnon 4 eans -egulay of he noduced appng Φ a pon wˆ = xˆ ˆ ˆ, u), μ)) n he decon h = h, g). The followng lea gves he ceon fo -egulay of he syse )-3). ea 3. Fo he poble )-3) a he pon xˆ ˆ ˆ, u ), μ )) -egulay condon n w w he decon hg, ) holds ue f and only f, hee s no R, 0, q R, such ha fo funcons ψ, ψ, whch ae soluons of he auchy poble ψ ˆ ˆ = x ), u ), ) ψ, 6) x
9 N. Pavlova / -Regulay and -Noaly ondons 57 ψ ˆ ˆ = x ), u ),) ψ E) ψ, 7) ψ ) = xˆ, xˆ ), 8) ψ x W x ) x, x ) x, x ) q, 9) = δ ˆ ˆ ˆ ˆ hg x x he followng ae a place: x ˆ), u ˆ),) ψ) = 0 ebesque-a.e., 0) x ˆ), u ˆ),) ψ) E) ψ) = 0 ebesque-a.e., ) ψ ), G) υ 0 υ K, [, ], ) ψ ), G) υ 0 υ K, [, ], 3) ψ ˆ ˆ ), G) υ) = 0 μ a.e. 4) ψ ˆ ˆ ), G) υ) = 0 μ a.e. 5) ˆ whee ˆ ) d μ υ = ) d ˆ s he Radon Ncody devave. μ Hee f f E) = xˆ), uˆ),) δ ˆ ˆ xhg ) x), u),) h), x xu f f E ˆ ˆ ˆ ˆ ) = x), u),) δxhg ) x), u),) h). xu Poof: By vue of he heoe of sepaably fo convex ses, he -egulauy condon s volaed f and only f w R, 0: xˆ ˆ, x) δxξ v ) W xˆ, xˆ)[ δ x ˆ ˆ hg ), δxξ v )] x, x) δxh ξ gv ), = 0 6) ξ [, ], v, K; ξ [, ], v K: xˆ, xˆ ) δ x ) = 0. ξv e us nepe condon 6). Fo hs pupose we shall consde he lnea opal conol poble
10 58 N. Pavlova / -Regulay and -Noaly ondons W xˆ, xˆ ) δ x ) xˆ, xˆ )[ δ x ), δ x )] ξ v hg ξv x ˆ ˆ, x ) δ x hξ gv ), n, 7) d δ x )) = xˆ), uˆ),) δ x ) d xˆ), uˆ),) ξ ) d G) dv ), ξv ξv 8) d δ x )) = xˆ), uˆ),) δ x ) d xˆ), uˆ),) ξ ) d G) dv ), ξv ξv 9) d δ x )) = xˆ), uˆ),) δ x ) d E ) δ x ) d E ) ξ ), hξgv hξgv ξv 30) δ x ) = 0, 3) ξ v δ x ) = 0, 3) ξv x ˆ, x ˆ) δ x ξ v ) = 0, hξgv 33) δ x ) = 0. 34) In hs poble conol vaables ae ξ ), v ), ξ ), v )), whle phase vaables - ae δ x ), δ x ), δ x )). ξ v ξv hξgv Ponyagn's funcon Halonan) H and he no agangan l of he poble 7)-34) ae gven by H x, ξ, ξ, v, v,, ψ, ψ, ψ3) = = xu ˆ, ˆ, ) δ ˆ ˆ xξ v ψ xu,, ) ξ, ψ xu ˆ, ˆ, ) δ ˆ ˆ xξ,, ) v xuξ, ψ xu ˆ, ˆ,) δxh ξgv E ) δxξv E ) ξ, ψ3, l δ x ), δ x ), δ x ), q) = xˆ, xˆ ) δ x ) ξ v ξv hξgv ξ v W xˆ, xˆ)[ δ x ˆ ˆ hg ), δxξv )] x, x) δxh ξ gv ), x ˆ ˆ, x ) δ x ξ v ), q. x
11 N. Pavlova / -Regulay and -Noaly ondons 59 w Hee q R, and ψ, ψ, ψ 3 ae n-densonal colun vecos. Accodng o he Ponyagn's axu pncple hee exs a veco q and soluons ψ, ψ, ψ 3 of he auchy poble Such ha ψ ˆ ˆ = x ), u ), ) ψ, x ψ ˆ ˆ = x ), u ),) ψ E) ψ, ψ ˆ ˆ 3 = x ), u ), ) ψ3, x ψ ) = ˆ σ, xˆ ), x ψ δ W W x ) σ, x ) σ, x ) q, = ˆ ˆ ˆ ˆ hg x x ψ ) = ˆ σ, xˆ ), 3 x x ˆ), u ˆ),) ψ) = 0 ebesque-a.e., x ˆ), u ˆ),) ψ) E) ψ3) = 0 ebesque-a.e., ψ ), G) υ 0 υ K, [, ], ψ ), G) υ 0 υ K, [, ], ψ ˆ ), G) υ) = 0 ˆ μ a.e. ψ ˆ ), G) υ) = 0 ˆ μ a.e. ˆ whee ˆ ) d μ υ = ) s he Radon Ncody devave. d ˆ μ The lea's saeen edaely follows fo he las elaons.
12 60 N. Pavlova / -Regulay and -Noaly ondons e us defne on ses H and he agangan l by: H xu,,, ψ) = ψ, f xu,, ), lx, x, λ) = λ, Wx, x). 3. -NORMAITY ONDITION n l n R R R R and R n R he Halonan funcon w Hee λ R, and ψ s he n-denzonal veco-colun. e ˆ xuμ, ˆ, ˆ) be he gven adssble pocess. Defnon 5. The pocess ˆ xuμ, ˆ, ˆ) sasfes Ele-agange equaon, f he veco λ 0 exss such ha fo a veco-funcon ψ, whch s he soluon of he auchy poble ψ = H xˆ), uˆ),, ψ))/ x, ψ ) = l xˆ, xˆ, λ)/ σ, 35) he followng holds: ψ ) = l xˆ, xˆ, λ)/, H xˆ), uˆ),, ψ ))/ u = 0 ebesque-a.e., ψ), G) υ 0 υ K, [, ], ψ ), G) ˆ υ) = 0 ˆ μ a.e. ˆ Hee ˆ ) d μ υ = ) d ˆ s he Radon Ncody devave, xˆ μ = x ˆ ˆ ˆ ), x = x ). e us denoe by Λ ˆ xuμ, ˆ, ˆ) he se of vecos λ whch coespond o he gven exeal ˆ xuμ, ˆ, ˆ) by vue of Ele-agange equaons. Fo he foulaon of he second ode condons fo he pocess ˆ xuμ, ˆ, ˆ) we shall consde he followng syse of he equaons d δx)) = xˆ), uˆ),) δx) d xˆ), uˆ),) δu) d G) d δμ)). 36) Hee δu [ ˆ, ], δμ T K μ), and he soluon of he equaon n vaaons should sasfy he condons: xˆ, xˆ ) δx ) = 0, xˆ, xˆ ) δx ) = 0. 37) n e λ Λ xˆ, uˆ). On he space X = R [, ] of pons ς, δu, δμ ) we shall defne he quadac fo Ω λ by he foula l Ω ˆ ˆ λ ς, δu, δμ) = x, x, λ)[ δx ), δx )), δx ), δx ))] x, x) H ˆ, ˆ,, )[ ), )), ), ))]. x u ψ δ x δ u δ x δ u d xu, )
13 N. Pavlova / -Regulay and -Noaly ondons 6 Heenafe δ x s he soluon of he syse of he equaons n vaaons 36) wh he nal condon δ x ) = ς coespondng o δu, δμ ). e χ denoe he lnea subspace of X, whch consss of hose ς, δu, δμ ), such ha ς = δ x. e be a naual nube and le Λ ˆ, ˆ, ˆ =Λ xuμ) denoe he se of hose λ Λ xu ˆ, ˆ, ˆ μ), fo whch he ndex of naowng he fo Ω λ on he subspace χ does no exceed. Defnon 6. Adssble pocess ˆ xuμ, ˆ, ˆ) s called -noal f he cone s poned. Fo egande's condon [4] follows ea 4. Fo soe le he cone λ Λ xu ˆ, ˆ, ˆ μ), such ha convλ xˆ, uˆ, ˆ μ) Λ ˆ xuμ, ˆ, ˆ) be non epy. Then hee exss H x ˆ), u ˆ),, ψ )) 0 ebesque-a.e. e us apply -noaly concep o lnea conollable syses. Assue ha f xu,, ) a0 x, ) ua, ), x a = pecewse sooh veco funcons. Then = = whee 0, a ae gven dx ) = a0 xd,) ua xd,) Gd ) μ), 38) x ) = x, x ) = x, 39) W x, x ) = 0. 40) H xu,,, ψ) = ψ, a x, ) u ψ, a x, ). 4) 0 = onsde he pocess xˆ, uˆ) xˆ ˆ ˆ ˆ ) = x, x ) = x). Whou loss of genealy we shall assue ha u ˆ ) 0. The coespondng syse of he equaons n vaaons s he followng: d δx)) = A ) δxd ) B ) δud ) Gd ) δμ)), xˆ, xˆ ) δx ) = 0, xˆ, xˆ ) δx ) = 0. 4) whee δu [ ˆ, ], δμ T μ), A and B ae defned by foulas: K a ˆ 0 x ), ) ) =, ) = ),..., )), = ˆ ), ). A B b b b a x
14 6 N. Pavlova / -Regulay and -Noaly ondons Then Fo any λ Λ xˆ, uˆ) le H xˆ ), uˆ ),, ψ λ ) ) Dλ ) =, H xˆ ), uˆ ),, ψ λ) ) λ ) =. xu l Ω ˆ ˆ λ ς, δu) = x, x, λ) δx ), δx )), δx ), δx )) x, x ) λδ δ λδ δ ) D x, x x, u d, whee δ x s he soluon of he syse of he equaons n vaaons 4) wh he nal condon δ x ) = ς. Assue ha axes A), B), ), D) and all he devaves can have on [, ] jups only n fne nube p of pons τ,...,. τ p ea 5. Suppose ha fo he soe he cone Λ ˆ, ˆ, ˆ xuμ) s no epy. Then λ Λ ˆ, ˆ, ˆ xuμ), such exss, ha condons ae sasfed ) fo he soluon ψ of adjon equaon 35), coespondng o he veco λ, he followng leads ) H ˆ), ˆ),, )) 0 { x u ψ = τ,..., τ p}, H x ˆ), u ˆ),, ψ )) = 0 { τ,..., τ p}, H x ˆ), u ˆ),, ψ )) 0 { τ,..., τ p}, nd w ς, δu, υ) 43) 44) 45) 3) Hee q nd Δ B λ ) τ nd ) B ). λ = 46) l w ς, δu, υ) = xˆ ˆ, x, λ) δx ), δx )), δx ), δx )) x, x ) λξξ ξυ υυ) D, P, Q, d,
15 N. Pavlova / -Regulay and -Noaly ondons 63 =, = ) /), P B Dλ λ λa Q B DλB λab B Aλ λb λb Δ Mτ = M τ 0) M τ 0) s he jup of he ax M a pon τ, and nd Ψ denoes he ndex of he quadac fo of cean syec ax Ψ. e us noe ha, as can be seen fo he poof gven below, all aces n 46) ae syec. Poof: Unde he hypohess of he heoe hee exss such λ Λ ˆ, ˆ x u), ha nd Ωλ χ. e us conve he fo Ω λ accodng o Hooch by vue of syse 4). Fo convenence, n he sequel we shall o he subscp λ s ax funcons, D, and quadac fo Ω. e us noduce new vaables υ = δ u, υ ) = 0, ξ = x Bυ. Funcons ξ and υ n belong o spaces W, and W especvely and sasfy coelaons ξ = A ) ξ AB B ) υ, xˆ, xˆ ) ξ ) = 0, xˆ, xˆ ) ξ ) B ) υ )) = 0. n Hee W, s he space of n-densonal funcons, whch have pecewse-pschzan fs-ode devave, and W s he space of -densonal pecewse- pschzan funcons. Then q Ω ςδ, u, δμ) =Ω ςδ, u, υ) = w ςδ, u, υ) Δ B) υτ ), υτ ) q ξτ ), Δ υτ ) ξ ), Δ ) υ ) ) B ) υ ), υ ). = τ = τ Hee l w ς, δu, υ) = xˆ ˆ, x, λ) δx ), δx )), δx ), δx )) x, x ) ξξ ξυ υυ υδ ) D, P, Q, V, u d,,, ) /). P = B D A V = B B Q = B DB AB B A B B 47) e us noe, ha Hooch's conveson does no change he ndex of he quadac fo. By he vue of necessay condons of fneness of ndex of he fo w on χ he followng holds V ) = 0 ; Q ) = Q ), Q ) 0. 48)
16 64 N. Pavlova / -Regulay and -Noaly ondons The fs of hese condons s called Hooch's condon, and he second one s a genealzaon of egende's condons. Fo condons 48) follows, ha all he aces eneng 46) ae syec. In [3] he followng nequaly s poved: q nd Ω nd w ςδ, u, υ) nd Δ B) nd ) B ). = τ q Snce nd Ω, las nequaly ples nd Δ B) nd ) B ) = τ. Dec dffeenaon of 4) yelds he foulas: d H V ) = x ˆ), u ˆ),, ψ )), ud u d H Q ) = x ˆ), u ˆ),, ψ )). u d u By he vue of 47), las wo elaons ply 44)-45). REFERENES [] Auynov, A.V., Exeu ondons: Abnoal and Degeneae Pobles M., Facoal, 997. [] Auynov, A.V.,"Iplc funcon heoe as agangan pncple ealzaon. Abnoal pons", Maheacal olleco, 9) 000) 3-6. [3] Auynov, A.V.,Yachovch, V., "-noal pocesses of conollable dynacal syses", Dffeenal Equaons, 388) 00) [4] Ioffe, A.D., Thoov, V.M., "Theoy of exeal pobles M", Scence, 974.
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
On homeomorphisms and C 1 maps
arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Reflection Models. Reflection Models
Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
On transformations groups of N linear connections on the dual bundle of k tangent bundle
Sud Unv Babeş-Boya Mah 572012 o 1 121 133 On anfoaon goup of nea connecon on he dua bunde of k angen bunde Monca Pucau and Mea Tânoveanu bac In he peen pape we udy he anfoaon fo he coeffcen of an nea connecon
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution
i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity
Amercan Journal of Mahemacs and Sascs (6): 49-56 DOI:.59/.ams.6.8 Nonsaonary Naver-Soes Problem for Incompressble Flud wh Vscosy Taalabe D. Omurov Docor of Physcs and Mahemacs professor of Z. Balasagyn
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Some Theorems on Multiple. A-Function Transform
Int. J. Contemp. Math. Scences, Vol. 7, 202, no. 20, 995-004 Some Theoems on Multple A-Functon Tansfom Pathma J SCSVMV Deemed Unvesty,Kanchpuam, Tamlnadu, Inda & Dept.of Mathematcs, Manpal Insttute of
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8
4.9.. HM-..,,.... :, HM-,,,,.... " " - ",.. " ".,,,,,,.,,.,,..,.,. Byfy, Zaa..,,.. W-F-,, (W-F -. :,,, -,,,,,.,, :, (, W-F, (Byfy, Zaa, GSM,..,.,, (...,,,. HM(Howad-Maays- [5, 6, 9, ],. S S 5 S 9 S S 6
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
New symmetries of Black-Scholes equation
Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Generalized Normal Type-2. Triangular Fuzzy Number
pped Mahemaca Scence, Vo. 7, 203, no. 45, 2239 2252 HIKRI Ld, www.m-hkar.com Generazed orma Type-2 Trangar Fzzy mber bd. Faah Wahab Deparmen of Mahemac, Facy of Scence and Technoogy, Unver Maaya Terenggan,
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Dynamic models models with variables dated in different periods
Panel Daa Economercs Semnar 4: Ocober 3,7 Soluon proposal by: Aleksander Sahnoun (7h semeser Problem 4.: Auoregressve models Problem 4. A: Dynamc models models wh varables daed n dfferen perods Panel daa
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Existence and Nonexistence of Weak Positive Solution for Classes of 3 3 P-Laplacian Elliptic Systems
Intenational Jounal of Patial Diffeential Euations Alications 03 Vol. No. 3-7 Aailable online at htt://ubs.scieub.co/ijdea///3 Science Education Publishing DOI:0.69/ijdea---3 Existence Nonexistence of
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Chapter 15 Identifying Failure & Repair Distributions
Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1
Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s