ϕ be a scalar field. The gradient is the vector field defined by

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ϕ be a scalar field. The gradient is the vector field defined by"

Transcript

1 Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I an thn scala o ot poct cto o s poct In som boos s also cons ot poct n b GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR GRADIENT Lt ϕ b a scala l Th ant s th cto l n b a ϕ ϕ ϕ ϕ DIVERGENCE Lt R Q b a cto l contnosl ntabl th spct to an Thn th nc o s th scala l n b R Q CURL Th cl o s th cto l n b Q R Q R R Q cl o Q R Q R cl DEL NABLA OERATOR Th cto ntal opato s call l o nabla / 8

2 Amn Halloc Math Ecss U can not a an cl as blo: a ϕ ϕ cl Not that s not th sam as Q R LALACIAN OERATOR Th Laplacan opato s n o a scala l U b U U U U U an o a cto l Q R b Q R Som omlas o pola an clncal coonats ola coonats m ϑ ϑ ϑ ϑ tansomaton: aa lmnt: A stana bass: [Rma : Not that a pn on hn mo om pont to pont ths s th ason h ths bass n som boos s call local bass ] I n Catsan coo an ϑ th sam cto n pola coonats thn ϑ [Rma : V can ths omlas b calclatn th componnts o n th ctons o an Ths / 8

3 Amn Halloc Math Ecss smlal ϑ ϑ ] Clncal coonats : tansomaton: olm lmnt: V ϑ ϑ stana bass: I n Catsan coo an ϑ th sam cto n clncal coonats thn ha ollon cto componnts latonshp: ϑ [Rma : o ampl can t n th ollon a: ] scala l: ant: a laplacan: cto l: nc: cl: cl / 8

4 Amn Halloc Math Ecss EXERCISES n a b a an c cl o th ollon ntts a cl 0 o 0 b cl ϕ 0 o ϕ 0 Whch on o th ollon nctons a b ln c p 5 5 satss th Laplac qaton 0? n 5 Wt th nal tanspot qaton ϕ ϕu Γ ϕ S t φ thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an 6 Whch on an o th ollon nctons a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U an S 7 n hch on an o th ollon nctons a ϕ b ϕ 5 5 ϕ c satss th qaton / 8

5 Amn Halloc Math Ecss ϕ ϕu Γaϕ S t h Γ U an S am 008 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an B Lt Γ U n S n th qaton q no that th ncton ϕ satss th qaton 9 Q6 am 008 Cons th ollon qaton ϕ ϕu Γ ϕ U 6 q t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton 0 I possbl n o th n patal ats an a an b an c an an 5 Hnt: Ncssa conton: I has contns ats thn th m ats o shol b qal Ths * s th ncssa conton o th stnc o a ncton that has th n ats Dtmn th al o a o hch th sstm o patal ntal qatons 5 / 8

6 Amn Halloc Math Ecss a an has soltons Thn n ponn to ths al o a I possbl n o th n patal ats an a an b an c an an Hnt: Ncssa conton: I has contnos ats thn th m ats o shol b qal Ths Con : Con : Con : a th ncssa conton o th stnc o a ncton that has th n ats Dtmn th als o a an b o hch th sstm o patal ntal qatons a an b has soltons Thn n ponn to ths als o a an b W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s 6 / 8

7 Amn Halloc Math Ecss Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: µ q t componnt: µ q t componnt: µ q t a V 0 b V c V 5 am 009 A Cons th ollon qaton ϕ ϕu Γ ϕ U t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton q B W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s an V 6 6 am 009 W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n st paamt a an thn 7 / 8

8 Amn Halloc Math Ecss n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s an V 5 a 7 Cons sta ncompssbl sothmal lamna statona Ntonan lo n a lon on pp n th -cton th constant ccla s-scton o as R m Us th contnt an th Na-Stos qatons n clncal coonats to n th loct l V an th pss l th l lo satss th ollon contons: c0 All patal ats th spct to tm t a 0 Sta lo c μ000 /m s an 000 /m c A Constant pss ant / /50 a/m s appl n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 an 0 c W assm that th lo s asmmtc Th loct os not pn on that s 0 c5 Bona con No-slp bona conton V l V all : I thn 0 c6 Bona conton : has mamm at 0 that s Th contnt an th Na-Stos qatons o an ncompssbl sothmal Ntonan lo nst const st µ const th a loct l V n Clncal coonats : Incompssbl contnt qaton 0 q a Na-Stos qatons n Clncal coonats: -componnt: t µ -componnt: q b 8 / 8

9 Amn Halloc Math Ecss t µ q c -componnt: t µ q 8 Eam Mach 0 qston A ponts W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l a b c V Us th ollon qatons contnt an Na Stos qatons h constant µ constant 00 0 an / 98 s m to n: paamts a b an c n psson o pss as a ncton o an Th GRADIENT VECTOR th chan o aabls an bass Th ant cto o th ncton s n as a * I chan aabls to an plac bass ctos th n lnal npnnt ctos thn can pss th sam ant cto a n tms o aabls an ctos W smpl calclat th ats an n n aabls an pss as a lna combnatons o Thn sbsttt thos als nto * S th ollon ampl 9 W cons a scala l n n clncal coonats h an bass ctos a 9 / 8

10 Amn Halloc Math Ecss n th psson o th ant a n clncal coonats that s n tms o an a p th sam bass b c am 0; Q5 B ponts ths s otn s as a local bass o clncal coonats 0 am 06; Q6 A ponts D th Cach momntm qaton DV σ Dt n th l o th cto l pa thoh th sac 0 0 Us th Dnc Thom to n th l o th cto l ot o th sph S th qaton 9 ANSWERS AND SOLUTIONS: Solton: Q R a Snc ha 0 0 Ans a ϕ ϕ ϕ b Snc a ϕ ha o ϕ a 00 Ans b a 00 c cl Q R 0 / 8

11 Amn Halloc Math Ecss Ans c cl Hnt Us th ntons o an cl 0 0 Ans: Th nctons ln an 5 5 satss th Laplac qaton Ans: cl a 6 5 Solton: ϕ ϕu Γaϕ Sφ t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ Sφ t ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ t 6 Whch on an o th ollon nctons a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U an S Solton : Th qaton ϕu Γ ϕ S can b ttn as ϕ Γ S φ / 8

12 Amn Halloc ϕu Γaϕ S 5ϕ 5ϕ 5ϕ ϕ ϕ ϕ ϕ ϕ ϕ 5 ϕ 5 ϕ 5 ϕ Math Ecss q a Lt ϕ ϕ V calclat th ats oϕ an sbsttt n th lt han s LHS an ht han s o th qaton q ϕ ϕ ϕ ϕ 5 ϕ 5 ϕ LHS: 5 RHS 60 Whnc LHS RHS Ths th ncton ϕ s not a solton to th qaton b ϕ ϕ LHS RHS Whnc LHS RHS an th ncton ϕ s not a solton to th qaton ϕ ϕ c Lt Thn LHS 6 RHS 7 Ths LHS RHS an th ncton ϕ s not a solton to th qaton Ans: Non o th nctons satss th qaton 7 Ans: ncton ϕ 5 satss th qaton 8 am 98 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an / 8

13 Amn Halloc Math Ecss B Lt Γ U n S n th qaton q no that th ncton ϕ satss th qaton Solton: A ϕ ϕu Γ ϕ S t ϕ ϕu Γaϕ S t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ S t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ S q t B W sbsttt Γ U an ϕ n th qaton q an t ϕ ϕ 8φ ϕ ϕ ϕ 0 S S Consqntl S Q6 am 008 Cons th ollon qaton ϕ ϕu Γ ϕ U 6 q t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton Solton: ϕ ϕu Γ ϕ U 6 t ϕ ϕu Γaϕ cl U 6 t c cl U 0 ha cl U 0 / 8

14 Amn Halloc Math Ecss ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 0 6 t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 0 6 q t W sbsttt U an ϕ t n th qaton q an t ϕ ϕ ϕ φ ϕ ϕ ϕ Γ Γ Γ 6 t Not that Γ s a constant 6 0 Γ Γ 6 8 Γ Γ Ans: Γ 0 I possbl n o th n patal ats an a an b an c an an 5 Hnt: Ncssa conton: I has contnos ats thn th m ats o shol b qal * s th ncssa conton o th stnc o a ncton that has th n ats Ans: a C b C c C No solton c th conton * s not lll 5 Solton a Snc an th ats a contnos th conton * s lll an can n o th n ats In o to n ntat th spct to th st o th qatons q / 8

15 Amn Halloc Math Ecss an t q C Ths C W ha ntat th spct to tho th constant stll pn on No to n C ntat an sbsttt n q an t: C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a Thn o a ha C Ans: a C b C c C No solton c th conton Con s not lll Solton a a an Snc th contons Con a lll an can n o th n ats In o to n ntat th spct to th st o th qatons q q q an t C Ths 5 / 8

16 Amn Halloc Math Ecss C W ha ntat th spct to tho th constant stll pn on an No to n C ntat an sbsttt n q an t: C C C C C W ha ntat th spct to tho th constant stll pn on an Ths C No sbstttn n q ha C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a b b b b Ths all th contons a lll a an b o ths als o a an b t C Calclaton o th pss l o a non loct l o an ncompssbl sta stat sothmal Ntonan lo Ans: a 8 8 C 6 / 8

17 Amn Halloc Math Ecss 7 7 b C c C Solton a W sbsttt 0 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 0 q ntcall lll Na Stos qatons: componnt: 6 q componnt: 6 q componnt: 0 q No q s 8 C * Sbsttton n q mpls C 6 C 8 C Hnc om * ha 8 8 C ** No sbsttt ** n q an t 0 0 C C C h C s a constant nall sbstttn C C n ** ha 8 8 C h C s a constant 5 Solton A: ϕ ϕ U Γ ϕ U t ϕ ϕu Γaϕ cl U t c cl U 0 ha cl U 0 ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ t 7 / 8

18 Amn Halloc Math Ecss ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ t q W sbsttt U an ϕ t n th qaton q an t ϕ 8ϕ 8ϕ φ ϕ ϕ Γ Γ t Not that Γ s a constant Γ Γ Γ 5 Ans A: Γ 5 Solton B: W sbsttt 6 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 0 q ntcall lll Na Stos qatons: componnt: 6 q componnt: 8 q componnt: q No q s 8 C * Sbsttton n q mpls C 8 C 8 C Hnc om * ha 8 8 C ** No sbsttt ** n q an t C C C h C s a constant nall sbstttn C C n ** ha 8 8 C Ans B: Γ ϕ / 8

19 Amn Halloc Math Ecss C 8 8 h C s a constant 6 Solton 5 a V st sbsttt a 5 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 a a No ha 5 V U th Na Stos qatons t: componnt: 6 9 q componnt: 5 q componnt: q No q s 6 9 C * Sbsttton n q mpls 5 5 C C C Hnc om * ha C ** W sbsttt ** n q an t C C C h C s a constant nall sbstttn C n ** ha C Ans : C h C s a constant Q7 Cons sta ncompssbl sothmal lamna statona Ntonan lo n a lon on pp n th -cton th constant ccla s-scton o as R m Us 9 / 8

20 Amn Halloc Math Ecss th contnt an th Na-Stos qatons n clncal coonats to n th loct l V an th pss l th l lo satss th ollon contons: c0 All patal ats th spct to tm t a 0 Sta lo c μ000 /m s an 000 /m c A Constant pss ant / /50 a/m s appl n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 an 0 c W assm that th lo s asmmtc Th loct os not pn on that s 0 c5 Bona con No-slp bona conton V l V all : I thn 0 c6 Bona conton : has mamm at 0 that s 0 0 Th contnt an th Na-Stos qatons o an ncompssbl sothmal Ntonan lo nst const st µ const th a loct l V n Clncal coonats : SOLUTION Incompssbl contnt qaton 0 q a Na-Stos qatons n Clncal coonats: -componnt: t µ q b -componnt: t µ q c -componnt: 0 / 8

21 Amn Halloc Math Ecss t µ q W choos as a tcal as an a n a hoontal plan an th lo s paalll th th -as W not loct cto V h an a -componnt - componnt an -componnt n clncal coonats Accon to th assmptons ha 0 0 an os not pn on Snc s th tcal as ha that cto - 00 h 98 m/s hch n clncal coonats s an 0 No sbsttt / /50 a/m μ000 /ms n th contnt an Na- Stos qatons: Snc 0 an 0 accon to c contnt qaton n clncal coonats 0 s 0 / 8

22 Amn Halloc Math Ecss Ths tlls s that s not a ncton o thmo c loct os not pn on assmpton c concl that pns onl on To smpl notaton not * No sbsttt an 0 / /50 a/m μ000 /ms n th Na-Stos qatons: Th -componnt o th Na-Stos qaton s: 0 q -c Th -componnt o th Na-Stos qaton: 0 q -c Th Z-componnt o th Na-Stos qaton h an 0 q -c s: Stp W n th pss In o to n th pss sol q -c q -c an th qaton s 50 that 50 om ths qatons t C 50 / 8

23 Amn Halloc Math Ecss Stp W n th loct componnt W sol q -c th bonas c5 an c6: 0 q -c c5 0 0 c6 Rma: Tchncall can t nsta aabl om q -c ha c s no a ncton o onl on C sbsttton 0 an c6 C 0 C sbsttton an c5 C Ths an V 0 0 Ans : C 50 V 0 0 / 8

24 Amn Halloc Math Ecss 8 W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l a b c V Us th ollon qatons contnt an Na Stos qatons h constant µ constant 00 0 an / 98 s m to n: paamts a b an c n psson o pss as a ncton o an Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: t µ q componnt: t µ q componnt: t µ q W sbsttt a b c n q an t not that al ats th spct to t a 0: Contnt qaton: 0 a a q Ths b c Na Stos qatons: componnt: q componnt: q componnt: / 8

25 Amn Halloc Math Ecss q Th sstm q q q s solabl onl m ats a qal: : c c Con 0 0 : b bc Con 0 0 : b b Con Ths c an b0 W sol smpl qatons an t C Ans C W cons a scala l n n clncal coonats h an bass ctos a n th psson o th ant a n clncal coonats that s n tms o an a p th sam bass b c am 0; Q5 B ponts ths s otn s as a local bass o clncal coonats 5 / 8

26 Amn Halloc Math Ecss Solton: In aabls ha a q o clncal coonats ha st t th ats an n coonats th aabl s n both coo sstms Soln th ollon sstm o an t ** W sbsttt th ats ** n q an t *** a To sol poblms a b c an mst pss as a lna combnatons o an sbsttt thm nto *** a om *** c ha mmatl a b om n q b Thn pt om q b nto *** an t a 6 / 8

27 Amn Halloc Math Ecss an at collctn componnts o a c om ha q c ttn om q c nto *** s a W can sol n th sam mann as n abc bt ths tm can st collct tms an t th slt: a Ans: a a b a c a a 0 S Solton: N 7 / 8

28 Amn Halloc Math Ecss N Φ N Φ D Ans: Φ Solton: Φ ΦV K Ans: K Φ π VolmK π π 8 / 8

ϕ be a scalar field. The gradient is the vector field defined by

ϕ be a scalar field. The gradient is the vector field defined by Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and thn scala

Διαβάστε περισσότερα

webpage :

webpage : Amn Halloc Mah Ecss / 7 E-mal : amn@shhs bpag : shhs/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and hn scala

Διαβάστε περισσότερα

webpage :

webpage : Amin Haliloic Mah Eciss E-mail : amin@shkhs wbpa : wwwshkhs/amin MATH EXERISES GRADIENT DIVERGENE URL DEL NABLA OERATOR LALAIAN OERATOR ONTINUITY AND NAVIER-STOKES EQUATIONS VETOR RODUTS I and hn scala

Διαβάστε περισσότερα

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3b

ECE 222b Applied Electromagnetics Notes Set 3b C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T

Διαβάστε περισσότερα

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or

Διαβάστε περισσότερα

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS . ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 4 : Linear Wire Antenna

Chapter 4 : Linear Wire Antenna Chapt 4 : Lina Wi Antnna nfinitsima Dipo Sma Dipo Finit Lngth Dipo Haf-Wavngth Dipo Lina mnts na o on nfinit Pfct Conductos nfinitsima Dipo Lngth

Διαβάστε περισσότερα

DISPLAY SUPPLY: FILTER STANDBY

DISPLAY SUPPLY: FILTER STANDBY ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Hydraulic network simulator model

Hydraulic network simulator model Hyrauc ntwor smuator mo!" #$!% & #!' ( ) * /@ ' ", ; -!% $!( - 67 &..!, /!#. 1 ; 3 : 4*

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3a

ECE 222b Applied Electromagnetics Notes Set 3a C b lid lcomagnics Nos S 3a Insuco: Pof. Viali Lomakin Damn of lcical and Comu ngining Univsi of Califonia San Digo Unifom Plan Wavs Consid Mawll s quaions: In a losslss mdium ε and µ a al and σ : Sinc

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΕΡΙΛΗΨΗ ΣΥΜΒΟΛΙΣΜΩΝ NOTATION ΓΙΑ ΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΑΝΥΣΤΕΣ -Bd, Steat and Lghtfoot "Tanpot Phenomena" -Bd, Amtong and Haage

Διαβάστε περισσότερα

Κύµατα παρουσία βαρύτητας

Κύµατα παρουσία βαρύτητας Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

1.19 Curvilinear Coordinates: Curved Geometries

1.19 Curvilinear Coordinates: Curved Geometries Scton.9.9 Curlnr Coordnts: Curd Gomtrs In ths scton s mnd th spcl cs of two-dmnsonl curd surfc..9. Monoclnc Coordnt Systms Bs Vctors curd surfc cn b dfnd usn two cornt bs ctors wth th thrd bs ctor rywhr

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

2. Chemical Thermodynamics and Energetics - I

2. Chemical Thermodynamics and Energetics - I . Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α ΑΝΑΛΥΤΙΚΗ ΛΙΣΤΑ ΣΗΜΕΙΩΝ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΠΟΜΑΚΡΥΣΜΕΝΟΥ ΕΛΕΓΧΟΥ (BMS)

ΠΑΡΑΡΤΗΜΑ Α ΑΝΑΛΥΤΙΚΗ ΛΙΣΤΑ ΣΗΜΕΙΩΝ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΠΟΜΑΚΡΥΣΜΕΝΟΥ ΕΛΕΓΧΟΥ (BMS) ΠΑΡΑΡΤΗΜΑ Α ΑΝΑΛΥΤΙΚΗ ΛΙΣΤΑ ΣΗΜΕΙΩΝ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΠΟΜΑΚΡΥΣΜΕΝΟΥ ΕΛΕΓΧΟΥ (BMS) ΑΠΟΜΑΚΡΥΣΜΕΝΟ ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ revision 00, 25/02/2014 1. ΧΩΡΟΣ ΜΗΧΑΝΩΝ 1.1 Μέτρηση θερμοκρασίας χώρου 6 Αντίσταση Αισθητήριο

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2. Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn

Διαβάστε περισσότερα

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas Lctu 31 Wi Antnnas n this lctu yu will lan: Gnatin f aiatin by al wi antnnas Sht ipl antnnas Half-wav ipl antnnas Th-half-wav ipl antnnas Small wi lp antnnas magntic ipl antnnas ECE 303 Fall 006 Fahan

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師 A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Boundary-Layer Flow over a Flat Plate Approximate Method

Boundary-Layer Flow over a Flat Plate Approximate Method Bounar-aer lo oer a lat Plate Approimate Metho Transition Turbulent aminar The momentum balance on a control olume o the bounar laer leas to the olloing equation: + () The approimate metho o bounar laer

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα

Διαβάστε περισσότερα

X g 1990 g PSRB

X g 1990 g PSRB e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Finite Element Method

The Finite Element Method Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Linearized Lifting Surface Theory Thin-Wing Theory

Linearized Lifting Surface Theory Thin-Wing Theory 13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor

Διαβάστε περισσότερα

Reflection & Transmission

Reflection & Transmission Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Η Χρυσή Τομή - Μια εφαρμογή της Θεωρίας της Αρμονικότητος του Πεδίου του Φωτός Διονύσης Γ. Ραυτόπουλος, Μ-Η Μηχανικός Ε.Μ.Π., Ανεξάρτητος Ερευνητής

Η Χρυσή Τομή - Μια εφαρμογή της Θεωρίας της Αρμονικότητος του Πεδίου του Φωτός Διονύσης Γ. Ραυτόπουλος, Μ-Η Μηχανικός Ε.Μ.Π., Ανεξάρτητος Ερευνητής ΤΙΤΛΟΣ : ΣΥΓΓΡΑΦΕΑΣ : Η Χρσή Τομή - Μια εφαρμογή της Θεωρίας της Αρμονικότητος το Πεδίο το Φωτός Διονύσης Γ. Ρατόπολος, Μ-Η Μηχανικός Ε.Μ.Π., Ανεξάρτητος Ερενητής ΠΕΡΙΛΗΨΗ : Είναι σχεδόν καθολικά αποδεκτή

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1 Θέματα Θέμα 1 ο 1. Ποιες από τις παρακάτω ενώσεις είναι ακόρεστες και ποιες κορεσμένες; C O HO C 1... 5. 5 μονάδες. Σε ποια ομόλογη σειρά ανήκει καθεμιά

Διαβάστε περισσότερα