Regijsko tekmovanje srednješolcev iz fizike v letu 2004

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Regijsko tekmovanje srednješolcev iz fizike v letu 2004"

Transcript

1 Regijsko tekmovanje srednješolcev iz fizike v letu 004 c Tekmovalna komisija pri DMFA 7. marec 004 Kazalo Skupina I Skupina II 4 Skupina III 6 Skupina I rešitve 8 Skupina II rešitve 11 Skupina III rešitve 15 Skupina I Kjer je potrebno, vzemi za težni pospešek vrednost 9,8 m/s. 1. Predalnik s 6 predali ima obliko kvadra (glej sliko). Ogrodje predalnika je votel kvader s težiščem v sredini, polni predali pa so kvadri z enako dolžino kot je globina predalnika in se dajo do konca izvleči. Težišče predala je v njegovi sredini. Masa ogrodja predalnika je 1 kg, masa posameznega polnega predala je 5 kg. Največ koliko predalov lahko do konca izvlečemo, da se omara še ne prevrne? 1

2 . Na lesenem šolskem stolu z naslonjačem pokončno sedi učenec, tako da se z nogami dotika tal. Učenec se med sedenjem želi premakniti s stolom vred nazaj, pri čemer si pomaga samo z nogami. Najmanj kolikšen del svoje teže mora učenec prenesti na noge, da se s stolom vred lahko premakne? Koeficient lepenja med stolom in tlemi je 0,15, koeficient lepenja med učenčevimi nogami in tlemi pa 0,30. Teža stola je tako majhna v primerjavi s težo učenca, da jo lahko zanemariš. Med zdrsom se stol vseskozi dotika tal z vsemi štirimi nogami. 3. Na lokvanju sredi ribnika sedi žaba in čaka plen. Ko mimo prileti mušica, žaba izproži svoj jezik tako, da je hitrost težišča jezika 5 m/s glede na žabo. Ker je jezik lepljiv, se mušica prilepi že ob dotiku. Na kolikšni razdalji od žabe so mušice še varne? Skupna masa žabe (z jezikom) in lokvanja je 10 g. Jezik obravnavaj kot telo z maso 0 g in dolžino 0 cm ter s težiščem v sredini. Upor vode zanemari. 4. V sredini sobe s stranicami 300 cm 300 cm 300 cm z loparjem udarimo prožno žogico, ki je tik nad tlemi, z začetno hitrostjo 7 km/h, pod kotom 15 glede na tla, vzporedno z navpičnima stenama. a) Kolikšen bi bil domet žogice na prostem? b) Kolikokrat se žogica odbije od sten preden pade na tla? c) Kje se žogica dotakne stropa, če je začetna hitrost -krat večja?

3 Skupina II Kjer je potrebno, vzemi za težni pospešek vrednost 9,8 m/s. 1. Dve posodi povežemo z bakreno palico z dolžino 0 cm, presekom 10 mm in toplotno prevodnostjo 380 W/mK. Prvo posodo segrevamo z gorilnikom tako, da v njej ves čas vre voda. Druga posoda je v stiku s prvo le preko bakrene palice, sicer je izolirana. V njej je na začetku zmes 0 g vode in 10 g ledu pri 0 C. Talilna toplota ledu je 336 kj/kg, specifična toplota vode 4, kj/kgk. Druga posoda tehta 50 g in je iz snovi s specifično toploto 880 J/kgK. a) V kolikšnem času se ves led stali? b) Približno izračunaj, v kolikšnem času po tem, ko se led stali, se voda v drugi posodi segreje na 40 C?. Lesen kvader s stranicami 30 cm 30 cm 5 cm položimo z največjo ploskvijo v bazen, v katerem je globina vode 6 cm. Na spodnjo ploskev kvadra pritrdimo izolirano tanko kovinsko ploščico z velikostjo 30 cm 30 cm, enako ploščico pa še na dno bazena, natančno pod spodnjo ploskev kvadra. Ploščici priključimo na enosmerno napetost. Napetost počasi povečujemo. Pri kolikšni najmanjši napetosti se kvader popolnoma potopi? Masa ploščic je zanemarljiva. Gostota lesa je 800 kg/m 3, gostota vode 1000 kg/m 3, influenčna konstanta je ε 0 = 8, As/Vm in dielektričnost vode ε = 81. [Zaradi dielektričnosti je kapaciteta kondenzatorja ε-krat večja od kapacitete praznega kondenzatorja.] 3. Iz treh enakih kovinskih žičk zvarimo gugalnico, tako da žičke tvorijo tri stranice kvadrata. V dveh prostih krajiščih gugalnico vpnemo, tako da je prosto vrtljiva okoli vodoravne osi. Med prosti krajišči priključimo izvir konstantne napetosti. V navpičnem homogenem magnetnem polju se gugalnica odkloni za kot 0. Nato vzamemo še četrto žičko, ki je enaka prvim trem. Pritrdimo jo vzporedno tik ob srednjo vodoravno žičko, ki sestavlja gugalnico, in sicer tako, da ima dober stik z drugima žičkama. 3

4 a) Kolikokrat večji tok teče skozi izvir potem, ko pritrdimo četrto žičko, v primerjavi s tokom, ki je tekel, ko je bila gugalnica sestavljena iz treh žičk? b) Kolikšen je ravnovesni odklon gugalnice iz štirih žičk? 4. Za obratovanje električnega omrežja je potrebno več elektrarn vezati vzporedno. Ker je izhodna napetost v elektrarnah izmenična, jih je potrebno sinhronizirati, kar pomeni, da morajo napetosti v vseh elektrarnah nihati sočasno. To seveda ne uspe popolnoma. Izmenični napetosti z dveh tako vezanih malih elektrarn imata amplitudo U 0 = 310 V, notranji upor posamezne elektrarne pa je 1 Ω. V prvi elektrarni se napetost spreminja kot U 1 = U 0 cos(ωt), v drugi pa kot U = U 0 cos(ωt + δ), pri čemer je δ = 5, elektrarni pa nista obremenjeni z zunanjim uporom. Ker se napetosti razlikujeta, teče v tem primeru skozi elektrarni tok. Kolikšno povprečno moč porablja posamezna elektrarna? [Pri sinusni izmenični napetosti je povprečna moč enaka polovici največje moči. Mogoče boš pri računanju potreboval adicijski izrek: cos α cos β = sin α+β α β sin.] 4

5 Skupina III Kjer je potrebno, vzemi za težni pospešek vrednost 9,8 m/s. 1. Utiriti želimo geostacinarni satelit z maso 100 kg, ki bo ves čas nad krajem, ki ima zemljepisno širino 30. Satelit torej kroži tako, da os kroženja sovpada z osjo kroženja Zemlje, ravnina kroženja ne gre skozi središče Zemlje, je pa vzporedna z ekvatorialno ravnino. Zato mora imeti satelit raketni motor, ki ves čas deluje nanj z določeno silo v smeri, vzporedni z osjo kroženja. Izračunaj, na kolikšni razdalji od središča Zemlje kroži satelit in kako velika je sila motorja. Zemlja ima maso 6, kg, gravitacijska konstanta pa je G = 6, Nm /kg.. Za obratovanje električnega omrežja je potrebno več elektrarn vezati vzporedno. Ker je izhodna napetost v elektrarnah izmenična, jih je potrebno sinhronizirati, kar pomeni, da morajo napetosti v vseh elektrarnah nihati sočasno. To seveda ne uspe popolnoma. Izmenični napetosti z dveh tako vezanih malih elektrarn imata amplitudo U 0 = 310 V, notranji upor posamezne elektrarne pa je 1 Ω. V prvi elektrarni se napetost spreminja kot U 1 = U 0 cos(ωt), v drugi pa kot U = U 0 cos(ωt + δ), pri čemer je δ = 5, elektrarni pa nista obremenjeni z zunanjim uporom. Ker se napetosti razlikujeta, teče v tem primeru skozi elektrarni tok. Kolikšno povprečno moč porablja posamezna elektrarna? [Pri sinusni izmenični napetosti je povprečna moč enaka polovici največje moči. Mogoče boš pri računanju potreboval adicijski izrek: cos α cos β = sin α+β α β sin.] 3. Blok z maso kg leži na gladkih tleh in je preko dveh lahkih vzmeti s prožnostnim koeficientom 1000 N/m (večja vzmet) in 500 N/m povezan s steno, kot kaže slika. Sistem lahko nesimetrično niha v vodoravni smeri, saj se večja vzmet zaradi ovire na tleh lahko le krči, ne more pa se raztezati. Ovira pa ne vpliva na manjšo vzmet. Kolikšen je nihajni čas nihala? Na sliki je nihalo prikazano v ravnovesni legi, ko sta obe vzmeti nenapeti. 4. Ko običajno žarnico (na žarilno nitko) priključimo na izvir napetosti, se nitka v njej tako segreje, da seva kot črno telo. Pri napetosti 5

6 1 V ima spekter izsevane svetlobe maksimum pri valovni dolžini 50 nm. Kolikšna je ta valovna dolžina, ko napetost na žarnici znižamo na 8,0 V? Nitka v žarnici vso prejeto električno moč odda v obliki sevanja. Privzemi, da je upor nitke v obeh primerih enak. 6

7 Skupina I rešitve 1. Podatki: M = 1 kg, m = 5 kg, N 0 = 6. Navor teže ogrodja predalnika in predalov, ki so zaprti, mora biti večji ali kvečjemu enak navoru odprtih predalov. Os za računanje navorov postavimo v rob predalnika na strani, na kateri so izvlečeni predali. (M + (N 0 N)m)g a Nmg a, pri čemer smo z a označili dolžino predala (in globino predalnika) in z N število predalov, ki jih še lahko izvlečemo. Dobimo N M + N 0m m = 4,, torej N = 4. Izvlečemo lahko največ štiri predalnike. [10 t.]. Podatki: k s = 0,15, k n = 0,30. Če s F označimo silo, s katero učenec pritiska z nogama navpično na tla, je F g F navpična sila, s katero pritiska stol na tla; F g je teža učenca. V mejnem primeru, tik preden se stol premakne, je sila lepenja med nogami in tlemi nasprotno enaka sili lepenja med stolom in tlemi: Fk n = (F g F)k s torej F = F g k s k n + k s = 1 3 F g. Prenesti mora tretjino svoje teže.[10 t.] 3. Podatki: v 0 = 5 m/s, M = 10 g, m = 0 g, l = 0 cm. Ko žaba sproži jezik, se žaba z lokvanjem a brez jezika začne premikati v nasprotni smeri gibanja jezika s hitrostjo v, merjeno glede na mirujočega opazovalca. Zanj je hitrost težišča jezika za toliko manjša, torej v 0 v. Ohranja se skupna gibalna količina: 0 = m(v 0 v) (M m)v od koder dobimo v = mv 0 M. Pot žabe do trenutka, ko je jezik iztegnjen, je s = vt = mv 0t M = l m M, 7

8 pri čemer je l = 1 l ravno pot, ki jo je prepotovalo težišče jezika glede na žabo. Ko se jezik ustavi, se ustavi tudi žaba, in na koncu zopet vsi mirujejo. Doseg žabinega jezika je manjši za pot s, torej d = l s = 18,3 cm. Premik žabe z lokvanjem izračunamo hitreje iz dejstva, da se pri sproženju jezika težišče žabe z jezikom in lokvanjem ne premakne, saj je vsota zunanjih sil na žabo enaka 0. Če je s premik žabe brez jezika in l s premik težišča jezika, velja 0 = (l s)m s(m m), s = l m M, tako kot v prejšnjem primeru. [10 t.] 4. Podatki: a = 3 m, v 0 = 7 km/h, ϕ = 15 ; v 0 = v 0 a) Na prostem bi bil domet s = v 0 g sin ϕ = 0,4 m. [ t.] b) Namesto v sobi si mislimo met na prostem. Prepotovana (vodoravna) razdalja 1 a, 3 a, 5 a,... = 1 a + (N 1)a, N = 1,,..., ustreza zaporednim trkom s stenama. Iz rezultata za domet pri poševnem metu pri a) potem sledi: [ 1 1 s a + (N 1)a = s, N = 1 + a ] = [7,3] = 7 krat. a [4 t.] Preveriti pa moramo, če se pri tem žogica ni dotaknila stropa; če se je, moramo to pri računu števila odbojev upoštevati. Za čas dviganja velja t 1 = v 0 sin ϕ/g, za višino, ki jo pri tem doseže pa: h = v 0 sin ϕ t 1 1 gt 1 = v 0 sin ϕ = 1,37 m, g kar je res manj od višine stropa in račun je pravilen. [1 t.] 8

9 c) Če bi imela dvakrat večjo začetno hitrost, bi na prostem poletela štirikrat višje, zato v tem primeru doseže strop. Čas potovanja dobimo iz zveze za višino pri poševnem metu: a = v 0 sin ϕ t 1 g t. Kvadratna enačba za t ima smiselno rešitev t = v 0 sin ϕ v 0 sin ϕ ga = 0,347 s. g V tem času bi na prostem v vodoravni smeri prepotovala Torej se od sten odbije in zadene strop na razdalji s = v 0 cos ϕ t = 13,4 m. [ s 1 N = 1 + a ] = [4,97] = 4 krat a l = s (N 1 )a =,9 m od stene, od katere se je zadnjič odbila, oziroma 10 cm od stene, od katere se je odbila prvič. [3 t. za pravilen rezultat znotraj ±10 cm] 9

10 Skupina II rešitve 1. Podatki: l = 0 cm, S = 10 mm, λ = 380 W/mK, m v = 0 g, m l = 10 g, T 0 = 0 C, T 1 = 100 C, T = 40 C, q t = 336 kj/kg, c v = 4, kj/kgk, c p = 0,88 kj/kgk, m p = 50 g. a) Toplotni tok, ki teče iz posode z vrelo vodo v posodo z ledom in vodo, je enak P = λs T 1 T 0 l = 1,9 W. Toplotni tok tali led; prejeta toplota se porabi za taljenje ledu, Pt = m l q t ; od tod: t = m lq t P = m l q t l = 1770 s = 9,5 min. λs (T 1 T 0 ) [5 t.] b) Temperaturna razlika ni stalna in se s časom zmanjšuje. Zato se zmanjšuje tudi toplotni tok, ki teče po palici. Približno ga lahko izračunamo tako, da vzamemo povprečno temperaturo vode, T s = 1 (T + T 0 ) = 0 C. Toplotni tok je potem P = λs T 1 T s l = 1,5 W. Sedaj se poleg vode (tu upoštevamo tudi vodo, ki je nastala pri taljenju ledu) segreva še posoda. Velja [5 t.] t = [(m v + m l )c v + m p c p ](T T 0 ) P = [(m v + m l )c v + m p c p ](T T 0 )l λs (T 1 T s ) = 4500 s = 75 min = 1 h 15 min. 10

11 . Podatki: a = b = 30 cm, c = 5 cm, h = 6 cm, ρ l = 800 kg/m 3, ρ v = 1000 kg/m 3, ε = 81. Kvader je ravno ves potopljen, ko je spodnja ploskev oddaljena od dna za d = h c. Tedaj električna privlačna sila uravnovesi vzgon, zmanjšan za težo kvadra: ee = ρ v V g ρ l V g = abc(ρ v ρ l ) g. [4 t.] Upoštevamo, da je naboj na plošči zaradi dielektričnosti vode večji za faktor ε v primerjavi z nabojem, ki bi se nabral na praznem kondenzatorju, e = CU, C = εε 0 S/d; E je električna poljska jakost ene plošče in je le polovica električne jakosti v kondenzatorju, torej E = U/d. Ravnovesje torej zahteva εε 0 abu d U d = abc(ρ v ρ l ) g in od tod U = (h c) c(ρ v ρ l ) g εε 0 = 5, kv. [6 t.] 3. Podatki: ϕ = 0 Z l označimo dolžino ene žičke, z m njeno maso, S je prečni presek žičke, ζ njen specifični upor in U napetost, ki jo priključimo na žičke. a) V prvem primeru teče tok skozi tri enake zaporedno vezane upornike z uporom po R = ζl/s: I = U 3 ζl S = US 3ζl. V drugem primeru se efektivni presek srednje žičke poveča dvakrat, zato je tok v tem primeru enak I = ζl S U + ζl S = US 5ζl, iskano razmerje pa I I = 6 5 = 1,. 11 [3 t.]

12 b) V ravnovesju sta navor magnetne sile in navor teže žičk enaka. K navoru prispeva le magnetna sila na srednjo žičko, ki kaže v vodoravni smeri, pravokotna na žičko. Velja: Magnetna sila je enaka F m l cos ϕ = M g. F m = IlB = U 3 ζl S lb = UBS 3ζ. Navor teže je sestavljen iz prispevkov treh žičk: M g = ( 1 lm + lm)g sin ϕ. Iz enačbe za ravnovesje navorov dobimo: tgϕ = ( 1 F m l UBS = lm + lm)g 6ζmg. [4 t.] V drugem primeru pa po vezju teče tok I, ki smo ga zapisali pri a), in za silo dobimo: F m = UBS 5ζ. Navor teže se poveča: M g = ( 1 lm + lm)g sin ϕ. Iz ravnovesja navorov v tem primeru sledi tgϕ = F ml UBS ( 1 = lm + lm)g 15ζmg. Iz razmerja obeh tangensov končno sledi: ϕ = 16. [3 t.] tgϕ tgϕ = 1 15, tgϕ = 4 5 tgϕ, 1

13 4. Podatki: U 0 = 310 V, R 0 = 1 Ω, δ = 5. Razlika obeh napetosti požene tok po zaporedno vezanih generatorjih: Iz adicijskega izreka sledi [4 t.] I = U 1 U R 0 = U 0 cos ωt U 0 cos(ωt + δ) R 0. I = U 0 R 0 sin(ωt + 1 δ) sin( 1 δ) = U 0 R 0 sin 1 δ sin(ωt + 1 δ). Notranji upornik generatorja porablja moč: P = R 0 I = U 0 R 0 sin 1 δ sin (ωt + 1 δ). Povprečna moč je polovica največje: [6 t.] P = U 0 R 0 sin 1 δ = 91 W. 13

14 Skupina III rešitve 1. Podatki: m = 100 kg, ϕ = 30, M = 6, kg, G = 6, Nm /kg. Sila motorja, F, in gravitacijska sila F g, se morata sešteti v centripetalno silo, F c, ki kaže proti središču kroženja. Iz slike razberemo F c = F g cos ϕ in F = F g sin ϕ. Newtonov zakon za kroženje pove: mω r = F c = F g cos ϕ = GmM R cos ϕ. [5 t.] Velja še r = R cos ϕ ter ω = π/t 0, pri čemer je t 0 = 4 ur. Za oddaljenost satelita od središča Zemlje dobimo R = 3 GMt0 4π = 4, 107 m = km. [ t.] Sila motorja je enaka. (glej II/4.) F = F g sin ϕ = GmM R sin ϕ = mω R sin ϕ = 11, N. [3 t.] 3. Podatki: m = kg, k 1 = 1000 N/m, k = 500 N/m. Ko sta vzmeti skrčeni, obe poganjata blok; ko večja vzmet doseže lego, v kateri je nenapeta, pa nihanje poganja le manjša vzmet. Če bi na blok delovala le manjša vzmet, bi blok nihal z nihajnim časom t = π m k = 0,40 s. [ t.] Pri nihanju v prvem primeru označimo skrčka vzmeti s 1 in s, tako da je skupni skrček s = s 1 + s in pospešek a = ω s = ω (s 1 + s ). 14

15 Iz zakona o vzajemnem učinku sledi, da sta obe vzmeti napeti z enako silo F = k 1 s 1 = k s ; sila F tudi poganja nihanje v prvem primeru: ω (s 1 + s ) = k s. Izrazimo s 1 = s k /k 1 in dobimo ( ) ω s k + s = k s ali ω = k 1 Nihajni čas takšnega nihala bi bil k 1 k m(k 1 + k ). t 1 = π ( 1 m ω = π + 1 ) = 0,49 s. [5 t.] k 1 k Ker pa niha pol nihaja v prvem in pol nihaja v drugem načinu, je čas enega nihaja t 0 = t 1 + t 4. Podatki: U 1 = 1 V, U 1 = 8 V, λ 1 = 50 nm. = 0,44 s. [3 pt.] Električna moč, ki se porablja v žarnici, se v celoti izseva. Iz Stefanovega zakona dobimo: U 1 R = Sσ T 4 1 Enačbi delimo in ugotovimo in U R = Sσ T 4. ( T1 T ) = U 1 U. [5 t.] Iz Wienovega zakona sledi λ 1 T 1 = λ T. Končno dobimo: [5 t.] ( λ λ 1 ) = U 1 U 1 ali λ = λ 1 = 640 nm. U U 15

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

1. kolokvij iz fizike za študente kemije Ljubljana,

1. kolokvij iz fizike za študente kemije Ljubljana, 1. kolokvij iz fizike za študente kemije Ljubljana, 4. 12. 2008 1. Dve kroglici sta obešeni na enako dolgih vrvicah. Prvo kroglico, ki ima maso 0.4 kg, dvignemo za 9 cm in spustimo, da se zaleti v drugo

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike 1 Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 in 2005/06 Avtorji: S. Fratina, A. Gomboc in J. Kotar Verzija: 6. februar 2007 Prosim, da kakršnekoli

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 Program: STROJNIŠTVO UN-B + GING UN-B Štud. leto 2008/09 Datum razpisa: 21.11.2008 Rok za oddajo: 19.12.2008 1. naloga Graf v = v(t) prikazuje spreminjanje hitrosti

Διαβάστε περισσότερα

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6 Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (UNI)

1. kolokvij iz predmeta Fizika 2 (UNI) 0 0 0 2 7 1 5 0 0 0 0 0 9 vpisna št: 1 kolokvij iz predmeta Fizika 2 (UNI) 16042010 1 Kvadratni žičnati okvir s stranico 2 cm in upornostjo 007 Ω se enakomerno vrti okoli svoje diagonale tako da naredi

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

13. poglavje: Energija

13. poglavje: Energija 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala.

F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala. Vaje - Gimnazija, 1. etnik, razična snov 1. naoga Kroga z maso 1 kg je pritrjena na dve vrvici, kakor kaže sika. Poševna vrvica okepa z vodoravnico kot 30. Izračunaj s koikšnima siama sta napeti vrvici!

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

SILA VZGONA. ma = F V F g = m v g m g = ρ v V v g ρ V g ma = V g (ρ v ρ), kjer smo upoštevali, da je telo v celoti potopljeno, sicer V <> V v.

SILA VZGONA. ma = F V F g = m v g m g = ρ v V v g ρ V g ma = V g (ρ v ρ), kjer smo upoštevali, da je telo v celoti potopljeno, sicer V <> V v. 8 SILA VZGONA Sila vzgona F V = sili teže izpodrinjene tekočine: a F V = m v g = ρ v V v g, ρ kjer je ρ v gostota okolne (izpodrinjene) tekočine, V v ρ v pa njen volumen. Ko je telo v celoti potopljeno,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj

ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE Matej Komelj Ljubljana, oktober 2013 Kazalo 1 Uvod 2 2 Mehanika 3 2.1 Kinematika....................................

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

0,00275 cm3 = = 0,35 cm = 3,5 mm.

0,00275 cm3 = = 0,35 cm = 3,5 mm. 1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru

Διαβάστε περισσότερα

1. kolokvij iz Fizike za študente FKKT Ljubljana,

1. kolokvij iz Fizike za študente FKKT Ljubljana, 1. kolokvij iz Fizike za študente FKKT Ljubljana, 16. 11. 2015 1. Majhen vzorec na dnu epruvete vstavimo v ultracentrifugo in jo enakomerno pospešimo do najvišje hitrosti vrtenja, pri kateri se vzorec

Διαβάστε περισσότερα

Izpit iz predmeta Fizika 2 (UNI)

Izpit iz predmeta Fizika 2 (UNI) 0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada

Διαβάστε περισσότερα

Regijsko tekmovanje srednje²olcev iz zike v letu 2007

Regijsko tekmovanje srednje²olcev iz zike v letu 2007 Regijsko tekmovanje srednje²olcev iz zike v letu 2007 c Tekmovalna komisija pri DMFA 23. marec 2007 Kazalo Skupina I 2 Skupina II 3 Skupina III 4 Skupina I re²itve 6 Skupina II re²itve 8 Skupina III re²itve

Διαβάστε περισσότερα

Naloge in seminarji iz Matematične fizike

Naloge in seminarji iz Matematične fizike Naloge in seminarji iz Matematične fizike Odvodi, Ekstremi, Integrali 1. Za koliko % se povečata površina in prostornina krogle, če se radij poveča za 1 %? 2. Za koliko se zmanjša težni pospešek, če se

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Termodinamika in elektromagnetno polje

Termodinamika in elektromagnetno polje Termodinamika in elektromagnetno polje izbor nalog z rešitvami 1 Termodinamika 1.1 Temperaturno raztezanje 1. Kolikšna je bila končna temperatura 35 cm dolge bakrene palice, ki se je raztegnila za 0,29

Διαβάστε περισσότερα

DELO IN ENERGIJA, MOČ

DELO IN ENERGIJA, MOČ DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

Matematične metode v fiziki II naloge

Matematične metode v fiziki II naloge Matematične metode v fiziki II naloge 9. september 2014 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 NDE 1.reda....................................... 5 1.2 Homogena NDE 2. reda...............................

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ

VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ LJUBLJANA, 2011 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna

Διαβάστε περισσότερα

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x Vaje iz fizike 1 Andrej Studen January 4, 2012 13. oktober Odvodi Definicija odvoda: f (x) = df dx = lim f(x + h) f(x) h 0 h Izračunaj odvod funkcij po definiciji: (1) f(x) = C f(x) = x f(x) = x 2 f(x)

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Matej Komelj. Ljubljana, september 2013

Matej Komelj. Ljubljana, september 2013 VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4

Διαβάστε περισσότερα

Fakulteta za matematiko in fiziko 10. december 2001

Fakulteta za matematiko in fiziko 10. december 2001 Naloge iz fizike I za FMT Aleš Mohorič Fakulteta za matematiko in fiziko 10. december 2001 1 Meritve 1. Izrazi svojo velikost v metrih, centimetrih, čevljih in inčah. 2. Katera razdalja je daljša, 100

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak soba: 426, Jadranska 19. torek: od do 13 h (VFP)

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak   soba: 426, Jadranska 19. torek: od do 13 h (VFP) Predavanja FIZIKA 1 (2013/14) prof. dr. Anton Ramšak e-mail: anton.ramsak@fmf.uni-lj.si soba: 426, Jadranska 19 torek: od 10 15 do 13 h (VFP) Tekoča snov na predavanjih in obvestila profesorja http://www-f1.ijs.si/

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)?

2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)? 1. pisni test (KOLOKVIJ) iz Fizike 1 (UNI), 27. 11. 2006 1. Kako visoko nad ekvatorjem bi se nahajala zemeljska geostacionarna orbita, če bi bil dan na Zemlji dvakrat krajši, kot je sedaj? Polmer Zemlje

Διαβάστε περισσότερα

NALOGE ZA SKUPINE A, C, E, G, I, K

NALOGE ZA SKUPINE A, C, E, G, I, K Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

FS PAP Tehniška fizika Priporočene naloge za vaje v sredo,

FS PAP Tehniška fizika Priporočene naloge za vaje v sredo, FS PAP Tehniška fizika Priporočene naloge za vaje v sredo, 11. 1. 2017 Za nastop je potrebno pripraviti vsaj pet nalog. Študenti, ki že imajo točke iz nastopov pred tablo, morajo pripraviti vsaj dve težji

Διαβάστε περισσότερα

Matematične metode v fiziki II seminarji. šolsko leto 2013/14

Matematične metode v fiziki II seminarji. šolsko leto 2013/14 Matematične metode v fiziki II seminarji šolsko leto 2013/14 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 NDE 1.reda....................................... 5 1.2 Homogena NDE 2. reda...............................

Διαβάστε περισσότερα

ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA

ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA Š i f r a u ~ e n c a: r`avni izpitni center *N0414111* RENI ROK FIZIK PISNI PREIZKUS ^etrtek, 6. maj 004 / 45 minut ovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro ali ~rno nalivno pero oziroma

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 1 (UNI)

1. kolokvij iz predmeta Fizika 1 (UNI) 0 0 0 4 0 0 8 0 0 0 0 0 0 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 1 (UNI) 3.1.010 1. Po vodoravni ledeni ploskvi se brez

Διαβάστε περισσότερα

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI),

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), 26. 11. 2004 1. Letalo leti na višini 200 m v vodoravni smeri s hitrostjo 100 m/s. V trenutku, ko je letalo nad opazovalcem na tleh, iz letala izpustimo paket.

Διαβάστε περισσότερα

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE NALOGE IZ 8. in 9. razreda + PREGLED NARAVOSLOVJA iz 7. razreda Pregled za NPZ iz FIZIKE Stran 2 Fizikalna količina čas dolžina pot višina PREGLED FIZIKALNIH

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Pisni izpit iz predmeta Fizika 2 (UNI)

Pisni izpit iz predmeta Fizika 2 (UNI) 0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni

Διαβάστε περισσότερα

Kinematika, statika, dinamika

Kinematika, statika, dinamika Kinematika, statika, dinamika 0. december 016 1 Gibanje v eni dimenziji 1.1 Količine in osnovne enačbe Osnovna naloga kinematike je opis lege (pozicije) telesa x v odvisnosti od časa t s funkcijo x(t).

Διαβάστε περισσότερα

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a:

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a: FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže

Διαβάστε περισσότερα

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N),

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N), 3. MEHANIKA Telesa delujejo drugo na drugo s silami. Sile so lahko prilačne ali odbojne, lahko delujejo ob dotiku ali na daljao. Silo merimo po principu, ki prai, da enake sile pozročajo enake učinke.

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα