PMP ponedeljek,
|
|
- Φώτις Μαλαξός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 [ifra kandidata: Dr `avni izpi t ni ce nte r *99411* FIZIKA Izpitna pola 4. september 1999 / 9 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni svin~nik, svin~nik HB ali B, plasti~no radirko, {il~ek, `epni ra~unalnik in geometrijsko orodje. Kandidat dobi dva ocenjevalna obrazca. MATURITETNI PREIZKUS NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne obra~ajte strani in ne re{ujte nalog, dokler vam nadzorni u~itelj tega ne dovoli. SEPTEMBER Prilepite kodo oziroma vpi{ite svojo {ifro v okvir~ek desno zgoraj na tej strani in na obrazca za ocenjevanje. Odgovore vpisujte v izpitno polo z nalivnim peresom ali kemi~nim svin~nikom. ^e bodo napisani z navadnim svin~nikom, bodo to~kovani z ni~ to~kami. Izpitna pola vsebuje {est nalog iz razli~nih podro~ij fizike. Naloga iz merjenja je za re{evanje obvezna. Izmed preostalih nalog pa izberite {e tri in jih po re{evanju ozna~ite v seznamu na tej strani, in sicer tako, da obkro`ite {tevilke pred njimi. ^e izbrane naloge ne bodo ozna~ene, bo ocenjevalec popravil prve tri naloge po vrstnem redu. PMP ponedeljek,. 3. Vpra{anje, ki zahteva ra~unanje, mora v odgovoru vsebovati ra~unsko pot do odgovora, z vsemi vmesnimi ra~uni in sklepi. Poleg ra~unskih so mo`ni tudi drugi odgovori (risba, besedilo, graf...). Pri ra~unanju uporabite podatke iz periodnega sistema na ~etrti strani izpitne pole. Zaupajte vase in v svoje vam veliko uspeha. Ta pola ima 16 strani. C RIC 1999
2 KONSTANTE IN ENA^BE, KI VAM BODO V POMO^ te`ni pospe{ek g 981, ms hitrost svetlobe c 3, 1 8 ms 1 19 osnovni naboj e 16, 1 As atomska enota mase u 166, 1 7 kg Avogadrovo {tevilo N A 6, 1 6 kmol 1 splo{na plinska konstanta R 831, 1 3 J kmol 1 K 1 gravitacijska konstanta κ 667, 1 11 Nm kg influen~na konstanta ε 885, 1 AsV m indukcijska konstanta µ 4π 1 VsA m Boltzmannova konstanta k 138, 1 3 JK 1 Planckova konstanta h , Js 4,14 1 evs Stefanova konstanta σ 567, 1 8 Wm K 4 GIBANJE s v t s v t at s v t+ v v + at v v + as ω πν π 1 t v a ω r r ω r s s sinω t v ωs cosωt aω s sinωt SILA F κ mm r konst. 3 t r F ks F ps F kt Fn F ρ gv F ma G m v F t 1 G 1 M r F Γ J ω M t Γ p ρ gh ENERGIJA A F s W W k p m v mgh ks Wpr P A t A W + W + W A p V k p pr ρv p+ + ρ gh konst.
3 ELEKTRIKA I e t ee F 4 π ε 1 r F ee v Ae U E s e e σ e S σ e E ε e CU ε S C l W CU e We we V ε E we U RI ζ l R S P UI MAGNETIZEM F I l B F I lbsinα F e v B µ I B π r µ NI B l M N I S Bsinα Φ B S BScosα Ui lv B Ui ω SBsinωt Φ Ui t Φ L Ι µ N S L l W LI m B wm µ NIHALA IN VALOVANJE m t π k l t π g t π LC c λν N λ sinα d P j S E cb 1 j εe c j jcosα c n c sinα c1 n sinβ c n f a b v ν ν( 1± ) c ν ν v 1 m c TOPLOTA m n M pv nrt l α l T V β V T A+ Q W Q cm T Q qm W 3 kt P λ S T l j σ T 4 RELATIVNOST γ 1 1 W γ m c v c G γ m v W ( γ 1) m c kin MODERNA FIZIKA Wf hν Wf Ai+ Wk Wf Wn hc λ min eu W m c t/ τ λt N N Ne ln A N τ
4
5 OBVEZNO PODRO^JE MERJENJE Dijak pripravi poskus, s katerim meri, kako se osvetljenost ploskve spreminja z njeno oddaljenostjo od to~kastega svetila. `arnica A r Svetlobo zaznava fotoupornik, ki je povezan z baterijo, kot ka`e slika. Dijak meri tok I, ki te~e skozi fotoupornik, in razdaljo r med fotoupornikom in svetilom. Razdaljo r spreminja. Rezultati merjenja so zapisani v tabeli: I [ma] r [m] x [m ] 1,,57 1,4,51 1,6,43,1,4 3,,35 4,4,3 6,4,5 7,1,3 8,3,1 1, 1. Vpeljite novo spremenljivko x 1 r in v tretji stolpec tabele vpi{ite njene vrednosti.. V milimetrsko mre`o na naslednji strani nari{ite graf, ki ka`e odvisnost elektri~nega toka od spremenjivke x. Z ravnilom izvlecite premico, ki se vrisanim to~kam najbolj prilega. (3 to~ke) 3. Kaj lahko sklepamo iz narisanega grafa o zvezi med tokom skozi fotoupornik in njegovo oddaljenostjo od svetila?
6 Dijak glede na prej{njo ugotovitev sklepa, da je osvetljenost obratno sorazmerna s kvadratom razdalje od svetila. 4. Kaj privzame, ko napravi ta sklep? 5. Izra~unajte smerni koeficient premice, ki ste jo vrisali v graf. V sliki jasno ozna~ite to~ki, ki ste ju uporabili za ra~un. ( to~ki) 6. Uporabite narisani graf in zapi{ite oddaljenost svetila od fotoupornika, ko je tok 5,5 ma. 7. Kolik{en tok te~e skozi fotoupornik, ko je ta od svetila oddaljen 1, m?
7 PODRO^JE MEHANIKA Skakalka z maso 5 kg ska~e bungee jumping z mostu, ki je 45 m nad vodno gladino. Za gle`nje je privezana na elasti~no vrv, dolgo 5 m. Za vrv velja Hookov zakon. Koeficient vrvi je 16 N/m. 45 m voda 1. S kolik{no hitrostjo pada skakalka v trenutku, ko je 5 m globoko? Koliko ~asa pada do te globine? ( to~ki) -. Ko se nihanje zadu{i, skakalka obvisi pod mostom. Na kateri vi{ini nad vodno gladino so njeni ~evlji? ( to~ki) 3. Kolik{na je zdaj pro`nostna energija vrvice?
8 Za koliko se je spremenila potencialna energija skakalke pri tem skoku, ~e je njeno te`i{~e 1, m oddaljeno od ~evljev? ( to~ki) 5. S kolik{nim nihajnim ~asom niha skakalka v navpi~ni smeri okoli ravnovesne lege, preden se nihanje zadu{i? 6. Ali pri najve~jem raztegu vrvi skakalka udari v vodo? Odgovor utemeljite z ra~unom. ( to~ki)
9 PODRO^JE TOPLOTA 1. Na{tejte koli~ine, od katerih je odvisen toplotni tok pri toplotnem prevajanju skozi steno. Streha podstre{ne sobe brez oken je narejena iz betona, ki ne prepu{~a vode in ima toplotno 1 1 prevodnost 1, 5 W m K. Povr{ina strehe nad sobo je 1 m. Termostat v sobi je nastavljen na stalno temperaturo 3 o C, temperatura zunanjega zraka je 8, o C. Elektri~na pe~ v sobi deluje s povpre~no mo~jo, kw. ]UDNVWHPSHUDWXUR o & betonski strop o & VREDVWHPSHUDWXUR o & o &. Kolik{na je debelina betonske strehe?. 1 1 Nekaj ~asa sne`i in na strehi se nabere plast snega s toplotno prevodnostjo 3, W m K Temperatura zraka je {e vedno 8 o C. Ker sneg dodatno izolira streho, deluje pe~ zdaj z manj{o mo~jo. 3. Kolik{no mo~ oddaja pe~, ~e je temperatura ledi{~a to~no na meji med snegom in streho ter se sneg ne tali? 4. Cena ene kilovatne ure elektri~ne energije je 15 SIT. Kolik{en bi bil stro{ek enodnevnega ogrevanja te sobe pri pogojih iz prej{njega vpra{anja?
10 Kako debela je plast snega na strehi? 6. Nari{ite graf, ki ka`e odvisnost temperature v betonu in v snegu od razdalje. Izhodi{~e postavite na notranjo stran stropa. V grafu smiselno izberite dol`ino koordinatnih osi in enote. ( to~ki) 7. Naslednji dan mo~no sne`i in sne`na plast se {e zdebeli, vendar je zdaj temperatura zraka in snega o C, v sobi pa je {e vedno 3 o C. Koliko cm 3 vode odte~e s tega dela strehe v eni 1 minuti? Specifi~na talilna toplota snega je 336 kj kg. ( to~ki) 8. Nato strop sobe oblo`imo s 5, cm debelo plastjo stiropora s toplotno prevodnostjo 1 1 4, W m K. Kolik{na je temperatura na meji med stiroporom in betonom? Zunanja temperatura je o C.
11 PODRO^JE ELEKTRIKA Kolesarska `arnica za 6, V ima upor 5, Ω. Priklju~imo jo na izvir napetosti 6, V z zanemarljivim notranjim uporom. 1. Kolik{en tok te~e skozi `arnico? S kolik{no mo~jo sveti?. Na izvir priklju~imo vzporedno dve tak{ni `arnici. Nari{ite vezje. Kolik{no mo~ oddaja vsaka? priklju~imo vzporedno na kolesarski dinamo, ki pri dolo~eni hitrosti kolesarja dose`e efektivno gonilno napetost 6, V in ima notranji upor 3, Ω. Izra~unajte, s kolik{no mo~jo sveti posamezna `arnica. ( to~ki) 4. Ali bi `arnici bolj svetili, ~e bi ju vezali zaporedno? Odgovor utemeljite z ra~unom. Dinamo deluje v osnovi kot zanka, ki se vrti v magnetnem polju, pri ~emer se v njej inducira napetost. 5. Na narisani zanki v narisani legi ozna~ite smer toka, ki ste~e, ~e zanko kratko sklenemo. Utemeljite odgovor z besedami.
12 Ozna~ite {e pola inducirane napetosti na nesklenjeni zanki. Utemeljite odgovor z besedami. 7. Zanka ima presek 1 cm. Kolik{na najve~ja napetost se inducira v njej, ko se vrti s frekvenco 8 Hz v magnetnem polju, T? 8. Namesto ene zanke imamo v dinamu tuljavo, ki ima enak presek kot zanka iz prej{njega vpra{anja. Koliko ovojev naj ima ta tuljava, da bo pri enaki frekvenci efektivna inducirana napetost 6, V? 9. Kolesar pono~i vozi s hitrostjo 36 km/h s pri`ganimi lu~mi in premaguje silo zra~nega upora 3 N. Kolik{no je razmerje med mo~jo, ki jo porabita `arnici, in mo~jo, ki jo porabi kolesar za premagovanje zra~nega upora? Za mo~ `arnic vzemite vrednost, ki ste jo izra~unali pri 3. vpra{anju.
13 PODRO^JE NIHANJE, VALOVANJE IN OPTIKA Na 1, m dolgi lahki vrvi je obe{ena krogla z maso 1, kg. Kroglo izmaknemo za 5, cm iz ravnovesne lege in spustimo. 1. Kolik{en je nihajni ~as tega nihala?. Na skico nari{ite vse sile, ki delujejo na kroglo v trenutku, ko jo spustimo. 5 cm 3. Kolik{na je takrat rezultanta vseh sil, ki delujejo na kroglo? 4. Kolik{en je najve~ji pospe{ek krogle? 5. Skicirajte graf odmika st () in graf pospe{ka at () za en nihaj. ^as za~nite {teti v trenutku, ko kroglico spustimo. ( to~ki) s a s a t t t t
14 Kolik{na je najve~ja kineti~na energija in kolik{na je najve~ja potencialna energija? 7. V isti koordinatni sistem skicirajte graf kineti~ne energije Wk () t in graf potencialne energije Wp ( t) za en nihaj. ^as za~nite {teti v trenutku, ko kroglico spustimo. Krivulji ustrezno ozna~ite. W W t t 8. Pojasnite, zakaj lahko pri majhnih odmikih to nihalo obravnavamo kot sinusno nihalo. Izpeljite nihajni ~as za tako nihalo. ( to~ki)
15 PODRO^JE MODERNA FIZIKA V preprostem modelu vodikovega atoma kro`i elektron okoli protona. Razdalja med protonom in elektronom je,53 nm. 1. Izra~unajte privla~no elektri~no silo med protonom in elektronom v vodikovem atomu. ( to~ki). Elektri~na sila igra vlogo radialne sile, ki povzro~a kro`enje elektrona. Izra~unajte, s kolik{no frekvenco kro`i elektron okoli protona v tem modelu. Masa elektrona je 91, 1 31 kg. ( to~ki) Model ob nekaterih predpostavkah pravilno napoveduje diskretna energijska stanja vodikovega atoma, ki jih ka`e skica. (Skica ni v merilu.) Energija (ev) -,54 -,85-1,51-3,39 ionizacija n 5 n 4 n 3 n -13,58 n 1 3. Vodikovi atomi med drugim sevajo tudi ultravijoli~no svetlobo z valovno dol`ino 1 nm. Izra~unajte energijo fotonov te svetlobe in jo izrazite v elektronskih voltih.
16 Kateri dve stanji iz prej{nje tabele sta primerni za prehod, pri katerem nastane svetloba z valovno dol`ino 1 nm? 5. Kateri prehodi med energijskimi stanji vodika imajo za posledico sevanje svetlobe z valovno dol`ino, manj{o od 1 nm? Zapi{ite dve mo`nosti. 6. Pojasnite, kako z diskretnimi energijskimi nivoji razlo`imo emisijski ~rtasti spekter atoma vodika. 7. V spektru son~ne svetlobe so tudi temne ~rte. Pojasnite, kako nastanejo te ~rte. 8. V spektru svetlobe, ki jo oddaja neka zvezda, so vse za vodik zna~ilne ~rte pomaknjene proti ve~jim valovnim dol`inam. Pojasnite, zakaj je tako.
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora
[ifra kandidata: Dr`avni izpitni center *P071C10111* SPOMLADANSKI ROK MATEMATIKA Izpitna pola Sobota,. junij 007 / 10 minut brez odmora Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
PMP ponedeljek,
[ifra kandidata: r`avni izpitni center *994* FIZIK Izpitna pola 4. september 999 / 9 minut ovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni svin~nik, svin~nik H
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
*M * FIZIKA. Izpitna pola 2. Sobota, 5. junij 2004 / 105 minut. [ifra kandidata: SPOMLADANSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M414111* SPOMLADANSKI ROK FIZIKA Izpitna pola Sobota, 5. junij 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali
Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M4411* JESENSKI ROK FIZIKA Izpitna pola Sreda, 1. september 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
FIZIKA NAVODILA ZA OCENJEVANJE
Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A
*M * FIZIKA. Izpitna pola 2. Torek, 31. avgust 2004 / 105 minut. [ifra kandidata: JESENSKI ROK
[ifra kandidata: Dr `avni i zpitni center *M44111* JESENSKI ROK FIZIKA Izpitna pola Torek, 31. avgust 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA
Š i f r a u ~ e n c a: r`avni izpitni center *N0414111* RENI ROK FIZIK PISNI PREIZKUS ^etrtek, 6. maj 004 / 45 minut ovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro ali ~rno nalivno pero oziroma
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Ponedeljek, 30. avgust 2010 / 180 minut ( )
Š i f r a k a n d i d a t a : Državni izpitni center *M10277111* JESENSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Ponedeljek, 30. avgust 2010 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj
Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
*M * K E M I J A. Izpitna pola 2. Četrtek, 30. avgust 2007 / 90 minut JESENSKI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M07243112* JESENSKI ROK K E M I J A Izpitna pola 2 Četrtek, 30. avgust 2007 / 90 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola
Š i f r a k a n d i d a t a : Državni izpitni center *M09177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Sreda, 7. maj 009 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa.
6 NIHANJE 105 6 nihanje 6.1 mehanska 1. Hitrost nekega nihala se spreminja po ena bi: v(t) = 5 cm/s cos(1, 5s 1 t). Nari²i in ozna i kako se spreminjajo odmik hitrost in pospe²ek v odvisnosti od asa! Rp:
Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):
ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
*M * ELEKTROTEHNIKA. Izpitna pola. Četrtek, 29. maj 2008 / 180 minut ( ) SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M08177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 9. maj 008 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija
Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola
Š i f r a k a n d i d a t a : Državni izpitni center *M07177111* SPOMLADANSKI ROK ELEKTROTEHNIKA Izpitna pola Sobota, 9. junij 2007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese
Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
13. poglavje: Energija
13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
FIZIKA. Za tudente visoko olskega strokovnega tudija VARSTVO PRI DELU in PO ARNO VARSTVO. Igor Ser a
FIZIKA Za tudente visokoolskega strokovnega tudija VARSTVO PRI DELU in POARNO VARSTVO Igor Sera Ljubljana, 8 Kazalo Uvod...3 Premo gibanje...4 Krivo gibanje...5 Sila...7 Navor...9 Masa... 11 Gibalna koliina...
DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE
Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti
Govorilne in konzultacijske ure 2014/2015
FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:
NALOGE ZA SKUPINE A, C, E, G, I, K
Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. casovni potek nihanja prvega nihala.
1. Na dve enako dolgi vrvi obesimo dve utezi, tako da dobimo dve enaki nihali. Graf prikazuje ˇ casovni potek nihanja prvega nihala. sna je amplituda nihala? Amplitudo nihala odˇcitamo iz slike, kakor
Matej Komelj. Ljubljana, september 2013
VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo,
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo, 11. 1. 2017 Za nastop je potrebno pripraviti vsaj pet nalog. Študenti, ki že imajo točke iz nastopov pred tablo, morajo pripraviti vsaj dve težji
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P113C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Torek, 7. februar 01 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
FIZIKA. Ljubljana Predmetni izpitni katalog za splo{no maturo
Ljubljana 5 FIZIKA Predmetni izpitni katalog za splo{no maturo Predmetni izpitni katalog se uporablja od spomladanskega roka 7, dokler ni dolo~en novi. Veljavnost kataloga za leto, v katerem bo kandidat
Energijska bilanca Zemlje. Osnove meteorologije november 2017
Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s
Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 29. avgust 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M087411* JESENSKI IZPITNI ROK MEHNIK NVODIL Z OCENJEVNJE Petek, 9. avgust 008 SPLOŠN MTUR RIC 008 M08-741-1- PODROČJE PREVERJNJ 1 Preračunajte spodaj
1 Lastna nihanja molekul CO in CO 2 : model na zračni
1 Lastna nihanja molekul CO in CO 2 : model na zračni drči Pri vaji opazujemo lastna nihanja molekul CO in CO 2 na preprostem modelu na zračni drči. Pri molekuli CO 2 se omejimo na lastna nihanja, pri
Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6
Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...
1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!
UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:
*M * FIZIKA. Izpitna pola 2. Četrtek, 27. avgust 2009 / 105 minut JESENSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *M94111* JESENSKI IZPITNI ROK FIZIKA Izpitna pola Četrtek, 7. avgust 9 / 15 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj
ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE Matej Komelj Ljubljana, oktober 2013 Kazalo 1 Uvod 2 2 Mehanika 3 2.1 Kinematika....................................
Pisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
KVANTNA FIZIKA. Svetloba valovanje ali delci?
KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem
F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),
Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,
F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala.
Vaje - Gimnazija, 1. etnik, razična snov 1. naoga Kroga z maso 1 kg je pritrjena na dve vrvici, kakor kaže sika. Poševna vrvica okepa z vodoravnico kot 30. Izračunaj s koikšnima siama sta napeti vrvici!
EMV in optika, zbirka nalog
Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
EMV in optika, izbrane naloge
EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino