ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ
|
|
- Ὑάκινθος Βλαστός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ
2 Προβλήµατα Ακέραιου Προγραµµατισµού Ι Τα προβλήµατα Ακέραιου Προγραµµατισµού, ανήκουν γενικά σε 3 κατηγορίε : Προβλήµατα στα οποία οι µεταβλητέ είναι γενικά ακέραιε, τα οποία και λύνονται ω κλασσικά π.γ.π Προβλήµατα στα οποία οι µεταβλητέ δεν έχουν φυσικό νόηµα όπω οι κλασσικέ γραµµικέ µεταβλητέ (π.χ. µονάδε παραγωγή, ώρε εργασία κλπ), αλλά λογικό νόηµα (ναι ή όχι που συνήθω συµβολίζονται µε τι ακέραιε τιµέ 0 ή 1). Τα προβλήµατα αυτά ονοµάζονται προβλήµατα 0/1. Μερικά προβλήµατα 0/1 περιλαµβάνουν ταυτόχρονα, τόσο κλασσικέ µεταβλητέ, όσο και µεταβλητέ µε λογικό νόηµα (0 ή 1).
3 Προβλήµατα Ακέραιου Προγραµµατισµού ΙΙ Γενικά τα προβλήµατα Ακέραιου Προγραµµατισµού, παρουσιάζουν το ίδιο µαθηµατικό υπόδειγµα µε τον επιπλέον περιορισµό των ακεραίων µεταβλητών (καταργείται η υπόθεση τη διαιρετότητα ). Εάν κάποιε από αυτέ απαιτείται να είναι ακέραιε και εποµένω η υπόθεση τη διαιρετότητα ισχύει για τι υπόλοιπε µιλάµε για προβλήµατα µεικτού Ακέραιου Προγραµµατισµού.
4 Πρόβληµα Ακέραιου Προγραµµατισµού Σε ένα εστιατόριο ο ελάχιστο αριθµό σερβιτόρων που απατούνται για κάθε µια από τι επτά ηµέρε τη εβδοµάδα δίνεται από τον παρακάτω πίνακα: ΤΡ ΤΕ ΠΕ ΠΑ Σ Κ Θεωρώντα ότι στο συγκεκριµένο εστιατόριο όλοι οι σερβιτόροι αµείβονται το ίδιο και πρέπει να εργάζονται 5 συνεχόµενε ηµέρε µε ρεπό 3 ηµερών πω θα µπορούσαµε να υπολογίσουµε το ελάχιστο συνολικό πλήθο εργαζοµένων και τον τρόπο πενθήµερη κατανοµή του ;
5 ΠΑΡΑ ΕΙΓΜΑ (1) Μπορούµε λοιπόν να ορίσουµε ως: minz = x + x + x + x + x + x + x st. x + x + x + x + x 19 (ΠΑ) x + x + x + x + x 22 (ΣΑ) x + x + x + x + x 11 (ΚΥ) x + x + x + x + x 11 ( Ε) x + x + x + x + x 11 (ΤΡ) x + x + x + x + x 11 (ΤΕ) x, x, x, x, x, x, x ΑΝΤΙΚΕΙΜΕΝΙΚΗ ΠΕΡΙΟΡΙΣΜΟΙ
6 SOLVER EXCEL (1) Αρχικά καταγράφουµε το πρόβληµα µας στον solver
7 SOLVER EXCEL (2) A.Σ (=SUM(C3:I3) Οι εντολές που δόθηκαν: (=SUM(C3,F3:I3) (=SUM(C3:D3,G3:I3) =SUM(E3:I3)
8 SOLVER EXCEL (3) οκιµάζουµε να λύσουµε το πρόβληµα µας ως παρακάτω π.γ.π
9 ΑΠΑΝΤΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ
10 ΑΠΑΝΤΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ
11 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ (περιορισµοί περιορισµοί) x 2
12 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Συνεπώς το παραπάνω πρόβληµα δεν θα µπορούσε να αντιµετωπιστεί ως κλασικό γραµµικό π.γ.π καθώς δεν οι λύσεις που έχουµε θα έπρεπε να είναι ακέραιες ενώ τυχόν στρογγυλοποιήσεις δεν αποτελούν βέλτιστη λύση.
13 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
14 ΛΥΣΕΙΣ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (ΑΝΑΦΟΡΑ ΑΠΑΝΤΗΣΗΣ)
15 ΠΑΡΑ ΕΙΓΜΑ 2 Σε µία κατασκευαστική εταιρεία έχουν ανατεθεί 4 τεχνικά έργα για το επόµενο τρίµηνο. Έχει όµω περιορισµένε ώρε εργατικού δυναµικού. Η εταιρεία επιθυµεί να επιλέξει ποια από τα έργα αυτά να αναλάβει η ίδια και ποια να αναθέσει σε υπεργολάβου, ώστε να µεγιστοποιήσει το κέρδο τη. Τα έργα που έχουν ανατεθεί στην κατασκευαστική εταιρεία είναι τα ακόλουθα. Έργο Κέρδος Ανάληψης Κέρδος Υπεργολαβίας Απαιτούµενες Ώρες , ,
16 ΠΑΡΑ ΕΙΓΜΑ 2 ίνονται επιπλέον και οι ακόλουθε πληροφορίε : Οι εργατοώρε που διαθέτει η κατασκευαστική εταιρεία είναι 4000 ώρε. Η διοίκηση τη εταιρεία θεωρεί ότι η εταιρεία πρέπει να αναλάβει τουλάχιστον 1 έργο. Προκειµένου όµω να έχει διαθέσιµη δυναµικότητα, εφόσον παρουσιασθεί µια άλλη ευκαιρία, δεν επιθυµεί να αναλάβει η ίδια περισσότερα από 3 έργα στην παρούσα συγκυρία.
17 ΠΡΟΒΛΗΜΑ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το πρόβληµα εµφανίζεται παρακάτω. Πρώτα όµω θα πρέπει να ορίσουµε ω χi µεταβλητή την δυαδική µεταβλητή που παίρνει τιµή 1 εάν αναληφθεί το έργο και 0 διαφορετικά. maxz = 27x + 46x + 21x + 30 x + 4,7(1- x) + 15(1- x ) + 3,5(1- x ) + 6(1- x ) st. x + x + x + x x + x + x + x x x x x 4000 x Άλλες υποχρεώσεις της εταιρείας = 0/1 Εργατοώρες
18 ΠΡΟΒΛΗΜΑ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΛΥΣΗ SOLVER
19 ΠΡΟΒΛΗΜΑ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΛΥΣΗ SOLVER SUMPRODUCT(B6:E6;B5:E5)
20 ΠΡΟΒΛΗΜΑ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΛΥΣΗ SOLVER SUMPRODUCT
21 ΠΡΟΒΛΗΜΑ ΑΚΕΡΑΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΛΥΣΗ SOLVER
22 ΤΕΛΙΚΗ ΛΥΣΗ
23 ΠΑΡΑ ΕΙΓΜΑ 3 Σε έναν εκσκαφέα έχουν ανατεθεί τρία διαφορετικά χωµατουργικά έργα των οποίων η διάρκεια σε ηµέρες, ο αργότερος χρόνος παράδοσης κάθε έργου από την πρώτη ηµέρα καθώς και η ηµερήσια επιβάρυνση για κάθε ηµέρα που καθυστερεί δίνεται από τον παρακάτω πίνακα: Έργο 1 ιάρκεια 30 Ηµέρα παράδοσης 140 Επιβάρυνση σε ευρώ
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2013-2014 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τα προβλήματα τους Ακεραίου γραμμικού Προγραμματισμού (Integer Linear Programming) είναι
ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ
ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΕΡΙΒΑΛΛΟΥΣΑΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ(DEA) Η ανάλυση DEA είναι πολύ ισχυρή και ιδιαίτερα διαδεδοµένη µέθοδο,
Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων
Περιεχόμενα (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων 1. Ανάλυση ευαισθησίας Λυμένο παράδειγμα 7 από το βιβλίο, σελ.85, λύση σελ.328
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας
Ανάλυση Ευαισθησίας µε τη χρήση του Solver
Ανάλυση Ευαισθησίας µε τη χρήση του Solver Πρόβληµα 1 Μια εταιρία κατασκευής τηλεοράσεων κατασκευάζει τέσσερα µοντέλα τηλεοράσεων Μ1, Μ2, Μ3 και Μ4. Κάθε µοντέλο για να παραχθεί απαιτεί χρόνο συναρµολόγησης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο
ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο Ηµεροµηνία: Τρίτη 23 ΜΑΪ 2017, 2 η γραπτή Πρόοδος Εκπαιδευτής: Βασίλειος Ισµυρλής, ιάρκεια
Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)
Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές
max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 5 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER
ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER 4.1. ΕΙΣΑΓΩΓΗ Με την "Επίλυση", µπορείτε να βρείτε τη βέλτιστη τιµή για τον τύπο ενός κελιού το οποίο ονοµάζεται κελί προορισµού σε ένα φύλλο εργασίας. Η "Επίλυση" λειτουργεί
Δυναμικότητα (GWh) A B C Ζήτηση (GWh) W X Y Z
Άσκηση Η εταιρία ηλεκτρισμού ELECTRON έχει τρείς μονάδες ηλεκτροπαραγωγής Α, Β, C και θέλει να καλύψει τη ζήτηση σε τέσσερις πόλεις W, Χ, Υ, Ζ. Η μέγιστη παραγωγή, η απαιτούμενη ζήτηση και το κόστος μεταφοράς
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΟΜαθηµατικός Προγραµµατισµός είναι κλάδος των εφαρµοσµένων µαθηµατικών που ασχολείται µε την εύρεση άριστης λύσης. ιαφέρει από την κλασική αριστοποίηση στο ότι προσπαθεί να
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 11 Επίλυση στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 6 Μαΐου 2016 Η μέθοδος κλάδος-φράγμα
Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20
Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜέθοδοιΜ& ΔύοΦάσεων
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2014-2015 ΜέθοδοιΜ& ΔύοΦάσεων ΟΙΚΟΝΟΜΙΚΗ ΣΗΜΑΣΙΑ (1) Όπως είδαµε και στα προηγούµενα µαθήµατα η ποσότητα z = cj z j j εκφράζει τον ρυθµό µεταβολή της
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Στατιστικοί πίνακες. Δημιουργία κλάσεων
Στατιστικοί πίνακες Δημιουργία κλάσεων Τι είναι οι κλάσεις; Κλάσεις είναι ημιανοικτά διαστήματα της μορφής [α i, b i ), τα οποία είναι ταυτόχρονα και διαδοχικά, έτσι ώστε να μην υπάρχει κάποια τιμή του
Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)
Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Βελτιστοποίηση ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ σε διάφορα
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Δυναμικότητα (GWh) A B C Ζήτηση (GWh) W X Y Z
Άσκηση 0 Η εταιρία ηλεκτρισμού ELECTRON έχει τρείς μονάδες ηλεκτροπαραγωγής Α, Β, C και θέλει να καλύψει τη ζήτηση σε τέσσερις πόλεις W, Χ, Υ, Ζ. Η μέγιστη παραγωγή, η απαιτούμενη ζήτηση και το κόστος
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Διαδικασία μετατροπής σε τυπική μορφή
ΤΕΙ Δυτικής Μακεδονίας -Τμήμα Διοίκησης επιχειρήσεων- Μάθημα: Ποσοτικές μέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάμηνο Ημερομηνία: Τρίτη 25 ΑΠΡ 2017, 1 η γραπτή Πρόοδος Εκπαιδευτής: Βασίλειος Ισμυρλής,
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.
1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015
ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
ΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Β. Τυπική μορφή (κανόνες μετατροπής, προβλήματα μετατροπής) - Λυμένο πρόβλημα 2, Ασκήσεις 2,3,4,5.
Άλυτες Ασκήσεις ΓΠ Α. Μέρη ενός προβλήματος ΓΠ - Λυμένο πρόβλημα 1, Άσκηση 1. Β. Τυπική μορφή (κανόνες μετατροπής, προβλήματα μετατροπής) - Λυμένο πρόβλημα 2, Ασκήσεις 2,3,4,5. Γ. Διατύπωση μαθηματικού
Επιχειρησιακή έρευνα (ασκήσεις)
Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,
Μεταβατικές διατάξεις Νέου Προγράμματος Σπουδών (ΝΠΣ) για τους φοιτητές εισαγωγής 2013 και πριν Υποχρεωτικά Μαθήματα
Μεταβατικές διατάξεις Νέου Προγράμματος Σπουδών (ΝΠΣ) για τους φοιτητές εισαγωγής 2013 και πριν Υποχρεωτικά Μαθήματα Οι φοιτητές παλαιότερων ετών (έτος εισαγωγής από 2013 και πριν) οι οποίο χρωστούν υποχρεωτικά
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 21 ΜΑΪOY 2015 ΕΞΕΤΑΖΟΜΕΝΟ
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ
Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά
4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας
5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.
Προγραµµατισµός προσωπικού (Staff scheduling)
Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 7 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (OPTIMIZATION) (3 ο σετ
Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς
Simplex µε πίνακες Simplex µε πίνακες
Μορφή Πινάκων max z =cx s.t. Ax = b x 0 Μορφή Πινάκων max z =cx s.t. Ax = b x 0 [ A c x = b ] Μορφή Πινάκων max z =cx s.t. Ax = b x 0 A x = b [ ] c Επιλογή αντιστρέψιµου υποπίνακα m m (Βάση) Συµβολισµοί
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος
10-δικό δικό
Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή
Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007
Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,
1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΗ 1 Ένας κτηµατίας πρέπει να καθορίσει πόσα στρέµµατα καλαµποκιού και σιταριού να φυτέψει αυτή τη χρονιά. Ένα στρέµµα σιταριού
Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΙ (Ο Ε 2418) ΕΛΑΧΙΣΤΟ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΙ (Ο Ε 2418) ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΠΟΥΡΛΑΚΗΣ 4 ο ΕΞΑΜΗΝΟ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 ΤΜΗΜΑΤΑ:
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)
Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία
ΕΠΑΛ_ΑΝΑΘΕΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΤΟΜΕΑ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ (2015-16) Α ΤΑΞΗ ΕΠΑ.Λ
Πίνακας αντιστοιχίας των διδασκομένων μαθημάτων του ΕΠΑ.Λ. στον τομέα ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ και κλάδων - ειδικοτήτων εκπαιδευτικών Δ/θμιας Εκπαίδευσης σε Α και Β ανάθεση. Α ΤΑΞΗ ΕΠΑ.Λ ΜΑΘΗΜΑ ΩΡΕΣ Α ΑΝΑΘΕΣΗ
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ένα παραγωγικό σύστημα χρησιμοποιεί δύο διαδικασίες, τις D1 και D2, κάθε μία από τις οποίες συμπαράγει δύο προϊόντα Α και Β σε διαφορετικές αναλογίες, χρησιμοποιώντας
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής Γιώργος Λυμπερόπουλος Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών 17/3/2017 Γ. Λυμπερόπουλος - Διοίκηση
Περιεχόμενα. Πρόλογος Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17
Πρόλογος... 13 1. Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17 1.1. Εισαγωγή... 19 1.2. Ένα μοντέλο ανάλυσης οργανισμού... 21 1.3. Νέες τάσεις στην οργανωτική δομή των επιχειρήσεων... 23 1.4.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)
Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (1o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου
Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία
Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος
Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση
Στατιστική Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων Ενότητα # 2: Στατιστικοί Πίνακες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης
Να χαρακτηρίσετε ως σωστές ή λανθασµένες τις επόµενες προτάσεις: Α3. Τα ελεύθερα αγαθά αποτελούν αντικείµενο µελέτης της Οικονοµικής Επιστήµης.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 8 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Όταν η ζήτηση αποδίδεται γραφικά
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού
Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Ερμηνεία Λύσεων
Παρουσίαση: Γραμμικός Προγραμματισμός (Αλγόριθμος Simplex). Λύση δυο προβλημάτων με χρήση της μεθόδου simplex και το excel.
Παρουσίαση: Γραμμικός Προγραμματισμός (Αλγόριθμος Simplex). Λύση δυο προβλημάτων με χρήση της μεθόδου simplex και το excel. Γκούμας Στράτος. Πτυχιούχος Οικονομολόγος. MSc Εφαρμοσμένη Οικονομική και Χρηματοοικονομική
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ 3 ΩΡΕΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ 3 ΩΡΕΣ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν
Παράγοντες Κόστους Έργο 1 Έργο 2
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΧΕΙΡΙΣΗ ΚΙΝΔΥΝΩΝ ΕΡΓΩΝ» ΜΕΡΟΣ Α Εξάμηνο: Εαρινό 2017 Τμήμα Μηχανικών Παραγωγής και Διοίκησης ΔΠΘ ΔΙΔΑΣΚΩΝ: Δρ. Γ.Κ. Κουλίνας Άσκηση 1 Η επιχείρηση που εργάζεστε έχει αναλάβει την
Β ΕΞΑΜΗΝΟ ΩΡΕΣ ΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ
ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2012 2013 Β ΕΞΑΜΗΝΟ ΩΡΕΣ ΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ 9-10 10 11 ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΟ ΙΚΑΙΟ ΑΣΤΙΚΟ ΙΚΑΙΟ 11 12 ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Ι ΜΑΘΗΜΑΤΙΚΑ
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον
Βασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία