ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ,"

Transcript

1 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, Ο ΕΞΑΜΗΝΟ, 8-9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ, 7--8 Άκηη [] Περιγράψτε εν υντομία τις έννοιες α) της ακρίβειας, β) της ευτάθειας και γ) της ύγκλιης ε χέη με την διατύπη και εφαρμογή αριθμητικών μεθόδν. Απάντηη Α: Η ακρίβεια τις αριθμητικές μεθόδους αναφέρεται την ακρίβεια ή τάξη του εφαρμοζόμενου αλγορίθμου ή του αριθμητικού χήματος. Για παράδειγμα, την αριθμητική ολοκλήρη Newto- Cotes αναμένεται ότι για τον ίδιο αριθμό ημείν (ίδιο h ) ο ος κανόνας Simpso O( h ) θα δώει πιο ακριβή αποτελέματα ε χέη με τον κανόνα Τραπεζίου O( h ). Η ακρίβεια τις πράξεις κινητής υποδιατολή αναφέρεται τον αριθμό τν ημαντικών ψηφίν με τον οποίο πραγματοποιούνται οι πράξεις. Απάντηη Β: Η ευτάθεια τις αριθμητικές μεθόδους αναφέρεται την ευαιθηία του εφαρμοζόμενου χήματος ε αλλαγές τν δεδομένν ειόδου. Θερείται ότι ένας αλγόριθμος είναι ευταθής όταν πολύ μικρές αλλαγές τα δεδομένα ειόδου οδηγούν ε μικρότερες αλλαγές τα αποτελέματα. Στην αντίθετη περίπτη η αριθμητική μέθοδος είναι αταθής. Τα παραπάν ποοτικοποιούνται μέ του δείκτη κατάταης. Απάντηη Γ: Η ύγκλιη τις αριθμητικές μεθόδους αναφέρεται την δυνατότητα αναπαραγγής ταδιακά τν αναλυτικών λύεν καθώς η διακριτοποίηη του προβλήματος πυκνώνει και το διάτημα h μειώνεται.

2 Άκηη [] Διατυπώτε τις δυο πρώτες επαναλήψεις της μεθόδου SOR (με το ύτημα: και.) Απάντηη A: ( k+ ) ( k ) ( k ) ( k + ( + ) + ( k+ ) SOR: + + ( k ) ( k+ ) ( k ( k ) k k k acobi με χαλάρη: ( + ) + + ( + ) + ( + ) + 6 ( ) ( ) ( ) Απάντηη Β: SOR: ( k+ ) ( k ) ( k ) ( k + + ( k+ ) k k+ k + + ( ) ( ) k+ k k+ k acobi με χαλάρη: ( + ) + + ( + ) + ( + ) + ( ) ( ) ( )

3 Απάντηη Γ: SOR: ( k+ ) ( k ) ( k ) ( k + + ( k+ ) k k+ k ( ) ( ) k+ k k+ k acobi με χαλάρη: ( + ) + + ( + ) + ( + ) + 7 ( ) ( ) ( )

4 Άκηη [.] Αποδείξτε για ύτημα μη-γραμμικών εξιώεν ( f(, ), g, ) ότι η μέθοδος Newto είναι ης τάξης, δηλαδή ότι το φάλμα την k + επανάληψη είναι ανάλογο του τετραγώνου του φάλματος την k επανάληψη. f ( ) Απάντηη:, g, fg ( + ) gf ( + ) gf fg ( + ) fg + + gf ( + ) gf + + fg ( + ) ( + ) ( ) ( ) fg + gf gf + fg f, f, f, f f ( ) ( ) + f f f + + g, g, g, g g Πολλαπλαιάζεται η η πρώτη εξίη με εξιώεις προτίθενται: ( ) ( ) + g g g + + g και η η εξίη με f και οι προκύπτουες fg + gf + fg + gf O Η δεξιά πλευρά της εξίης αντικαθίταται την χέη εξέλιξης του φάλματος + και προκύπτει: ( + ) ( ) ~ O Στην υνέχεια πολλαπλαιάζεται η η πρώτη εξίη με προκύπτουες εξιώεις προτίθενται: fg gf + g και η η εξίη με f και οι gf + fg O Η δεξιά πλευρά της εξίης αντικαθίταται την χέη εξέλιξης του φάλματος + και προκύπτει: ( + ) ( ) ~ O

5 Άκηη [.] Έτ τα δεδομένα (, ),...,(, ) εύρεη της υνάρτηης παρεμβολής l ( ) l ( a) bl Απάντηη Α: Ποότητα που πρέπει να ελαχιτοποιηθεί: Μηδενιμός παραγώγν:. Διατυπώτε τη μέθοδο τν ελαχίτν τετραγώνν για την +. ( l i ( l l i) ) ( l i l l i) S a+ b ab i i S l i l l i l + l i l i * a i a i i ( a b a b S l l l l l l + l l l ** ( a b ( a b ( i i i i i i i b i i i i Θέτοντας a l a οδηγούματε το γραμμικό ύτημα: l i l i i a i b li ( l i) l il i i i i Απάντηη Β: Λύνουμε ς προς ς: b l l a+ bl l( a b e e e a Ποότητα που πρέπει να ελαχιτοποιηθεί: Μηδενιμός παραγώγν: b i i S a i S b b b b ( i ai )( i ) a i ii (*) a i i i S b b b b ( i ai )( ai l i) a i l i ii l i (**) b i i i

6 Άκηη [] π π d d π Simpso μία φορά τη διεύθυνη και τον Κανόνα Τραπεζίου μία φορά τη διεύθυνη. Υπολογίτε το διπλό ολοκλήρμα ( si + cos ) εφαρμόζοντας τον ο Κανόνα Απάντηη Α: π π π I ( si + cos ) d d ( si + cos ) + ( si + cos ) d π π ( si cos ) ( si cos ) ( si cos ) ( si + cos ) + ( si + cos ) + ( si + cos ) π ( cos ) ( cos ) ( cos ) ( si cos ) π + π + π + π π + π π π + π si + π cosπ + ( π si π + π cosπ) Απάντηη Β: π π π I ( si + cos ) d d ( si + cos ) + ( si + cos ) d π π ( si cos ) ( si cos ) ( si cos ) ( si + cos ) + ( si + cos ) + ( si + cos ) π π π π + π si + cosπ + ( π si π + π cosπ) ( π cos ) cos ( π cos ) ( π siπ π cosπ) Απάντηη Γ: π π/ π I ( si + cos ) d d ( si + cos ) + ( si + cos ) d π π ( si cos ) ( si cos ) ( si cos ) ( si + cos ) + ( si + cos ) + ( si + cos ) π π π π ( cos ) cos ( cos ) si cos π + + π + π + π π π π π π π + si + cos + si π + π cos

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύεις ΘΕΜΑ Υλικό ηµείο κινείται τον άξονα x ' Ox υπό την επίδραη του δυναµικού ax x V( x) = a x, a > α) Βρείτε τα ηµεία ιορροπίας και την ευτάθειά τους β) Για

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I

ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I Ευτάθιος Στυλιάρης Αναπληρωτής Καθηγητής Συντονιτής Εργατηρίων Φυικής I Με την υνδρομή των: Α. Καραμπαρμπούνη, Κ.Ν. Παπανικόλα, Ν. Μαμαλούγκου ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο

Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 3 η : Αρχές εκτίμηης παραμέτρων Μέρος ο Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας και

Διαβάστε περισσότερα

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων Υπολογιτικές Εφαρμογές την Στατιτική Επεξεργαία Δεδομένων Στα πλαίια του μαθήματος ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ & ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Δ. Φαουλιώτης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 3 3 Μέθοδοι Monte

Διαβάστε περισσότερα

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ).

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ). Υποδείγματα GARCH Γιατί; Κίνητρο: υποδείγματα που υποθέτουν γραμμική δομή δεν μπορούν να εξηγήουν ημαντικά χαρακτηρίτηκα των χρηματοοικονομικών χρονοειρών - λεπτοκύρτοη - volaili clusering Το παραδοιακό

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων

Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 4 η : Στοιχεία τατιτικής αξιολόγηης εκτιμήεων Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα ΒΕΣ 6 Προαρµοτικά Συτήµατα τις Τηλεπικοιννίες Θερία Στοχατικών Σηµάτν: Εκτίµηη φάµατος, Παραµετρικά µοντέλα Ειαγγή Μοντέλα Στοχατικών Βιβλιογραφία Ενότητας uto []: Κεφάλαιo Widrow [985]: Chaptr 3 Hayi

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση ΚΕΦΑΛΑΙΟ 9 Σχετική κίνηη 1 Υλικό ηµείο µάζας m=1 κινείται πάνω ε επίπεδο Ο που περιτρέφεται γύρω από τον άξονα Ο µε γωνιακή ταχύτηταω = ωk, όπου ω=1/ s -1 Αν κάποια τιγµή το ώµα βρίκεται ε απόταη r=1 m

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 08-09 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes ΚΕΑΛΑΙΟ 6 Τιμολόγηη Δικαιμάτν ε υνεχή χρόνο Το μοντέλο τν Blk nd hol 6.. Το Μοντέλο τν Blk hol ή Blk hol Mon Έτ μια χρηματοοικονομική αγορά εξεταζόμενη το χρονικό διάτημα [0 ] για κάποιο δεδομένο Τ. Συμβολίζουμε

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 8-9 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή Κεφάλαιο 4 ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ 4. Ειαγωγή Στο προηγούμενο κεφάλαιο εξετάαμε πώς ένας επενδυτής που αποτρέφεται τον κίνδυνο απώλειας ειοδήματος επιλέγει επενδυτικά χέδια κάτω από υνθήκες αβεβαιότητας.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΚΒΑΝΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΑΡΧΕΣ ΚΒΑΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΧΕΣ ΚΒΑΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ Π. ΚΑΡΑΦΙΛΟΓΛΟΥ Καθηγητής ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΞΙΣΩΣΗ ΤΟΥ SCHRÖDIGER Ĥ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ Η περίπτωη του εφελκυμού και της θλίψης των ραβδωτών φορέων είναι ενδεικτική για την αφετηρία της μελέτης παραμορφώιμων τερεών. Πρόκειται για προβλήματα

Διαβάστε περισσότερα

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7)

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7) Περί φλµάτων µετρήεων κι ποτελεµάτων Προδιοριµός φάλµτος (ή ειότητς) ενός ποτελέµτος Σφάλµ µις µετρήεως: φάλµ νγνώεως, π.χ. ±/ υποδιιρέεως κλίµκος. Σφάλµ πολλπλών, επνληπτικών µετρήεων: ( ) ( ) Πρόκειτι

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P Ορίζουµε : { } { } m m : M m : Ε λάχιστο

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Κεφάλαιο ΙΙ Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Στο παρόν κεφάλαιο παρουσιάζονται προβλήματα τα οποία αφορούν κυρίως τις εντολές της C οι οποίες ελέγχουν την ροή εκτέλεσης

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012 Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με

Διαβάστε περισσότερα

Το θεώρηµα του Green

Το θεώρηµα του Green 57 58 Το θεώρηµα του Green :, Υπενθυµίζουµε ότι µια απλή κλειτή καµπύλη [ ] κλειτή καµπύλη ( = ) ώτε ο περιοριµός [, ) R είναι µια να είναι απεικόνιη Μια απλή κλειτή καµπύλη του επιπέδου ονοµάζεται και

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Σηράγγων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Τάεις και παραμορφώεις γύρω από κυκλικές ήραγγες 5.8.5 Κατανομές τάεων και

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής είναι η µαθηµατική υνθήκη που περιγράφει την εντατική κατάταη ε ένα ηµείο της µάζας του υλικού, ώτε το ηµείο αυτό να υµβαίνει

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης που

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var (

ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var ( Στο γραμμικό υπόδειγμα y = β + u, =,,, ο εκτιμητής LS είναι = β = = y Οι βαικές ιδιότητες του εκτιμητή είναι: E ( β ) = β, αμεροληψία, Var ( β ) = = Αν έχουμε =, τότε y = β =, ο δειγματικός μέος του y

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΟΝ ΚΥΚΛΟ ΤΟΥ ΑΝΘΡΑΚΑ ΣΠΑΤΑΛΟΥ ΕΛΕΑΝΑ ΑΜ: /4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΙΟΥΝΙΟΣ 7

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι Ασκήσεις

Απειροστικός Λογισμός Ι Ασκήσεις Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0. ΑΣΚΗΣΕΙΣ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι, Φυλλάδιο 3 Λύσεις Ασκήσεων. Να υπολογίσετε τα παρακάτω όρια. sia) i) ποιες συνθήκες πρέπει να ισχύουν για τα a, β ώστε να έχει νόημα το όριο;) 0 siβ) si5 ) si4) cos cos

Διαβάστε περισσότερα

6. Αριθμητική Ολοκλήρωση

6. Αριθμητική Ολοκλήρωση 6. Αριθμητική Ολοκλήρωση Ασκήσεις 6.1 Έστω f : [; b]! R μια συνάρτηση, της οποίας το ολοκλήρωμα του Riemnn στο διάστημα [; b] υπάρχει. Αν Qn T είναι ο σύνθετος τύπος ολοκλήρωσης του τραπεζίου με n ομοιόμορφα

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 (

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 ( . Αποδείξτε ότι: Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις τέταρτου φυλλαδίου ασκήσεων. +) 7 +) +), 5 +7 5 5, +log ) 7 log 4, +, ++ + + ) +4+4 + +4, + si +, +) +), + [ ], + + 0, + +, ) +,,

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.Καθηγητής 4η ΑΣΚΗΣΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1)

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1) Χάος και Φράκταλ ιδάσκων: ΑΜπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α + ) ) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών e = c τείνει σε εκείνη των ελλείψεων ξ ξ + = K, όταν, ) b, a) Τα Κ,c είναι b a αυθαίρετες

Διαβάστε περισσότερα

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

Μια ακόμη πιο δύσκολη συνέχεια.

Μια ακόμη πιο δύσκολη συνέχεια. Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΠΡΟΓΝΩΣΗΣ ΚΑΙ ΑΝΑΛΥΣΗΣ ΚΑΙΡΟΥ ΚΑΙ ΑΕΡΙΑΣ ΡΥΠΑΝΣΗΣ Σπύρος Ανδρονόπουλος Εργατήριο Περιβαλλοντικών Ερευνών Ιντιτούτο Πυρηνικής Τεχνολογίας και Ακτινοπροταίας ΕΚΕΦΕ «ηµόκριτος» sandron@ipta.demokritos.gr

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, --, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ Βαρούτης Ποια είναι η γενική μορφή των πολυωνύμων παρεμβολής των μεθόδων Newto και grge; Τα πολυώνυμα παρεμβολής

Διαβάστε περισσότερα

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ 5.1. Ειαγωγή Στο κεφάλαιο αυτό γίνεται µία ύντοµη περιγραφή µερικών επιπλέον θεµάτων τα οποία οι βιοηλεκτρικές αρχές έχουν εφαρµογή. Τα θέµατα που περιγράφονται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Το χήμα που ακολουθεί είναι το φάμα μάζας ενός κατιόντος Α +. Υπολογίτε το ατομικό βάρος του τοιχείου Α και βρείτε για ποιο τοιχείο πρόκειται. Εκατοτιαία φυική αναλογία

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

Το θεώρηµα του Green

Το θεώρηµα του Green 58 Το θεώρηµα του Green :, Υπενθυµίζουµε ότι µια απλή κλειτή καµπύλη [ ] κλειτή καµπύλη ( = ) ώτε ο περιοριµός [, ) R είναι µια να είναι απεικόνιη Μια απλή κλειτή καµπύλη του επιπέδου ονοµάζεται και καµπύλη

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη 4η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ

ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη 4η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ Εργατήριο Τεχνολογίας ιάνοιξης Σηράγγων, ΕΜΠ. ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ Α.Ι. Σοφιανός Τάεις γύρω από υπόγεια ανοίγματα ε ελατικό πέτρωμα - Κυκλικό άνοιγμα

Διαβάστε περισσότερα

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα

Διαβάστε περισσότερα

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1 Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 : ΠΛΗΡΟΦΟΡΙΚΗ : ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΤΕΤΑΡΤΟ ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Ελληνικό Στατιτικό Ιντιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιτικής (005) ελ.57-65 ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Γεώργιος Μενεξές, Άγγελος Μάρκος, Γιάννης Παπαδημητρίου

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P O r ίz o u µe : { } { } m m : M m :

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα), ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή... 11

Κεφάλαιο 1: Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Κεφάλαιο : Ειαγωγή.... Η Παγκόμια Χρηματοπιτωτική Κρίη.... Το Αντικείμενο και ο Στόχος του Βιβλίου... 9.3 Η Δομή του Βιβλίου... 0 Κεφάλαιο : Η ιαχείριη

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Παρεµβολή Παρεµβολή interpoltion είναι η διαδικασία µε την οποία βρίσκεται µία

Διαβάστε περισσότερα

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ακήεις για έκτες PIN και έκτες µε Οπτική Προενίχυη

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα