1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)
|
|
- Ἱερώνυμος Ζάνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος Πέτρος Κωμοδρόμος 1
2 Θέματα Μέθοδος δυνάμεων ή ευκαμψίας Ανάλυση δικτυωμάτων Ανάλυση ισοστατικών δικτυωμάτων Ανάλυση υπερστατικών δικτυωμάτων Ανάλυση δοκών και πλαισίων Ανάλυση ισοστατικών δοκών και πλαισίων Ανάλυση υπερστατικών δοκών και πλαισίων Χρήση συμπυκνωμένων μητρώων Ανάλυση μικτών κατασκευών με τη μέθοδο ευκαμψίας Πέτρος Κωμοδρόμος 2
3 Σύγχρονη στατική και δυναμική ανάλυση των κατασκευών στηρίζεται σε μεθόδους ανάλυσης με μητρώα: συστηματική επίλυση κατασκευών με γενικό τρόπο αξιοποίηση ισχύος Η/Υ δυνατότητα επίλυσης πολύπλοκων κατασκευών αποφυγή αναγκαίων και ανακριβών προσεγγίσεων σημαντική μείωση κόστους ανάλυσης ακρίβεια αποτελεσμάτων ταχύτατη επίλυση Πέτρος Κωμοδρόμος 3
4 Παράγοντες που επέτρεψαν τη χρήση σύγχρονων μεθόδων ανάλυσης των κατασκευών ανάπτυξη μεθόδων ανάλυσης με μητρώα γνωστές πριν από την εμφάνιση των Η/Υ ανάπτυξη μεθόδων αριθμητικής ανάλυσης (αριθμητικές μέθοδοι) επίλυση γραμμικών συστημάτων εξισώσεων ολοκλήρωση διαφορικών εξισώσεων. κ.λπ. ραγδαία ανάπτυξη Η/Υ και μείωση υπολογιστικού κόστους ανάπτυξη και χρήση γλωσσών προγραμματισμού Πέτρος Κωμοδρόμος 4
5 Χρήση μεθόδου των δυνάμεων για μεγαλύτερους βαθμούς στατικής αοριστίας Πέτρος Κωμοδρόμος 5
6 Πέτρος Κωμοδρόμος 6
7 Σύγχρονες μέθοδοι ανάλυσης κατασκευών μέθοδος των δυνάμεων ή ευκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι δυνάμεις και ροπές μέθοδος των μετακινήσεων ή δυσκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι μετακινήσεις Πέτρος Κωμοδρόμος 7
8 Γενικευμένη μέθοδος των δυνάμεων ή ευκαμψίας βασίζεται στα μητρώα ευκαμψίας των επιμέρους μελών μιας κατασκευής τα οποία συνδυάζονται, χρησιμοποιώντας κατάλληλα μητρώα μετασχηματισμών, ώστε να σχηματιστεί το μητρώο ευκαμψίας F της κατασκευής χρήσιμη για επιλύσεις απλών προβλημάτων με το χέρι δύσκολη αυτοματοποίηση και προγραμματισμός της μεθόδου ο τρόπος και η διαδικασία επίλυσης ενός φορέα με τη μέθοδο ευκαμψίας διαφέρει ανάλογα με το αν ο φορέας είναι ισοστατικός ή υπερστατικός μπορούν να γίνουν διαφορετικές επιλογές στον καθορισμό των υπερστατικών μεγεθών Πέτρος Κωμοδρόμος 8
9 Ανάλυση ισοστατικών δικτυωμάτων με τη γενικευμένη μέθοδο δυνάμεων ή ευκαμψίας Χωρίζοντας την κατασκευή σε επιμέρους μέλη και κόμβους στους οποίους συνδέεται, καθορίζονται οι σχέσεις δυνάμεων-μετακινήσεων για τους διαφορετικούς τύπους μελών ή στοιχείων. Σχέση δύναμης-μετακίνησης που χαρακτηρίζει μία ράβδο δικτυώματος: ΔL L N A E U=ΔL U=ΔL Α, Ε R=Ν R=Ν Α, Ε R=Ν R=Ν L L Πέτρος Κωμοδρόμος 9
10 Συνήθη διανύσματα μεθόδου δυνάμεων ή ευκαμψίας s : εντατικά μεγέθη στα άκρα των μελών, σύμφωνα με το τοπικό σύστημα συντεταγμένων του μέλους u : σχετικές μετακινήσεις των άκρων των μελών, σύμφωνα με το τοπικό σύστημα συντεταγμένων του μέλους R : επικόμβιες δυνάμεις, ή/και ροπές, σύμφωνα με το απόλυτο σύστημα συντεταγμένων U : μετακινήσεις κόμβων, σύμφωνα με το απόλυτο σύστημα συντεταγμένων Πέτρος Κωμοδρόμος 10
11 Διανύσματα μεθόδου δυνάμεων για δικτυώματα s : αξονική δύναμη στους κόμβους της ράβδου, σύμφωνα με το τοπικό σύστημα συντεταγμένων του μέλους u : σχετική μετακίνηση ΔL των κόμβων της ράβδου, σύμφωνα με το τοπικό σύστημα συντεταγμένων του μέλους οι μετακινήσεις u i στα άκρα ενός μέλους μπορούν, με τη χρήση του μητρώου ευκαμψίας F i, το οποίο στη περίπτωση των δικτυωμάτων είναι ένα απλό στοιχείο, να εκφραστούν συναρτήσει των δυνάμεων s i στα άκρα των μελών: Πέτρος Κωμοδρόμος 11
12 Διανύσματα μεθόδου δυνάμεων για δικτυώματα b : μητρώο μετασχηματισμού το οποίο συνδέει τις επικόμβιες δυνάμεις με τις δυνάμεις στα άκρα των ράβδων R : επικόμβιες δυνάμεις στο δικτύωμα s : αξονική δύναμη της ράβδου Bάσει της αρχής της επαλληλίας, υπολογίζοντας τις αξονικές δυνάμεις οι οποίες αναπτύσσονται ξεχωριστά για κάθε πιθανή εξωτερικά επιβαλλόμενη επικόμβια δύναμη, μπορούμε να τις αθροίσουμε κατάλληλα για συγκεκριμένη φόρτιση ώστε να υπολογίσουμε τις αντίστοιχες αξονικές δυνάμεις στις ράβδους Πέτρος Κωμοδρόμος 12
13 Υπολογισμός μητρώου μετασχηματισμού b προσδιορισμός όλων των δυνατών επικόμβιων δυνάμεων R για την στήλη i του μητρώου μετασχηματισμού b εφαρμογή μοναδιαίας δύναμης R i, μηδενικές όλες οι άλλες επικόμβιες δυνάμεις R j, (όπου j i) η στήλη i προκύπτει από τις αντίστοιχες δυνάμεις s των ράβδων Πέτρος Κωμοδρόμος 13
14 Παράδειγμα-1 Δικτύωμα, ΔΕΣ και εξωτερικά επιβαλλόμενες δυνάμεις Εφαρμογή επικόμβιων δυνάμεων Πέτρος Κωμοδρόμος 14
15 Πέτρος Κωμοδρόμος 15
16 Μητρώο ευκαμψίας ράβδου και δικτυώματος Πέτρος Κωμοδρόμος 16
17 Αρχή δυνατών συμπληρωματικών έργων και μέθοδος ευκαμψίας εξωτερικό δυνατό συμπληρωματικό έργο: εσωτερική δυνατή συμπληρωματική ελαστική ενέργεια: Πέτρος Κωμοδρόμος 17
18 Tο συνολικό μητρώο ευκαμψίας της κατασκευής συνδέει τις μετακινήσεις των κόμβων με τις αντίστοιχες εξωτερικές δυνάμεις στους κόμβους, σύμφωνα με το απόλυτο σύστημα συντεταγμένων: Πέτρος Κωμοδρόμος 18
19 Διαδικασία επίλυσης ενός ισοστατικού δικτυώματος Αρίθμηση όλων των μελών και καθορισμός των εντατικών τους μεγεθών s στα άκρα τους Καθορισμός για όλα τα μέλη των σχέσεων μετακινήσεων-δυνάμεων Σχηματισμός του γενικού μητρώου F* με όλα τα επιμέρους μητρώα ευκαμψίας F i, το οποίο συνδέει τις μετακινήσεις στα άκρα των ράβδων με τα αντίστοιχα εντατικά μεγέθη Προσδιορισμός του μητρώου μετασχηματισμού b, το οποίο συνδέει τις επικόμβιες δυνάμεις F με τις δυνάμεις s στα άκρα των μελών Υπολογισμός του απόλυτου μητρώου ευκαμψίας ή ελαστικότητας Με δεδομένα τα επικόμβια εξωτερικά φορτία R μπορούν να υπολογιστούν: - τα εντατικά μεγέθη στα άκρα των μελών του φορέα s, - οι μετακινήσεις των κόμβων της κατασκευής U, - οι μετακινήσεις στα άκρα των μελών του φορέα u, Πέτρος Κωμοδρόμος 19
20 Παράδειγμα-2 Πέτρος Κωμοδρόμος 20
21 Πέτρος Κωμοδρόμος 21
22 Πέτρος Κωμοδρόμος 22
23 Πέτρος Κωμοδρόμος 23
24 Παράδειγμα-3 Πέτρος Κωμοδρόμος 24
25 Ο φορέας στην περίπτωση αυτή έχει επτά δυνατές φορτίσεις και για τον υπολογισμό του μητρώου μετασχηματισμού b, ασκούμε διαδοχικά μοναδιαία δυνατή δύναμη, διατηρώντας τις άλλες επικόμβιες δυνάμεις μηδενικές και υπολογίζουμε τις αξονικές δυνάμεις. Πέτρος Κωμοδρόμος 25
26 Πέτρος Κωμοδρόμος 26
27 Πέτρος Κωμοδρόμος 27
28 Πέτρος Κωμοδρόμος 28
29 Πέτρος Κωμοδρόμος 29
30 Ανάλυση υπερστατικών δικτυωμάτων με τη Μέθοδο Ευκαμψίας Πέτρος Κωμοδρόμος 30
31 αφού εφαρμοσθούν κατάλληλες ελευθερίες στο φορέα, ώστε να καταστεί ισοστατικός και σταθερός, καθορίζονται τα αντίστοιχα συστήματα-0, -1, -2,.,N βάσει των οποίων προσδιορίζονται τα μητρώα μετασχηματισμού b 0 και b χ : το μητρώο μετασχηματισμού b 0 συνδέει τα επικόμβια φορτία R με τις δυνάμεις s στα άκρα των μελών το μητρώο μετασχηματισμού b χ συνδέει τα υπερστατικά μεγέθη Χ με τις δυνάμεις s στα άκρα των μελών συνεπώς, τα εντατικά μεγέθη στα άκρα των μελών του φορέα μπορούν να εκφρασθούν συναρτήσει των επικόμβιων εξωτερικών φορτίων R και των υπερστατικών μεγεθών Χ Πέτρος Κωμοδρόμος 31
32 Αρχή δυνατών συμπληρωματικών έργων και μέθοδος ευκαμψίας για υπερστατικά δικτυώματα εξωτερικό δυνατό συμπληρωματικό έργο: εσωτερική δυνατή συμπληρωματική ελαστική ενέργεια: Πέτρος Κωμοδρόμος 32
33 Πέτρος Κωμοδρόμος 33
34 Πέτρος Κωμοδρόμος 34
35 αφού υπολογιστούν τα άγνωστα υπερστατικά μεγέθη: μετακινήσεις των κόμβων: εντατικά μεγέθη στα άκρα των μελών: Πέτρος Κωμοδρόμος 35
36 Διαδικασία επίλυσης ενός υπερστατικού δικτυώματος αρίθμηση όλων των μελών και καθορισμός των εντατικών μεγεθών s καθορισμός για όλα τα μέλη των σχέσεων μετακινήσεων-δυνάμεων σχηματισμός του γενικού μητρώου F * με όλα τα επιμέρους μητρώα ευκαμψίας F i, το οποίο συνδέει τις μετακινήσεις στα άκρα των ράβδων με τα αντίστοιχα εντατικά μεγέθη καθορισμός κατάλληλων υπερστατικών μεγεθών με προσθήκη ελευθεριών ώστε να προκύψει ισοστατικός σταθερός φορέας Πέτρος Κωμοδρόμος 36
37 προσδιορισμός των μητρώων μετασχηματισμού b 0 και b χ : Πέτρος Κωμοδρόμος 37
38 Πέτρος Κωμοδρόμος 38
39 Παράδειγμα-4 Πέτρος Κωμοδρόμος 39
40 καθορισμός υπερστατικού μεγέθους ώστε να προκύψει ισοστατικός σταθερός φορέας (η άρθρωση γίνεται κύλιση) προσδιορισμός μητρώου μετασχηματισμού b 0 : Πέτρος Κωμοδρόμος 40
41 προσδιορισμός μητρώου μετασχηματισμού b χ : Πέτρος Κωμοδρόμος 41
42 υπολογισμός μητρώων: υπολογισμός υπερστατικού μεγέθους: Πέτρος Κωμοδρόμος 42
43 υπολογισμός μετακινήσεων των κόμβων: Υπολογισμός εντατικών μεγεθών των μελών: Υπολογισμός μετακινήσεων στα άκρα του φορέα: Πέτρος Κωμοδρόμος 43
44 Πέτρος Κωμοδρόμος 44
45 Παράδειγμα-5 Πέτρος Κωμοδρόμος 45
46 Πέτρος Κωμοδρόμος 46
47 Πέτρος Κωμοδρόμος 47
48 Πέτρος Κωμοδρόμος 48
49 Πέτρος Κωμοδρόμος 49
50 Πέτρος Κωμοδρόμος 50
51 Χρήση συνολικών μητρώων Λαμβάνονται υπόψη όλοι οι βαθμοί ελευθερίας Απαιτούνται συνήθως περισσότεροι υπολογισμοί για να επιλυθεί ο φορέας για μία φόρτιση, αλλά λιγότεροι αν ο φορέας πρέπει να επιλυθεί για διάφορες φορτίσεις ή όταν απαιτούνται μετακινήσεις διαφορετικές από αυτές που αντιστοιχούν στις συγκεκριμένες εξωτερικά επιβαλλόμενες επικόμβιες φορτίσεις Το μητρώο ευκαμψίας που προκύπτει μπορεί να χρησιμοποιηθεί για: να επιλυθεί ο φορέας για κάθε δυνατή φόρτιση να υπολογισθεί μετακίνηση για οποιοδήποτε βαθμό ελευθερίας Πέτρος Κωμοδρόμος 51
52 Συνολικά μητρώα μετασχηματισμού: Ισοστατικά δικτυώματα: Υπερστατικά δικτυώματα: Πέτρος Κωμοδρόμος 52
53 Χρήση συμπυκνωμένων μητρώων Λαμβάνονται υπόψη μόνο οι βαθμοί ελευθερίας που αντιστοιχούν σε εξωτερικά επιβαλλόμενα φορτία ή όπου απαιτείται υπολογισμός μετακινήσεων Απαιτούνται συνήθως λιγότεροι υπολογισμοί για να επιλυθεί ο φορέας για μία συγκεκριμένη φόρτιση, ειδικά αν δεν απαιτούνται μετακινήσεις διαφορετικές από αυτές που αντιστοιχούν στις συγκεκριμένες εξωτερικά επιβαλλόμενες επικόμβιες φορτίσεις Το μητρώο ευκαμψίας που προκύπτει μπορεί να χρησιμοποιηθεί: για να επιλυθεί ο φορέας μόνο για τη συγκεκριμένη φόρτιση να υπολογισθούν μόνο μετακινήσεις που αντιστοιχούν στους βαθμούς ελευθερίας που λήφθηκαν υπόψη Πέτρος Κωμοδρόμος 53
54 Χρήση συμπυκνωμένων μητρώων μετασχηματισμού: τα συμπυκνωμένα μητρώα μετασχηματισμού συνδέουν μόνο τις μη μηδενικές επικόμβιες δυνάμεις R, συμπεριλαμβάνοντας και τους βαθμούς ελευθερίας όπου απαιτείται ο υπολογισμός των αντίστοιχων μετακινήσεων, με τα εντατικά μεγέθη s στα άκρα των μελών Ισοστατικά δικτυώματα: Υπερστατικά δικτυώματα: Πέτρος Κωμοδρόμος 54
55 Παράδειγμα-6: Ανάλυση ισοστατικού δικτυώματος με συμπυκνωμένα μητρώα μετασχηματισμού Πέτρος Κωμοδρόμος 55
56 Επικόμβιες δυνάμεις: Πέτρος Κωμοδρόμος 56
57 Πέτρος Κωμοδρόμος 57
58 Πέτρος Κωμοδρόμος 58
59 Παράδειγμα-7: Ανάλυση ισοστατικού δικτυώματος με συμπυκνωμένα μητρώα μετασχηματισμού Πέτρος Κωμοδρόμος 59
60 Πέτρος Κωμοδρόμος 60
61 Πέτρος Κωμοδρόμος 61
62 Πέτρος Κωμοδρόμος 62
63 Πέτρος Κωμοδρόμος 63
64 Παράδειγμα-8: Πέτρος Κωμοδρόμος 64
65 Πέτρος Κωμοδρόμος 65
66 Πέτρος Κωμοδρόμος 66
67 Πέτρος Κωμοδρόμος 67
68 Πέτρος Κωμοδρόμος 68
69 Πέτρος Κωμοδρόμος 69
70 Πέτρος Κωμοδρόμος 70
71 Προσδιορισμός μητρώου ευκαμψίας δοκού Πέτρος Κωμοδρόμος 71
72 Πέτρος Κωμοδρόμος 72
73 Σχηματισμός μητρώου F * Πέτρος Κωμοδρόμος 73
74 Ισοστατικά πλαίσια σχηματισμός μητρώου μετασχηματισμού b το οποίο συνδέει τις εξωτερικά επιβαλλόμενες επικόμβιες ροπές με τις ροπές στα άκρα των μελών Πέτρος Κωμοδρόμος 74
75 Διαδικασία επίλυσης ισοστατικού πλαισίου Αρίθμηση όλων των μελών και καθορισμός των εντατικών τους μεγεθών s Καθορισμός για όλα τα μέλη των σχέσεων μετακινήσεων-δυνάμεων Σχηματισμός του γενικού μητρώου F* με όλα τα επιμέρους μητρώα ευκαμψίας F i, το οποίο συνδέει τις μετακινήσεις στα άκρα των ράβδων με τα αντίστοιχα εντατικά μεγέθη Προσδιορισμός του μητρώου μετασχηματισμού b Υπολογισμός του απόλυτου μητρώου ευκαμψίας ή ελαστικότητας Με δεδομένα τα επικόμβια εξωτερικά φορτία R μπορούν να υπολογιστούν: - τα εντατικά μεγέθη στα άκρα των μελών του φορέα s, - οι μετακινήσεις των κόμβων της κατασκευής U, - οι μετακινήσεις στα άκρα των μελών του φορέα u, Πέτρος Κωμοδρόμος 75
76 Παράδειγμα-9: επίλυση ισοστατικού πλαισίου Πέτρος Κωμοδρόμος 76
77 Πέτρος Κωμοδρόμος 77
78 Πέτρος Κωμοδρόμος 78
79 Πέτρος Κωμοδρόμος 79
80 Υπερστατικά πλαίσια Πέτρος Κωμοδρόμος 80
81 Διαδικασία επίλυσης υπερστατικών πλαισίων αρίθμηση όλων των μελών και καθορισμός των εντατικών μεγεθών s καθορισμός για όλα τα μέλη των σχέσεων μετακινήσεων-δυνάμεων σχηματισμός του γενικού μητρώου F * με όλα τα επιμέρους μητρώα ευκαμψίας F i καθορισμός κατάλληλων υπερστατικών μεγεθών με προσθήκη ελευθεριών ώστε να προκύψει ισοστατικός σταθερός φορέας Πέτρος Κωμοδρόμος 81
82 Σχηματισμός (συμπυκνωμένων) μητρώων μετασχηματισμού b 0 και b χ : Πέτρος Κωμοδρόμος 82
83 Πέτρος Κωμοδρόμος 83
84 Παράδειγμα-10: επίλυση υπερστατικού πλαισίου Πέτρος Κωμοδρόμος 84
85 Σχηματισμός συμπυκνωμένων μητρώων μετασχηματισμού: Πέτρος Κωμοδρόμος 85
86 Πέτρος Κωμοδρόμος 86
87 Πέτρος Κωμοδρόμος 87
88 Παράδειγμα-11: επίλυση πλαισιακού φορέα Πέτρος Κωμοδρόμος 88
89 Πέτρος Κωμοδρόμος 89
90 Πέτρος Κωμοδρόμος 90
91 Πέτρος Κωμοδρόμος 91
92 Πέτρος Κωμοδρόμος 92
93 Πέτρος Κωμοδρόμος 93
94 Πέτρος Κωμοδρόμος 94
95 Πέτρος Κωμοδρόμος 95
96 Πέτρος Κωμοδρόμος 96
97 Ανάλυση μικτών κατασκευών με τη μέθοδο ευκαμψίας Μία μικτή κατασκευή αποτελείται από διαφορετικά δομικά στοιχεία, όπως π.χ. δοκούς και δικτυώματα, και μπορεί να αναλυθεί με τη μέθοδο ευκαμψίας με τον απλό συνδυασμό των μητρώων ευκαμψίας επιμέρους μελών Πέτρος Κωμοδρόμος 97
98 Παράδειγμα-12: ανάλυση μικτών κατασκευών Πέτρος Κωμοδρόμος 98
99 Πέτρος Κωμοδρόμος 99
100 Πέτρος Κωμοδρόμος 100
101 Πέτρος Κωμοδρόμος 101
102 Πέτρος Κωμοδρόμος 102
103 Πέτρος Κωμοδρόμος 103
104 Παράδειγμα-13: ανάλυση μικτών κατασκευών Πέτρος Κωμοδρόμος 104
105 Πέτρος Κωμοδρόμος 105
106 Πέτρος Κωμοδρόμος 106
107 Πέτρος Κωμοδρόμος 107
108 Πέτρος Κωμοδρόμος 108
2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,
Διαβάστε περισσότερα2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2019 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότερα4. Επίλυση Δοκών και Πλαισίων με τις
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος
Διαβάστε περισσότερα2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότερα8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
Διαβάστε περισσότερα5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών
Διαβάστε περισσότεραιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
Διαβάστε περισσότερα7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότερα4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων
Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων
Διαβάστε περισσότερα1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8
Διαβάστε περισσότερα10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων
Διαβάστε περισσότεραΑνάλυση Ισοστατικών ικτυωµάτων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα, 08 - η Πρόοδος ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 07 8, Εαρινό Εξάμηνο Πέμπτη, Φεβρουαρίου, 08, 9:00-0:00 π.μ. (60 λεπτά) Όνομα:
Διαβάστε περισσότεραΕισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα
Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των
Διαβάστε περισσότερα11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων
11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική
Διαβάστε περισσότεραιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν
Διαβάστε περισσότεραιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΣημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 017-1 η Πρόοδος ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα 1 η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 016 17, Εαρινό Εξάμηνο Δευτέρα, 0 Φεβρουαρίου, 017, 9:00-10:00 π.μ. (60 λεπτά)
Διαβάστε περισσότεραΜέθοδος Επικόμβιων Μετατοπίσεων
Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η
Διαβάστε περισσότεραιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
Διαβάστε περισσότεραιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΥΠΟΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Διατύπωση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
Διαβάστε περισσότεραΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότερα1 η Επανάληψη ιαλέξεων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Διαβάστε περισσότερα9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση
Διαβάστε περισσότεραΔιδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
Διαβάστε περισσότεραΜέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
Διαβάστε περισσότεραΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι, 2004-5 η και 6 η Πρόοδος Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Διαβάστε περισσότεραΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
Διαβάστε περισσότεραΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.
Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 019 - Τελική εξέταση ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 018 19, Εαρινό Εξάμηνο Τελική Εξέταση 8:30-10:30 μ.μ. (10 λεπτά), Δευτέρα, 13 Μαΐου, 019 Όνομα:
Διαβάστε περισσότεραΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
Διαβάστε περισσότερα7. Δυναμική Ανάλυση ΠΒΣ
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΕΡΕΟΙ ΚΟΜΒΟΙ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα Εισαγωγή Κινηματικές
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕπίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH AAΣΚΕΥΗ Η αρθρωτή κατασκευή του σχήματος έπρεπε να απαρτίζεται από τρείς όμοιες μεταλλικές ράβδους, μήκους η κάθε μία με ΕΑ σταθ. και θεωρούμενες ως αβαρείς, οι οποίες να συναντώνται
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΑΤΙΚΗ ΣΥΜΠΥΚΝΩΣΗ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα.
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ
Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού
Διαβάστε περισσότεραΕπαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε
Διαβάστε περισσότεραΚεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας
Κεφάλαιο 0 Προσδιορισμός των βαθμών ελευθερίας Σύνοψη Η άσκηση 0, που περιέχεται στο κεφάλαιο αυτό, αναφέρεται σε μία μεγάλη σειρά απλών και σύνθετων στατικών φορέων, για τους οποίους ζητείται ο προσδιορισμός
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Δοκοί σε Ελαστικές Στηρίξεις Μέθοδος των Δυνάμεων: Δ10-2 Οι στηρίξεις κάποιων φορέων είναι δυνατό να μετακινηθούν υπό την επίδραση της εξωτερικής φόρτισης. Για παράδειγμα,
Διαβάστε περισσότερα11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
Διαβάστε περισσότεραΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.
ΑΣΚΗΣΗ 8 ΕΟΜΕΝΑ: Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση. ίνονται: 50 KNm I/ A 0, T T 5 C 0 h 0,5m 5 C l l 0m T a t 5 C / C ΕΠΙΛΥΣΗ:
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΑνυψωτικές και Μεταφορικές Μηχανές Εισαγωγή. Εργαστήριο 1 ο
Ανυψωτικές και Μεταφορικές Μηχανές Εισαγωγή Εργαστήριο 1 ο Τι είναι οι Ανυψωτικές και Μεταφορ. Μηχανές Μηχανικά συγκροτήματα για τη μεταφορά βάρους με κατακόρυφο, οριζόντιο ή ενδιάμεσο τρόπο. Κ. Στυλιανός
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς
ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις
Διαβάστε περισσότεραΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,
Διαβάστε περισσότεραΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.
ΑΣΚΗΣΗ 14 ΔΕΔΟΕΝΑ: Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα,, για τη δεδομένη φόρτιση. ΕΠΙΛΥΣΗ: Ο φορέας είναι συμμετρικός ως προς άξονα με τυχαία φόρτιση.
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για
Διαβάστε περισσότεραΠλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
Διαβάστε περισσότεραΑΣΚΗΣΗ 2 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH KAAΣΚΕΥΗ Να επανεπιλυθεί η Ασκηση θεωρώντας και την επίδραση του ιδίου βάρους των ράβδων. Ε- στω ότι το ειδικό βάρος τους είναι γνωστό με τιμή γ, σε ΚΝ/m. Περαιτέρω, να σχεδιασθούν τα
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι, 2004-4 η Πρόοδος Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ Πτυχιακή Εργασία Θέμα: Στατική Επίλυση Επίπεδων Ισοστατικών Δικτυωμάτων Φοιτητής: Γογοδώνης
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
Διαβάστε περισσότεραΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών Ακαδημαϊκό Έτος 2005-6, Χειμερινό Εξάμηνο Τελική Εξέταση 8:30-11:30
Διαβάστε περισσότεραΓενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ
Διαβάστε περισσότεραΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Ενδιάµεση Εξέταση 12:00-12:30 µ.µ. (30 λεπτά) Τρίτη, 14 Σεπτεµβρίου,
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ 1 Περιεχόμενα
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού
Διαβάστε περισσότεραΑ.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας
Διαβάστε περισσότερα