ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
|
|
- ĒΔανιήλ Γούσιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ
2 Περιεχόμενα. Εισαγωγή. Παρουσίαση χωρικού δικτυώματος. Διανύσματα ακραίων δράσεων στοιχείου χωρικού δικτυώματος. Διανύσματα ακραίων μετατοπίσεων στοιχείου χωρικού δικτυώματος. Μητρώο μετασχηματισμού στοιχείου χωρικού δικτυώματος. Τοπικό μητρώο στιβαρότητας στοιχείου χωρικού δικτυώματος 7. Καθολικό μητρώο στιβαρότητας στοιχείου χωρικού δικτυώματος
3 Περιεχόμενα. Διανύσματα επικόμβιων δράσεων και μετατοπίσεων χωρικού δικτυώματος. Καθολικό μητρώο στιβαρότητας χωρικού δικτυώματος 0. Τροποποίηση (αναδιάταξη) καθολικού μητρώου στιβαρότητας χωρικού δικτυώματος λόγω στήριξης Μητρώο αναδιάταξης. Εσωτερικά εντατικά μεγέθη μελών χωρικού δικτυώματος. Εφαρμογή
4 ΕΙΣΑΓΩΓΗ
5 ΕΙΣΑΓΩΓΗ Οι ραβδωτοί φορείς που αποτελούνται από ευθύγραμμες ράβδους, των οποίων τα άκρα συνδέονται αρθρωτά σε κόμβους και μεταφέρουν μόνο αξονικές δυνάμεις (εφελκυστικές ή θλιπτικές) ονομάζονται δικτυώματα. Στην περίπτωση κατά την οποία όλες οι ράβδοι δικτυώματος βρίσκονται σε ένα επίπεδο και η φόρτιση του ανήκει στο επίπεδο αυτό, το δικτύωμα αυτό αναφέρεται ως επίπεδο, ενώ σε αντίθετη περίπτωση, ο φορέας ονομάζεται χωρικό δικτύωμα ή χωροδικτύωμα.
6 ΕΙΣΑΓΩΓΗ Για τον υπολογισμό των χωρικών δικτυωμάτων εισάγονται απλοποιητικές παραδοχές, οι οποίες προσδιορίζουν το κλασικό προσομοίωμα ενός ιδανικού δικτυώματος και οδηγούν στην προαναφερθείσα αποκλειστικά αξονική καταπόνηση των ράβδων. Η αναπτυσσόμενη αξονική δύναμη είναι σταθερή σε όλες τις διατομές κατά μήκος κάθε ράβδου εκτός αν υφίστανται αξονικώς κατανεμημένα φορτία επί των ράβδων. Στις επόμενες διαφάνειες παρουσιάζεται η Μέθοδος Άμεσης Στιβαρότητας για την ανάλυση χωρικών δικτυωμάτων που μπορούν να προσομοιωθούν ως ιδανικά δικτυώματα, δίνοντας έμφαση στις διαφοροποιήσεις στα βήματα της μεθόδου συγκριτικά με την ανάλυση των επίπεδων δικτυωμάτων.
7 ΠΑΡΟΥΣΙΑΣΗ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ 7
8 ΠΑΡΟΥΣΙΑΣΗ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ 00N EA EA EA EA EA EA EA EA 0N EA Τα μέλη του δικτυώματος είναι κατασκευασμένα από ομογενές και ισότροπο υλικό ( E.0 N / m ) και είναι διατομής A 0cm.
9 x ΠΑΡΟΥΣΙΑΣΗ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ x x 00N 0 0N Σημείο εκκίνησης για την ανάλυση του χωρικού δικτυώματος αποτελεί η αρίθμηση των κόμβων και των μελών του. Επίσης, επιλέγεται ως καθολικό σύστημα αξόνων το δεξιόστροφο ορθογώνιο σύστημα αξόνων ως προς το οποίο θα γίνει η ανάλυση του φορέα και ο υπολογισμός τόσο των κινηματικών μεγεθών των κόμβων του όσο και των αντιδράσεων των στηρίξεων του.
10 x ΠΑΡΟΥΣΙΑΣΗ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ x x 00N 0 0N Ακολούθως, προκειμένου να πραγματοποιηθεί ο ορισμός των εσωτερικών εντατικών και των κινηματικών μεγεθών των μελών εισάγεται τοπικό σύστημα αναφοράς για κάθε ένα από τα στοιχεία που συνθέτουν το δικτύωμα. Για τον καθορισμό του συστήματος αυτού, σε κάθε μέλος ορίζεται ως άξονας x αυτός που έχει διεύθυνση εκείνη του μέλους και φορά από τον κόμβο με μικρότερο προς τον κόμβο με μεγαλύτερο αύξοντα αριθμό. 0
11 ΠΑΡΟΥΣΙΑΣΗ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ x x x 00N 0 0N Τέλος, καθορίζονται οι βαθμοί ελευθερίας κίνησης των κόμβων του (κινηματική αοριστία), όπου στο βήμα αυτό αμελείται ο τρόπος στήριξης του δικτυώματος. Έτσι, γνωρίζοντας ότι κάθε κόμβος διαθέτει τρεις βαθμούς ελευθερίας κίνησης, οι βαθμοί ελευθερίας κίνησης του φορέα θα είναι Ν, όπου Ν ο αριθμός των κόμβων (nodes) του δικτυώματος.
12 ΔΙΑΝΥΣΜΑΤΑ ΑΚΡΑΙΩΝ ΔΡΑΣΕΩΝ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
13 ΔΙΑΝΥΣΜΑΤΑ ΑΚΡΑΙΩΝ ΔΡΑΣΕΩΝ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ j A F F F F 0 F A F 0 A F A A F F A F F 0 F 0 F F Τοπικό και καθολικό διάνυσμα ακραίων δράσεων
14 ΔΙΑΝΥΣΜΑΤΑ ΑΚΡΑΙΩΝ ΜΕΤΑΤΟΠΙΣΕΩΝ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
15 ΔΙΑΝΥΣΜΑΤΑ ΑΚΡΑΙΩΝ ΜΕΤΑΤΟΠΙΣΕΩΝ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ' j j' D u u u u D D u u D D u D u u u u u Τοπικό και καθολικό διάνυσμα ακραίων μετατοπίσεων
16 ΜΗΤΡΩΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
17 ΜΗΤΡΩΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ j j F j Σύμφωνα με το σχήμα, το άθροισμα των προβολών των συνιστωσών του καθολικού συστήματος αξόνων στον τοπικό άξονα δίνουν την τοπική δύναμη F, δηλαδή F F F F 7
18 ΜΗΤΡΩΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ F j j j Παρόμοιες σχέσεις μπορούν να γραφούν και για τις (μηδενικές) δυνάμεις F, F κατά τους τοπικούς άξονες, και συνδυάζοντας τις εξισώσεις αυτές προκύπτει η μητρωική σχέση F F F 0 F F cos A F 0 F ST A άκρο j μέλους χωρικού δικτυώματος ml ml (m,l=,,)
19 F ΜΗΤΡΩΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ή συνολικά και στα δύο άκρα μέλους χωρικού δικτυώματος j j j 0 0 ST ST 0 ST 0 Μητρώο μετασχηματισμού μέλους χωρικού δικτυώματος F F F F 0 0 F A F 0 0 A A F ST A F F ST F 0 ST A 0 F 0 F 0 F F ST ST A T
20 ΜΗΤΡΩΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ Ομοια για τα διανύσματα ακραίων μετατοπίσεων θα ισχύει D u u 0 u u D u u ST 0 D D u u ST 0 ST D u 0 u u u 0 mn cos mn Τα συνημίτονα κατεύθυνσης των γωνιών φ αποτελούν τα στοιχεία των μητρώων μετασχηματισμού D
21 ΤΟΠΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
22 ΤΟΠΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ Μόρφωση τοπικού μητρώου στιβαρότητας μέλους χωρικού δικτυώματος F F u F 0 u F 0 u F F u 0 F u 0 F u το τυχόν στοιχείο του τοπικού μητρώου στιβαρότητας του μέλους E A E A δηλώνει την αναπτυσσόμενη τοπική L L ακραία δράση κατά τον τοπικό βαθμό ελευθερίας m όταν επιβληθεί μοναδιαία και μοναδική ακραία μετακίνηση κατά τον τοπικό βαθμό ελευθερίας n του μέλους, δηλαδή L L με ταυτόχρονο μηδενισμό των υπόλοιπων τοπικών βαθμών ελευθερίας του μέλους. jj j j E A E A A jj j D A j D A D mn
23 ΚΑΘΟΛΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
24 ΚΑΘΟΛΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ όρφωση καθολικού μητρώου στιβαρότητας μέλους χωρικού δικτυώματος Ζητείται να προσδιοριστεί η σχέση στιβαρότητας στοιχείου χωρικού δικτυώματος στο καθολικό σύστημα αξόνων F u F u F u A jj j D F u A j D F u F u Προκειμένου να προσδιοριστεί η σχέση αυτή γράφεται αρχικά η αντίστοιχη σχέση στιβαρότητας στο τοπικό σύστημα αξόνων A D
25 ΚΑΘΟΛΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΣΤΟΙΧΕΙΟΥ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ A D τις σχέσεις Αντικαθιστώντας στην τοπική σχέση στιβαρότητας A A 0 A D 0 ST D D 0 ST D D ST D και με τη βοήθεια της ορθοκανονικότητας των μητρώων μετασχηματισμού προκύπτει η καθολική σχέση στιβαρότητας ως A ST 0 A ST ST T A ST ST D όπου A A D T ST ST
26 ΔΙΑΝΥΣΜΑΤΑ ΕΠΙΚΟΜΒΙΩΝ ΔΡΑΣΕΩΝ ΚΑΙ ΜΕΤΑΤΟΠΙΣΕΩΝ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
27 ΔΙΑΝΥΣΜΑΤΑ ΕΠΙΚΟΜΒΙΩΝ ΔΡΑΣΕΩΝ ΚΑΙ ΜΕΤΑΤΟΠΙΣΕΩΝ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ Συνιστώσες των επικόμβιων δράσεων και επικόμβιων μετατοπίσεων των Ν κόμβων δικτυώματος Γραφή με άνω (αριθμός κόμβου) και κάτω (αριθμός καθολικού άξονα) δείκτη P Γραφή με κάτω δείκτη (βαθμός ελευθερίας κίνησης δικτυώματος) () P () P P P () () P P P () P P () P () P P () : P P (N) : P : (N) PN P (N) PN P PN (N) P Εναλλακτικές μορφές γραφής διανυσμάτων () () () () () () () () : (N) : : (N) N (N) N N (N) Από τις μετατοπίσεις των κόμβων κάποιες είναι γνωστές και οι υπόλοιπες άγνωστες, ανάλογα με το εάν οι αντίστοιχοι βαθμοί ελευθερίας κόμβου είναι δεσμευμένοι ή ελεύθεροι. Αντίστοιχα, υπάρχουν γνωστές δράσεις, που είναι τα εξωτερικά φορτία των κόμβων και άγνωστες, που είναι οι αντιδράσεις στηρίξεων. 7
28 ΚΑΘΟΛΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
29 ΚΑΘΟΛΙΚΟ ΜΗΤΡΩΟ ΣΤΙΒΑΡΟΤΗΤΑΣ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ Μόρφωση καθολικού μητρώου στιβαρότητας φορέα χωρικού δικτυώματος ( n) () () P P K K... K, N nm nm nm K K K ( n) ( n) () () P K K... K, N P P : : : : : : nm nm nm K nm K K K ( n) P (N) K N, K N,... K N, N nm nm nm (N) P K K K ( m) ( m) ( m) ( m) P K K K K K K... K, N K, N K, N P K K K K K K... K,N K,N K,N M K K K K K K... K,N K,N K,N P K K K K K K... K,N K,N K,N P K K K K K K... K,N K,N K,N M K K K K K K... K,N K,N K,N : : : : : : : : : : : PN K N, K N, K N, K N, K N, K N,... K N,N K N,N K N,N N PN KN, KN, K N, K N, K N, K N,... K N, N K N, N K N, N N M N K N, K N, K N, K N, K N, K N,... K N,N K N,N K N,N N Καθολικό μητρώο στιβαρότητας φορέα
30 ΤΡΟΠΟΠΟΙΗΣΗ (ΑΝΑΔΙΑΤΑΞΗ) ΚΑΘΟΛΙΚΟΥ ΜΗΤΡΩΟΥ ΣΤΙΒΑΡΟΤΗΤΑΣ 0
31 ΤΡΟΠΟΠΟΙΗΣΗ (ΑΝΑΔΙΑΤΑΞΗ) ΚΑΘΟΛΙΚΟΥ ΜΗΤΡΩΟΥ ΣΤΙΒΑΡΟΤΗΤΑΣ Τροποποιημένα (λόγω αναδιάταξης) διανύσματα επικόμβιων δράσεων και μετατοπίσεων δικτυώματος P m Km m P f P m V P P s T T V Pm K V m f m s T P m V K V m V Είναι προφανές ότι η προαναφερθείσα αναδιάταξη θα έχει ως άμεσο αποτέλεσμα και την απαιτούμενη τροποποίηση του καθολικού μητρώου στιβαρότητας του δικτυώματος. P T V Pm T V m P K Τροποποιημένο (αναδιατεταγμένο) καθολικό μητρώο στιβαρότητας T V V I T K m V K V
32 ΤΡΟΠΟΠΟΙΗΣΗ (ΑΝΑΔΙΑΤΑΞΗ) ΚΑΘΟΛΙΚΟΥ ΜΗΤΡΩΟΥ ΣΤΙΒΑΡΟΤΗΤΑΣ Τροποποιημένη (αναδιατεταγμένη) μητρωική εξίσωση ισορροπίας P m Km m P f K ff K fs f P s Ksf K ss s πλήθος ελεύθερων και δεσμευμένων βαθμών ελευθερίας N N N P f K ff f K fs s P s K sf f K ss s f s f K ff P f K fs s P s K sf f K ss s Επίλυση Επικόμβιες μετατοπίσεις κατά τους ελεύθερους και επικόβιες δράσεις (αντιδράσεις) κατά τους δεσμευμένους β.ε.
33 ΕΣΩΤΕΡΙΚΑ ΕΝΤΑΤΙΚΑ ΜΕΓΕΘΗ ΜΕΛΩΝ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ
34 ΕΣΩΤΕΡΙΚΑ ΕΝΤΑΤΙΚΑ ΜΕΓΕΘΗ ΜΕΛΩΝ ΧΩΡΙΚΟΥ ΔΙΚΤΥΩΜΑΤΟΣ Υπολογισμός εσωτερικών εντατικών μεγεθών μελών δικτυώματος A A r D επαλληλία παγιωμένου και ισοδύναμου φορέα Ή πιο αναλυτικά λαμβάνοντας υπόψη τη σχέση τοπικών καθολικών μετατοπίσεων A Ar PT D Tο καθολικό μητρώο ακραίων μετατοπίσεων D μπορεί να μορφωθεί γνωρίζοντας από την επίλυση της σχέσης στιβαρότητας το μητρώο των καθολικών επικόμβιων μετατοπίσεων του δικτυώματος και λαμβάνοντας από αυτό τα κατάλληλα στοιχεία ανάλογα με τους κόμβους άκρων του μέλους.
35 ΕΦΑΡΜΟΓΗ
36 ΕΦΑΡΜΟΓΗ 00N x x 0 0N x Στοιχεία γεωμετρίας μελών
37 ΕΦΑΡΜΟΓΗ 00N x x 0 0N x Στοιχεία γεωμετρίας μελών 7
38 ΕΦΑΡΜΟΓΗ 00N x x x Στοιχεία γεωμετρίας και υλικού μελών 0 0N Μόρφωση καθολικών μητρώων στιβαρότητας μελών Μέλος () : Μέλος () : Μέλος () : Μέλος () : Μέλος () : Μέλος () : Μέλος (7) : Μέλος () : E E E E E E E E. 0 N / m,. 0 N / m,. 0 N / m,. 0 N / m,. 0 N / m,. 0 N / m, 7. 0 N / m,. 0 N / m, 0cm, Μέλος () : E. 0 N / m, A 0cm, A A A A A A A A 0cm, 0cm, 0cm, 0cm, 0cm, 7 0cm, 0cm, L L L L L L L L L.0m 7.0m.0m.0m.0m.0m.0m.0m.7m
39 x x 00N x Καθολικά μητρώα στιβαρότητας μελών 0 0N ΕΦΑΡΜΟΓΗ
40 x x 00N x 0 0N ΕΦΑΡΜΟΓΗ
41 x x 00N x Καθολικά μητρώα στιβαρότητας μελών 0 0N ΕΦΑΡΜΟΓΗ
42 ΕΦΑΡΜΟΓΗ x x 00N x Διανύσματα επικόμβιων δράσεων και μετατοπίσεων δικτυώματος 0 0N P () P () P P () R P P () R P P () P R P 0 P () P R P () P R P7 0 () P P 0 () P P 0 () P 0 0 P P () 0 P P R () P P 00 () 0 P P 0 () P P () P () () () 0 0 () 0 () () 0 0 () 7 7 () () () 0 0 () 0 () () () ()
43 ΕΦΑΡΜΟΓΗ ό ό ό ό jj j ό ό ό ό j jj jj j j ό j jj ό K j jj j j j jj j j j j j j j j j jj 7 7 j j j j Σύνθεση στο καθολικό μητρώο στιβαρότητας του δικτυώματος 00N x x x x x x x x x x x x x x x x x x x x x x x x x x
44 ΕΦΑΡΜΟΓΗ 00N x x K x 0 0N Καθολικό μητρώο στιβαρότητας δικτυώματος
45 ΕΦΑΡΜΟΓΗ x x 00N x Μητρώο αναδιάταξης δικτυώματος 0 ύ ί ( free ) 0N έ ί (sup ported ) [V ]
46 ΕΦΑΡΜΟΓΗ x x 00N x Τροποποιημένο (λόγω αναδιάταξης) διάνυσμα επικόμβιων δράσεων δικτυώματος 0 P 0 P7 0 P R R 0 P R P R P 0 P 00 P f N R P P s 0 P R P R P R P R R P 00 R P 0 R P
47 ΕΦΑΡΜΟΓΗ x x 00N x Τροποποιημένο (λόγω αναδιάταξης) διάνυσμα επικόμβιων μετατοπίσεων δικτυώματος f s N 7 0
48 ΕΦΑΡΜΟΓΗ x x 00N x 0 0N Τροποποιημένο (λόγω αναδιάταξης) καθολικό μητρώο στιβαρότητας δικτυώματος K ff K fs T K m V K V Ksf K ss
49 ΕΦΑΡΜΟΓΗ x x 00N x 0 Επίλυση Επικόμβιες μετατοπίσεις κατά τους ελεύθερους και επικόβιες δράσεις (αντιδράσεις) κατά τους δεσμευμένους β.ε. 0N () () 7 () () () f 0 () () () () R R R. R 0.00 R R
50 ΕΦΑΡΜΟΓΗ x x 00N x 0 j F 7.0 F 7.0 A ST D 0N j F 0.00 F 0.00 j F 0.00 F 0.00 j F.0 j F. 7 j F.7 F.0 F. 7 F.7 j F 0.0 j F 70.7 F 0.0 F 70.7.N -.7N 0.00N -70.7N 0.0N 0.00N -.0N j F 0.00 F 0.00 Εσωτερικά εντατικά μεγέθη μελών δικτυώματος 0.00N 7.0N 0
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΑΤΙΚΗ ΣΥΜΠΥΚΝΩΣΗ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα.
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΥΠΟΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Διατύπωση
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΕΡΕΟΙ ΚΟΜΒΟΙ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα Εισαγωγή Κινηματικές
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών
Διαβάστε περισσότεραΣημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ 1 Περιεχόμενα
Διαβάστε περισσότεραΆσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους:
Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους: (α) Επίπεδο δικτύωµα (β) Επίπεδο πλαίσιο Ζητείται να µορφωθούν συµβολικά τα µητρώα στιβαρότητας των δύο
Διαβάστε περισσότεραΚαρακίτσιος Παναγιώτης Θέμα Ι Στατική ΙΙΙ users.ntua.gr/pkarak. Εθνικό Μετσόβιο Πολυτεχνείο Ακαδημαϊκό έτος Σχολή Πολιτικών Μηχανικών
Εθνικό Μετσόβιο Πολυτεχνείο Ακαδημαϊκό έτος 2010-2011 Σχολή Πολιτικών Μηχανικών 6 ο εξάμηνο Τομέας Δομοστατικής Μάθημα: Στατική ΙΙΙ (Ανάλυση Ραβδωτών Φορέων Σύγχρονες Μέθοδοι) Καρακίτσιος Παναγιώτης Υποψήφιος
Διαβάστε περισσότεραΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Επίπεδα Πλαίσια
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΤΑΤΙΚΗ ΙΙΙ ΣΥΓΧΡΟΝΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΕΩΣ ΦΟΡΕΩΝ Επίπεδα Πλαίσια 1 Επίπεδα Πλαίσια Φορέας: Eπίπεδος Φόρτιση: υνάμεις στο επίπεδο του φορέα (F 1,F ) Ροπές
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ. Καθηγήτρια
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ.
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH AAΣΚΕΥΗ Η αρθρωτή κατασκευή του σχήματος έπρεπε να απαρτίζεται από τρείς όμοιες μεταλλικές ράβδους, μήκους η κάθε μία με ΕΑ σταθ. και θεωρούμενες ως αβαρείς, οι οποίες να συναντώνται
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Μ. Παπαδρακάκης Στατική ΙΙΙ : Σύγχρονες Μέθοδοι Αναλύσεως Φορέων. Στοιχείο Χωρικού Πλαισίου (S2) j k x1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Στοιχείο Χωρικού Πλαισίου (S) 5 6 4 x 8 9 ( ) 7 0 F 4 5 6 7 8 9 0 u F 4 5 6 7 8 9 0 u F 4 5 6 7 8 9 0 u M 4 4 4 44 45 46 47 48 49 40 4 4 θ M 5 5 5
Διαβάστε περισσότεραΜέθοδος Επικόμβιων Μετατοπίσεων
Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Διαβάστε περισσότεραΑΣΚΗΣΗ 2 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH KAAΣΚΕΥΗ Να επανεπιλυθεί η Ασκηση θεωρώντας και την επίδραση του ιδίου βάρους των ράβδων. Ε- στω ότι το ειδικό βάρος τους είναι γνωστό με τιμή γ, σε ΚΝ/m. Περαιτέρω, να σχεδιασθούν τα
Διαβάστε περισσότερα2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,
Διαβάστε περισσότεραΜέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
Διαβάστε περισσότερα1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος 1 Θέματα Μέθοδος
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.
ΑΣΚΗΣΗ 14 ΔΕΔΟΕΝΑ: Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα,, για τη δεδομένη φόρτιση. ΕΠΙΛΥΣΗ: Ο φορέας είναι συμμετρικός ως προς άξονα με τυχαία φόρτιση.
Διαβάστε περισσότεραΔιδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων
Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων
Διαβάστε περισσότεραΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 2007 2008 1 1 Ειδικά κεφάλαια μητρωικής ανάλυσης ραβδωτών φορέων Συνοριακές
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για
Διαβάστε περισσότεραΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 019 - Τελική εξέταση ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 018 19, Εαρινό Εξάμηνο Τελική Εξέταση 8:30-10:30 μ.μ. (10 λεπτά), Δευτέρα, 13 Μαΐου, 019 Όνομα:
Διαβάστε περισσότερα2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
Διαβάστε περισσότερα2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2019 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
Διαβάστε περισσότεραΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
Διαβάστε περισσότεραΓενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
Διαβάστε περισσότεραΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)
Διαβάστε περισσότεραΚεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας
Κεφάλαιο 0 Προσδιορισμός των βαθμών ελευθερίας Σύνοψη Η άσκηση 0, που περιέχεται στο κεφάλαιο αυτό, αναφέρεται σε μία μεγάλη σειρά απλών και σύνθετων στατικών φορέων, για τους οποίους ζητείται ο προσδιορισμός
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Διαβάστε περισσότεραΜέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα
Διαβάστε περισσότερα4. Επίλυση Δοκών και Πλαισίων με τις
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων...
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. iii. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xi. Συμβάσεις προσήμων.... Τοπικό και καθολικό σύστημα αναφοράς. xiii. Συμβατικά θετικές φορές εξωτερικών εντασιακών
Διαβάστε περισσότεραΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.
ΑΣΚΗΣΗ 8 ΕΟΜΕΝΑ: Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση. ίνονται: 50 KNm I/ A 0, T T 5 C 0 h 0,5m 5 C l l 0m T a t 5 C / C ΕΠΙΛΥΣΗ:
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
Διαβάστε περισσότεραΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : -9-0, :00-:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ
Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
Διαβάστε περισσότεραΕισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα
Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται
Διαβάστε περισσότεραΜηχανική Ι - Στατική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #6: Δικτυώματα (Μέθοδος Κόμβων) Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
Διαβάστε περισσότεραΣιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ
Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης
Διαβάστε περισσότεραΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)
ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
Διαβάστε περισσότεραΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
Διαβάστε περισσότεραΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Διαβάστε περισσότερα11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων
11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν
Διαβάστε περισσότεραΕνεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε
Διαβάστε περισσότεραΕξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)
Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ Πτυχιακή Εργασία Θέμα: Στατική Επίλυση Επίπεδων Ισοστατικών Δικτυωμάτων Φοιτητής: Γογοδώνης
Διαβάστε περισσότερα10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή
Διαβάστε περισσότεραΚεφάλαιο 2 Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις Σύνοη Οι ασκήσεις έως 6 του κεφαλαίου αυτού, αφορούν σε κινητούς ατενείς φορείς. Στην Άσκηση
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς
ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις
Διαβάστε περισσότερα8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:
8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8
Διαβάστε περισσότεραΕλαστοπλαστική Μέθοδος Βήμα-προς-Βήμα Υπολογισμού της Φέρουσας Ικανότητας Κατασκευών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ελαστοπλαστική Μέθοδος Βήμα-προς-Βήμα Υπολογισμού της Φέρουσας Ικανότητας Κατασκεύων Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ 007-008 Ελαστοπλαστική Μέθοδος
Διαβάστε περισσότεραΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 12 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Απόκριση Συστημάτων N Β.Ε. Σε αρχικές συνθήκες Συστήματα χωρίς απόσβεση Εισαγωγή στην ιδιοανυσματική ανάλυση
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2018-2 η Πρόοδος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 2017 18, Εαρινό Εξάμηνο 2 η Πρόοδος 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 29 Μαρτίου, 2018 Όνομα:
Διαβάστε περισσότεραΑ.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του
Διαβάστε περισσότεραΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 13 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Iδιότητες Ιδιοανυσμάτων Συστήματα χωρίς απόσβεση Ιδιοανυσματικός Μετασχηματισμός Συστήματα χωρίς απόσβεση
Διαβάστε περισσότεραΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων
Διαβάστε περισσότεραΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Τομέας Β Δομοστατικού Σχεδιασμού ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΦΗΝΑΡΟΛΑΚΗ ΕΛΕΥΘΕΡΙΑ
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
Διαβάστε περισσότερα6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών
6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε
Διαβάστε περισσότεραΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 7 έκδοση DΥΝI-EXC07-06b Copyright Ε.Μ.Π. - 06 Σχολή
Διαβάστε περισσότερα