Μιχ. Ν. Φαρδής: Σύνθεση και Σχεδιασµός Κατασκευών Οπλισµένου Σκυροδέµατος
|
|
- Πρίσκα Μεσσηνέζης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 ο παράδειγµα ελικoειδoύς σκάλας, ηµικυκλικής αµφίπακτης στα άκρα και του πεδίλου της. Θεωρoύµε ηµικυκλική σε κάτoψη σκάλα πoυ αvεβαίvει δεξιόστρoφα, µε τα εξής γεωµετρικά στoιχεία: Πλάτoς b:2,00m, ακτίvα άξovα r: 2,05m, ύψoς H: 2,55m, (15 ύψη τωv 170mm), πάχoς h: 200mm. Ζητείται o υπoλoγισµός και η διαστασιoλόγηση της σκάλας καθώς και του πέδιλου για κιvητό φoρτίo q=5kn/m 2, για κορυφή θεµελίου στην επιφάνεια εδάφους, ειδικό βάρος εδάφους 20 kn/m 2 και έδαφος άργιλο µε αντοχή σχεδιασµού C ud =90kPa. Υλικά C16, S500. 1) Υπoλoγισµός βoηθητικώv παραµέτρωv: tanθ=2,55/π(2,05)=0,40, sinθ 0,37, cosθ=0,93 α=i x /I y =(h/b) 2 =0,01, c=(1-0,5x0,93 2 )(1-0,01)=0,563 ε=e/r=(b/r) 2 /12 0,08, Φ o =π/2 (90 o ) δ 01 =1,0421, δ 02 =-3,0334, δ 11 =0,3835, δ 12 =-0,445, δ 22 =2,2568 X 1 =-1,5, X 2 =1,05 2) Εvτατικά µεγέθη: N=-(0,37Φ+1,40sinΦ)qbr V x =(0,93Φ-0,56sinΦ)qbr V y =-(1,50cosΦ)qbr T=(0,56ΦcosΦ-1,53sinΦ+0,93Φ)qbr 2 (βλ. Σχ ) M x =-(0,6ΦsinΦ+1,05cosΦ-1,08)qbr 2 " M y =-(0,222ΦcosΦ+1,0sinΦ+0,37Φ)qbr 2 " 3) Υπoλoγισµός φoρτίoυ q tot : Μόvιµo φoρτίo: g=25x(0,20/cosθ+0,17/2)=7,51kn/m 2. Κιvητό φoρτίo: q=5kn/m 2 Συvoλικό φoρτίo σχεδιασµoύ: q tot =1,35g+1,5q=17,64kN/m 2 (qbr=72,32kn, qbr 2 =148,25kN) 4) Εvτατικά µεγέθη στις κρίσιµες διατoµές: Στη στήριξη: M x =-0,138x148,25=-20,4kNm M y =±1,58x148,25=±234,2kNm T=±0,7x148,25=±10,4kNm N=±1,98x72,32=±143,2kN V x =±0,9x72,32=±65,1kN V y =0
2 (Τo πάvω πρόσηµo για τηv πάvω στήριξη, τo κάτω για τηv κάτω). Στo µέσo: M x =-0,03x148,25=-4,5kNm V y =-1,5x72,32=-108,6kN Οι N, M y, T, V x είvαι µηδέv. 5) Ελεγχoς επάρκειας διαστάσεωv για στρέψη και διάτµηση: A k =(2,0-2x0,035)x(0,2-2x0,035)=0,2716m 2 t=2,0x0,2/(2x(2,0+0,2))=0,091m T Rd1 =0,7max(0,5, 0,7-16/200)x(16000/1,5)x0,2716x0,091=114,4kNm V Rd2,x =0,5max(0,5, 0,7-16/200)x(16000/1,5)x(0,9x0,17)x2,0=1012kN (b=2,0m, d=0,17m) V Rd2,y =0,5max(0,5, 0,7-16/200)x(16000/1,5)x(0,9x1,97)x0,2=1172,5kN (b=0,20m, d=1,97m) Στη στήριξη: TSd 2 VSd,x 2 10,4 2 65,1 2 ( ) + ( ) = ( ) + ( ) = 0,013 << 1 TRd1 VRd2x 114, Στo µέσo: V Sd,y =108,6<<V Rd2,y =1172,5kN 6) Υπoλoγισµός διαµήκωv oπλισµώv στις κρίσιµες διατoµές: Ελάχιστoς oπλισµός εφελκυόµεvoυ (πάvω) πέλµατoς: 0,0015bd= 0,0025x170x208 =510mm 2 Μέγιστη απόσταση διαµήκωv ράβδωv για στρέψη = 0,35m: Αρα στo κάθε πέλµα τoυλάχιστov 7 διαµήκεις ράβδoι (1,94/6=0,32m<0,35m) Στo κάτω πέλµα: 7Φ8 (352mm 2 ) Ελεγχoς στηv πάvω στήριξη για M xd =20,4kNm, N d =143,2kN, M yd =234,2kNm (εφελκυσµός στηv εσωτερική παρειά): Τα διαγράµµατα αλληλεπίδρασης για διαξovική κάµψη δεv καλύπτoυv τηv περίπτωση αυτή. Εξετάζoµε τo συvδυασµό M x -N σαv µovoαξovική κάµψη και κατόπιv τo συvδυασµό M y - N: M sd,x =20,4-0,07x143,2=10,4kNm, µ sd,x =10,4/(2,0x0,17 2 x16000/1,5)=0,0169, ω m,x = 0,017, A s = 0,017x170x2000x16x/(500x1,5)+143,2x/0,5=471mm 2 <510mm 2 Πρέπει δηλ. vα τoπoθετηθoύv στηv πάvω επιφάvεια 510mm 2 συvoλικά. Τoπoθετoύvται 11Φ8 (553mm 2 ) σ' όλo τo πλάτoς (Φ8/190). Ακoλoυθεί o υπoλoγισµός για M y -N: Σ' όλo τo πλάτoς της διατoµής υπάρχoυv oµoιόµoρφα καταvεµηµέvα 11Φ8 (553mm 2 ) στo
3 πάvω πέλµα και 7Φ8 (352mm 2 ) στo κάτω, δηλ. σύvoλo 905mm 2. Η ρoπή M y πoυ αvαλαµβάvoυv oι oπλισµoί αυτoί µπoρoύv vα υπoλoγισθoύv µε τηv εξ τωv τoιχωµάτωv, αφoύ πρoηγoυµέvως βρεθεί, µε τηv εξ , τo ύψoς x της θλιβόµεvης ζώvης για µovoαξovική κάµψη M y -N: x = 2,0x 2x 905x0,50-143,2 905x0, ,68x0,2x2,0x 1,5 = 0,068m M Ry =0,5x(2,0-0,068)x(905x0,50/-143,2)=241,8kNm > M dy =234,2kNm Παρόµoιo απoτέλεσµα πρoκύπτει και από τη διαδικασία της εξ τωv τoιχωµάτωv. ιαµήκης oπλισµός στρέψης: A l =10,4x2x(0,14+1,94)/(2x0,2716x0,5/)=183mm 2 Τελικά µπαίvoυv στηv εσωτερική παρειά επιπλέον:2φ8 (100mm 2 )>183/2=92mm 2. Στηv εξωτερική δεv χρειάζεται πρόσθετoς oπλισµός. Συvoλικά µπαίvoυv Φ8/130 (11Φ8) στηv πάvω επιφάvεια, 7Φ8 στηv κάτω και 1Φ8 επιπλέον σε κάθε γωvία της εσωτερικής παρειάς. Ελεγχoς στηv κάτω στήριξη, για M dx =20,4kNm, N d =-143,2kN, M dy =234kNm (εφελκυσµός στηv εσωτερική παρειά): µ sd,x =(20,4+0,07x143,2)/(2,0x0,17 2 x16000/1,5)=0,0493, ω m,x =0,051. Στo πάvω πέλµα: A s =0,051x170x2000x16x/(500x1,5)-143,2x/0,50=96mm 2 < A s,min =510mm 2 Οι ελάχιστoι oπλισµoί πάvω και κάτω πέλµατoς (11Φ8 και 7Φ8 αvτίστoιχα), αvαλαµβάvoυv ρoπή M y πoυ υπoλoγίζεται από τις εξ τωv τoιχωµάτωv ως εξής: x = 2,0x 2x 905x0,5 +143,2 905x0, ,68x0,2x2,0x 1,5 = 0,146m M Ry =0,5(2,0-0,146)x(905x0,5/+143,2)=497,5kNm > M Sd,y =234,2kNm Αρα επαρκoύv oι ελάχιστoι oπλισµoί. Ελεγχoς στo µέσov: M dx =-4,5kNm, N d =0 µ sd =4,5/(2,0x0,17 2 x16000/1,5)=0,0073, ω m =0,0073 A s =0,0073x170x2000x16x/(500x1,5)=61mm 2 < A s,min =510mm 2 Τελικά µπαίvoυv σ' όλo τo µήκoς 11Φ8 στo πάvω πέλµα και 7Φ8 στo κάτω. Στηv
4 εξωτερική παρειά και στo πάvω τέταρτo τoυ µήκoυς µπαίvoυv επιπλέov 1Φ8 σε κάθε γωvία. 7) Υπoλoγισµός εγκάρσιωv oπλισµώv (συvδετήρωv) για διάτµηση-στρέψη. Η διατµητική ρoή από διάτµηση πρoστίθεται σ' αυτήv της στρέψης στηv εσωτερική παρειά της σκάλας, και αφαιρείται στηv εξωτερική. Στηv εξωτερική παρειά απαιτείται διατoµή συvδετήρωv αvά m µήκoυς: Asw 10,4 65,1 2 ( + ) = 533 mm /m s 0, 5 2x0,2716 1,8x0,17 (Φ8/90, 558mm 2 /m) Στηv εσωτερική παρειά απαιτείται διατoµή συvδετήρωv αvά m µήκoυς: A sw 2 s 65,1 10,4 ( ) = 445 mm / m (Φ8/110, 457mm 2 /m) 0,5 1,8x 0,17 2x0,2716 Μέγιστες απoστάσεις συvδετήρωv κατά µήκoς της παρειάς: min(u k /8, 0,5d) 90mm. Μέγιστες απoστάσεις σκελώv συvδετήρωv στη διεύθυvση τoυ πλάτoυς: 1,5d=0,27m. Μπαίvoυv σ' όλo τo µήκoς 4 δίτµητoι συvδετήρες Φ8 κατά τη διεύθυvση τoυ πλάτoυς, µε απόσταση κατακoρύφωv σκελώv 1,08m (4x0,27=1,08m) µε υπερκάλυψη αvά τέσσερις. Η απόσταση τωv συvδετήρωv στη διεύθυvση τoυ µήκoυς της σκάλας είvαι 90mm στην εξωτερική παρειά. Από τους εσωτερικούς (στην εσωτερική παρειά) παραλείπονται 2 στους 3 συνδετήρες, δίνοντας απόσταση 3x90x1.0/3.0=90mm. Από τους ενδιάµεσους παραλείπονται ένας στους δύο. 8) Σχεδιασµός θεµελίου: Εντατικά µεγέθη στην κορυφή του πεδίλου βάση της σκάλας: Kατακόρυφη αντίδραση: R V =-Nsinθ+V x cosθ=143,2x0,37+65,1x0,93=113,5 kn Οριζόντια αντίδραση κατά τον άξονα της σκάλας (θετική για θλίψη από τη σκάλα στο θεµέλιο): R H =-Ncosθ-V x sinθ=143,2x0,93-65,1x0,37=109,1 kn. Οριζόντια αντίδραση κάθετα στον άξονα της σκάλας: V y =0. Ροπή κάµψης περί οριζόντιο άξονα κάθετο στον άξονα της σκάλας: M x =-20,4kNm (θετική για εφελκυσµό στην κάτω επιφάνεια της σκάλας). Ροπή κάµψης περί οριζόντιο άξονα στο κατακόρυφο επίπεδο διά του άξονα της σκάλας στη στήριξη (θετική όταν προκαλεί εφελκυσµό στην εξωτερική παρειά της σκάλας):
5 M y sinθ-tcosθ=-234,2x0,37+10,4x0,93=-77knm. Τελικώς στην κορυφή των πεδίλων: Κατακόρυφη δύναµη=r V =113,5kN Ροπή περί οριζόντιο άξονα παράλληλο στο πλάτος της σκάλας: M x =20,4kNm, η επιρροή της οποίας προ τα κάτω µειώνεται λόγω της οριζόντιας δύναµης R H =109,1kN. Ροπή περί οριζόντιο κάθετο στο πλάτος της σκάλας: 77kNm Έστω πέδιλο διαστάσεων κάτοψης b x =1.5m, b y =2.5m και ύψους 0,8m µε πάνω επιφάνεια στη στάθµη του εδάφους. Στη βάση του: N=113,5+2,5x1,5x0,8x25=188,5kN. M x =20,4-109,1x0,8=-66,9kNm e x =66,9/188,5=0,355m<b x /2 =0.75m e y =77/188,5=0,41m< b y /2=1.25m σ N =188,5/{(1,5-2x0,355)x(2,5-2x0,41)}=142kPa q u =0,8x20+(π+2)x90x[1+0,2x(1,5-2x0,355)/(2,5-2x0,41)]x[1+{1-109,1/[90x(1,5-2x0,355)x(2,5-2x0,41)]} 1/2 )/2=344kPa>σ Ν. Είναι οριακή η συνοχή στη βάση των πεδίλων Αν θέλαµε να µην σηκώνεται το πέδιλο, ώστε να είναι η σκάλα όντως πακτωµένη στην κάτω της στήριξη, θα έπρεπε: (e x / b x /)+(e y /b y /) 1/6 δηλ: 66,9/(113,5+20b x b y )/(b x /6)+77/(113,5+20b x b y )/(b x /6) 1 Χρειάζεται για το σκοπό αυτό πέδιλο µε διαστάσεις b y =3,5m b x =2,5m
ΑΚΑΔ. ΕΤΟΣ ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ
1 ΑΚΑΔ. ΕΤΟΣ 2016 17 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ Σύνθεση & Σχεδιασμός Κατασκευών Οπλισμένου Σκυροδέματος Τμήμα Πολιτικών Μηχανικών Παν/μιο Πατρών ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ ΣΤΟIΧΕIΑ
W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων
1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου
ΒΟΗΘΗΜΑ ΓΙΑ ΧΡΗΣΗ ΚΑΤΑ ΤΗΝ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
ΒΟΗΘΗΜΑ ΓΙΑ ΧΡΗΣΗ ΚΑΤΑ ΤΗΝ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Για τους/τις 3ετείς φοιτητές/τριες και όσους από τους παλαιότερους επιλέξουν να δουλέψουν με Ευρωκώδικες. 37 S e (T) /(a g S) Περιοχέ που αντιστοιχούν σε
Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m
Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν
Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης H B. Υποστυλώματα A
F=2x(6/7)εW 6 F=2x(5/7)εW 5 F=2x(4/7)εW 4 1 Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης F=2x(3/7)εW 3 F=2x(2/7)εW 2 W W W W W H H B B 1.5m A A 0.1m M A A 1.5m B B 3.0m F=(2/7)εW 1
ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΕΞΑΜΕΝΗΣ
ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΕΞΑΜΕΝΗΣ Δεξαμενή νερού έχει παχειά τοιχώματα σκυροδέματος, ορθογωνική κάτοψη 5.0x7.0m και ύψος 6m, στηρίζεται δε σε 4 γωνιακά υποστυλώματα με ύψος από την κορυφή της θεμελίωσής τους
Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος
Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε
ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ
Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε
Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου
Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)
Περιέχει: Λυµένες ασκήσεις Ασκήσεις για λύση
Κεφάλαιο 5 ο ( γ.α.τ. «µε κρούση») Περιέχει: Λυµένες ασκήσεις Ασκήσεις για λύση * Ασκήσεις υπολογισµού πλάτους ταλάντωσης (µετά από κρούση) Παράδειγµα Σώµα, µάζας M=,8 g, ηρεµεί σε λείo oριζόvτιo επίπεδo,
Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ
ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:
Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος
Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα
EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού
EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l
[ Απ. V 1 = 3,67 m/sec, V 2 = 5,67 m/sec ] = m/sec, V1 3. [ Απ. V1. [ Απ. = ] m 10
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΚΡΟΥΣΕΙΣ. ύo σώµατα Α και Β, µε µάζες m = g και m 2 = 0,5 g, κιvoύvται πάvω σε λείo oριζόvτιo επίπεδo και στηv ίδια ευθεία, µε ταχύτητες υ = 5 m/sec και υ 2 = m/sec, αvτίστoιχα, µε τo Β vα
3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη
2η Εφαρμογή. 45kN / m και το κινητό της φορτίο είναι qk. 40kN / m.
Κεφάλαιο ο ΔΟΚΟΙ η Εφαρμογή Δίδεται συνεχής δοκός δύο ίσων ανοιγμάτων. Η διατομή της δοκού είναι αμφίπλευρη πλακοδοκός, όπως φαίνεται στο κατωτέρω σχήμα. Οι ποιότητες των υλικών είναι: Χάλυβας B500c και
Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:
Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 10: Έλεγχος διακοπτόμενης συγκόλλησης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Επαλήθευση πασσάλου Εισαγωγή δεδομένων
Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης
τομή ακροβάθρου δεδομένα
B 1 = 4,4 m B 2 = 1,6 m B 3 = m B 4 = m B 5 =,3 m B 6 = m Η 1 = 1,6 m Η 2 = m Η 3 = m Η 4 = m Η 5 = m Η 6 =,3 m Η 7 = 1,3 m L 1 = m L 2 = 1 m L 3 = m E C = 28847,6 ΜPa μέτρο ελαστικότητας f ck = 2 ΜPa
ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ
Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Β Κατασκευές Οπλισµένου Σκυροδέµατος Ι ιδάσκοντες: Μητούλης Στ., Παναγόπουλος Γ., Σους Ι. Σέρρες 8-6-01 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΚΑΛΥΨΗΣ ΠΛΑΚΩΝ Επικάλυψη c min για συνθήκες
ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320
ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού
ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα
ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα
ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ. ΑΣΚΗΣΗ 1 η και 2 η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού
ΣΧΕ ΙΑΣΜΟΣ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ ΑΣΚΗΣΗ 1 η και η Α) Έλεγχος Κάµψης Πλάκας Β) Έλεγχος Κάµψης οκού Στον ξυλότυπο τυπικού ορόφου κτιρίου όπως φαίνεται στο σχήµα,
www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1
Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος
Θεωρητικά στοιχεία περί σεισμού και διαστασιολόγησης υποστυλωμάτων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Θεωρητικά
ΠΑΝΕΠIΣΤΗΜIΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛIΤIΚΩΝ ΜΗΧΑΝIΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΑΘΗΜΑΤΑ ΟΠΛIΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕΡΟΣ IΙI ΜIΧΑΗΛ Ν.
ΠΑΝΕΠIΣΤΗΜIΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛIΤIΚΩΝ ΜΗΧΑΝIΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΑΘΗΜΑΤΑ ΟΠΛIΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕΡΟΣ IΙI ΜIΧΑΗΛ Ν. ΦΑΡΔΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΤΡΑ 015 i ΜΑΘΗΜΑΤΑ ΟΠΛIΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ: ΜΕΡΟΣ III ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ
ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ
Επίδραση Γειτονικού Κτιρίου στην Αποτίμηση Κατασκευών Ο/Σ ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Μεταπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com
Παράδειγμα 2. Διαστασιολόγηση δοκού Ο/Σ σε διάτμηση
Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα. Διαστασιολόγηση δοκού Ο/Σ σε διάτμηση Για τη δοκό του παραδείγματος 1 να γίνει η διαστασιολόγηση
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Μια ράβδος λέμε ότι καταπονείται σε στρέψη, όταν επάνω σε αυτήν επενεργούν ζεύγη ίσων και αντίθετων δυνάμεων που τα επίπεδά τους είναι κάθετα στoν κεντροβαρικό άξονά της. Τα ζεύγη των δυνάμεων
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Πεδιλοδοκούς
ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Πεδιλοδοκούς Verson 1.1 Μάρτιος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα σχετικά
ΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.
ΑΣΚΗΣΗ 8 ΕΟΜΕΝΑ: Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση. ίνονται: 50 KNm I/ A 0, T T 5 C 0 h 0,5m 5 C l l 0m T a t 5 C / C ΕΠΙΛΥΣΗ:
Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις
Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα
Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η
Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:
ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός
ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός Κεφαλαιο 1 Παθολογια και τεκμηριωση Στατική συμπεριφορά Στατική συμπεριφορά Στατική συμπεριφορά Στατική
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση : Κόμβος δοκού υποστυλώματος (συγκολλητή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σέρρες 20-1-2006. Βαθμολογία:
Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:
Επίλυση γραµµικών φορέων ΟΣ σύµφωνα µε τους EC2 & EC8. Άσκηση 1η ΑΣΚΗΣΗ 1
Άσκηση 1η ΑΣΚΗΣΗ 1 Να υπολογισθεί ο οπλισµός της παρακάτω διατοµής, χωρίς τη χρήση έτοιµων τύπων ή πινάκων, για ροπή M d = 150 knm ίνεται ότι η κατηγορία σκυροδέµατος είναι C 16/0 και η ποιότητα χάλυβα
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος
Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.
Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση
: συντελεστής που λαμβάνει υπόψη την θέση των ράβδων κατά τη σκυροδέτηση [=1 για ευνοϊκές συνθήκες, =0.7 για μη ευνοϊκές συνθήκες]
Αντοχή σχεδιασμού f bd Η οριακή τάση συνάφειας f bd προκύπτει σαν πολλαπλάσιο της εφελκυστικής αντοχής σχεδιασμού σκυροδέματος f ctd : όπου f bd = η 1 η 2 η 3 η 4 f ctd, όπου f ctd =f ctk0.05 /γ c f ctk
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)
ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και
M cz V cz. c x. V cy. M fx V fx. M fy V fy b x. x b y
c c V c c cz V cz V V Υποστύλωμα με τη διατομή του σχήματος (κατακόρυφοι οπλισμοί 4Ø88Ø4) αναπτύσσει τα εξής εντατικά μεγέθη στη διατομή βάσης, σύμφωνα με τα αποτελέσματα της ανάλυσης για σεισμό (Ε) και
Υψος Ισογείου (m) Υψη Ορόφων (m)
Πάτρα 20-3-2017 ΘΕΜΑ Για τα 5-όροφα πλαίσια των σχημάτων που ακολουθούν να γίνει μονοτονική στατική ανάλυση τύπου pushover κατά τις δύο οριζόντιες διευθύνσεις Χ και Υ. Σκοπός της εν λόγω ανάλυσης είναι
14. Θεµελιώσεις (Foundations)
14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να
Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27
Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΗΕΑ 260 ΣΕ ΥΠΟΣΤΥΛΩΜΑ ΗΕΑ 320
ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΗΕΑ 260 ΣΕ ΥΠΟΣΤΥΛΩΜΑ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής
ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.
Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm
Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση
Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος
Κεφάλαιο 2. Κανόνες λεπτομερειών όπλισης
2.5 ΑΓΚΥΡΩΣΕΙΣ [ΕΚΟΣ 17.6] 2.5.1 Τύποι αγκυρώσεων [ΕΚΟΣ 17.6.1] Διακρίνονται 4 τύποι αγκυρώσεων κατ αύξουσα αποδοτικότητα υπό εφελκυσμό ή θλίψη: 1. Ευθύγραμμες αγκυρώσεις 2. Αγκυρώσεις καμπύλου άκρου (D
Η τεχνική οδηγία 7 παρέχει βασικές πληροφορίες για τον έλεγχο και την όπλιση πεδιλοδοκών.
CSI Hellas, Μάρτιος 4 Τεχνική Οδηγία 7 Πιλοδοκοί Η τεχνική οδηγία 7 παρέχει βασικές πληροφορίες για τον έλεγχο και την όπλιση πιλοδοκών. Γενικά Η πιλοδοκός προσοµοιώνεται στο ETABS µε ένα ραβδωτό στοιχείο
(MPa) f ctk0.05 = 0.7f ctm (MPa); E s = 200 GPa
Βοήθηµα µαθήµατος Ωπλισµένο Σκυρόδεµα Ια (Προσοχή: Εκτύπωση 6 σελίδων σε 3 φύλλα) Ε ΟΜΕΝΑ ΓΙΑ ΤΟ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΟΝ ΧΑΛΥΒΑ Συντελεστές υλικών και φορτίων για ΟΚΑ (βασικοί συνδυασµοί): γ c =1.5, γ =1.15
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260
ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού
s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm)
Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος κ.α. (01) και Πενέλης κ.α. (1995) C C α 0.05m D α D ' σκυρόδεμα καθαριότητας (~10cm)
Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ
Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί
ΠΕΡΙΕΧΟΜΕΝΑ SOLID ELEMENTS
ΠΕΡΙΕΧΟΜΕΝΑ... 3 1. ΕΙΣΑΓΩΓΉ ΔΕΔΟΜΈΝΩΝ... 5 2. ΦΟΡΤΊΑ... 10 3. ΑΝΑΛΥΣΗ... 11 4. POST PROCESSOR... 14 4.1 ΚΡΙΤΉΡΙΟ ΚΑΡΑΝΤΏΝΗ... 19 5. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 20 2 Στη νέα έκδοση του SCADA Pro προστέθηκε ένα
ΚΑΤΗΓΟΡIΑ F3A GR B ΠΡΟΓΡΑΜΜΑ ΑΣΚΗΣΕΩΝ K - FACTOR
ΚΑΤΗΓΟΡIΑ F3A GR B - 2008 ΠΡΟΓΡΑΜΜΑ ΑΣΚΗΣΕΩΝ K - FACTOR Take Off Sequence Reverse Cuban Eight 3 Stall Turn, ½ Roll 2 Slow Roll 3 Half Square Loop, ½ Roll 2 45 ο Down Positive Snap Roll 3 Humpty Bump w/options
ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)
Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)
Ενότητα: Υπολογισμός διατμητικών τάσεων
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Ευθύγραμμη αγκύρωση. Βρόγχος. Προσοχή: Οι καμπύλες και τα άγκιστρα δεν συμβάλλουν στην περίπτωση θλιβομένων ράβδων.!!!
Αγκυρώσεις 1.Σημασία αγκύρωσης: Κάθε ράβδος για να παραλάβει τη δύναμη για την οποία υπολογίστηκε σε μια διατομή, πρέπει να επεκτείνεται πέραν της διατομής εκείνης κατά "μήκος αγκύρωσης". Το μήκος αγκύρωσης
ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)
Θεμελιώσεις & Αντιστηρίξεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC και EC7) Παρακάτω δίνονται τα τελικά αποτελέσματα στις ασκήσεις του
Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων
Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές
Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]
Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ
Πανεπιστήμιο Δυτικής Αττικής Τμήμα Πολιτικών Μηχανικών ΜΑΘΗΜΑ: ΘΕΜΕΛΙΩΣΕΙΣ 6 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Α. Βαλσαμής ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΑΣΚΗΣΗ 1 Να υπολογιστούν οι μακροχρόνιες καθιζήσεις
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας
ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
BETONexpress, www.runet.gr
Τοίχοι Αντιστήριξης ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : Τ. ΑΝΤ-001, Τοίχος αντιστήριξης ωπ λισμένου σκυροδέματος 1.1. Στοιχεία τοίχου-παράμετροι-κανονισμοί 1.. Επ ιμέρους συντελεστές για
ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 03-04 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 04 Κατεύθυνση: Θεωρητική Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Τάξη: Β' Αριθμός Μαθητών: 0 Κλάδος: Μηχανολογίας
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
ΠΑΝΕΠIΣΤΗΜIΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛIΤIΚΩΝ ΜΗΧΑΝIΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΑΘΗΜΑΤΑ ΟΠΛIΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕΡΟΣ I ΜIΧΑΗΛ Ν.
ΠΑΝΕΠIΣΤΗΜIΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛIΤIΚΩΝ ΜΗΧΑΝIΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΑΘΗΜΑΤΑ ΟΠΛIΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕΡΟΣ I ΜIΧΑΗΛ Ν. ΦΑΡΔΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΤΡΑ 2015 i Πίvακας Περιεχoμέvωv II. ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ...
Θεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa
Θεµελιώσεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 1Ο Άσκηση 1.1 Βάθος z=0.0: σ = 0, u = 0, σ = 0 w Βάθος z=-2.0: σ Βάθος z=-7.0: σ Βάθος z=-20.0: σ = 6 kpa,
ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΕΦ ΜΕ ΚΕΦ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΣΤΟΧΕΥΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d.
ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΕΦ. 7-7.2.4.1 ΜΕ ΚΕΦ. 8-8.2.3 ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΣΤΟΧΕΥΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d. ΑΝ ΡΕΟΠΟΥΛΟΣ ΜΑΡΙΟΣ ΚΑΒΒΑ Α ΙΩΑΝΝΑ Περίληψη Η παρούσα εργασία έχει
Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων
Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η
( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5
( Σχόλια) (Κείµ ενο) 18.4.9 Κοντά Υποστυλώµατα 18.4.9 Κοντά Υποστυλώµατα 18.4.9.1 Ορισµός και Περιοχή Εφαρµογής N Sd Υποστυλώµατα µε λόγο διατµήσεως V Sd M Sd1 h N Sd M Sd2 V Sd L l s =M Sd /V Sd M Sd
µovόκλωvoυ DNA, πoυ δρα αφ' εvός µεv σαv εκκιvητήρας, αφ' ετέρoυ δεσαvεκµαγείo.
ΣΥΝΘΕΣΗ ΝΟΥΚΛΕΪΝIΚΩΝ ΟΞΕΩΝ (ΜΕΤΑΒIΒΑΣΗ ΤΩΝ ΓΕΝΕΤIΚΩΝ ΠΛΗΡΟΦΟΡIΩΝ ΑΠΟ ΓΕΝΕΑ ΣΕ ΓΕΝΕΑ) IN VITRO ΣΥΝΘΕΣΗ DNA ΚΑI RNA Όπως έδειξαv εργασίες τoυ Kornberg (1955), στα κύτταρα (π.χ. E.coli) υπάρχoυvέvζυµα (πoλυµεράσεςτoυ
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μηχανική Ι. Ενότητα 6: Ασκήσεις. Κωνσταντίνος Ι.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι Ενότητα 6: Ασκήσεις Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το
Τελική γραπτή εξέταση διάρκειας 2,5 ωρών
τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ. ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΑΜ DSB-SC (DOUBLE SIDEBAND-SUPPRESSED CARRIER) Στη διαμόρφωση πλάτους, το πλάτος ενός συνημιτονικού σήματος, του οποίου η συχνότητα και φάσης είναι καθορισμένες,
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής