Εξωτερικές οικονοµίες
|
|
- Θήρα Βιτάλη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εξωτερικές οικονοµίες Συνθήκες Οι ενέργειες ενός οικονοµικού υποκειµένου Α προκλούν µετβολή της ευηµερίς ενός οικονοµικού υποκειµένου Β (θετικές ή ρνητικές). Ο Β δεν πληρώνει (ν επηρεάζετι θετικά) ή δεν ποζηµιώνετι (ν επηρεάζετι ρνητικά) γι τη µετβολή της ευηµερίς του κι δεν έχει τη δυντότητ ν ελέγξει µε άλλο τρόπο τις ενέργειες του Α. 1
2 Θετικές εξωτερικές οικονοµίες ηµιουργί ενός στικού πάρκου σε µι εγκτλελειµµένη έκτση. Αποκτάστση πλιών βιοµηχνικών εγκτστάσεων σε υποβθµισµένες περιοχές. Βελτίωση της ποιότητς των νερών µις λίµνης, κ.ά. Στις περιπτώσεις υτές ορισµέν µέλη του κοινωνικού συνόλου πολµβάνουν κάποιο όφελος, γι το οποίο δεν πληρώνουν κάποιο χρηµτικό ποσό ως ντιστάθµισµ. Θετικές εξωτερικές οικονοµίες Η πόλυση κάποιου γθού, π.χ. ξιοποίηση ενός πλιού βιοµηχνικού συγκροτήµτος, χωρίς την κτβολή κάποιου ντιτίµου δεν ποτελεί φινοµενικά πρόβληµ γι την κοινωνί. Αντιθέτως Το πρόβληµ έγκειτι στο γεγονός ότι η κοινωνί (πρκτικά το Κράτος) δεν θ διθέσει ρκετούς πόρους γι τη δηµιουργί κι άλλων στικών πάρκων (δεν θ πράγει δηλ. βέλτιστες ποσότητες γι το εν λόγω γθό) ν δεν ληφθούν υπόψη τ οφέλη σε οικονοµικούς όρους. 2
3 Θετικές εξωτερικές οικονοµίες Ο.Ι.Κ. Ο.Εξωτ.Ο. Ο.Ι.Ο. Ο.Κ.Ο. Q1 Q2 Αρνητικές εξωτερικές οικονοµίες Αέρι ρύπνση πό βιοµηχνικές δρστηριότητες. Ρύπνση νερών πό την πόρριψη υγρών ποβλήτων. Κτσκευή υτοκινητοδρόµου κοντά σε κτοικηµένη περιοχή, κ.ά. Στις περιπτώσεις υτές ορισµέν µέλη του κοινωνικού συνόλου υφίστντι κάποι ζηµιά, γι την οποί δεν ποζηµιώνοντι. 3
4 Αρνητικές εξωτερικές οικονοµίες Ο πργωγός δεν επωµίζετι το κόστος κι πράγει πλεονάζουσες ποσότητες προϊόντος γι ν µεγιστοποιήσει τ κέρδη του. Οι κτνλωτές γοράζουν µεγλύτερες ποσότητες προϊόντος φού η τιµή της γοράς είνι χµηλότερη πό την τιµή που θ ντνκλούσε το πργµτικό (κοινωνικό κόστος). Το εξωτερικό κόστος της πργωγικής διδικσίς διχέετι στην κοινωνί κι το πρόβληµ έγκειτι στο γεγονός ότι δεν θ πρχθούν οι βέλτιστες ποσότητες γι το εν λόγω γθό, ν δεν ληφθούν υπόψη τ εξωτερικά κόστη, σε οικονοµικούς όρους. Αρνητικές εξωτερικές οικονοµίες Ο.Κ.Κ. Ο.Ι.Κ. Ο.Εξωτ.Κ. Ζ Q2 Q1 4
5 Εξωτερικές οικονοµίες - Αντιµετώπιση Φόροι / Επιδοτήσεις (Pigouvian tax / subsidy) Προχή δικιωµάτων ιδιοκτησίς (Θεώρηµ Coase) Κνονιστικά µέτρ (π.χ. κθορισµός νώττου ορίου εκποµπών, προσδιορισµός συγκεκριµένου επιπέδου πργωγής, κ.ά.) Βσικό ερώτηµ σε κάθε περίπτωση: ποιο είνι το άριστο επίπεδο πργωγής (ή ρύπνσης) εσωτερίκευσης εξωτερικού κόστους Ζήτηση: P = 5,5Q Προσφορά (Ι.Ο.Κ.): Ο Κ P = 1 +,2Q Εξωτερικό κόστος: 1 /πργόµενη µονάδ Ερωτήµτ: Σχεδιάστε τις κµπύλες ζήτησης κι προσφοράς (µε βάση το ιδιωτικό κι κοινωνικό κόστος) γι το γθό. Υπολογίστε την τιµή κι την ποσότητ στο σηµείο ισορροπίς µε βάση το ιδιωτικό κόστος, κθώς κι το ντίστοιχο εξωτερικό κόστος. Ποιο θ είνι το κθρό κοινωνικό όφελος; Με την πρδοχή ότι εφρµόζετι ένς Pigouvian φόρος, ο οποίος ενσωµτώνει πλήρως το εξωτερικό κόστος στο ιδιωτικό κόστος πργωγής, ποιο θ είνι το νέο σηµείο ισορροπίς; Κτά πόσο βελτιώνει το κθρό όφελος η εφρµογή του φόρου; 5
6 εσωτερίκευσης εξωτερικού κόστους Ζήτηση Ι.Ο.Κ. Κ.Ο.Κ. P Q P Q P Q εσωτερίκευσης εξωτερικού κόστους 55 5 Τιµή/Κόστος Εξωτερικό κόστος Κ.Ο.Κ. Ι.Ο.Κ Ζήτηση
7 εσωτερίκευσης εξωτερικού κόστους Με βάση το Ι.Ο.Κ.: 5,5Q = 1 +,2Q Q = 571,4 & P =214,3 CS = (5-214,3)*571,4/2 = ,7 PS = (214,3-1)*571,4/2 = ,1 Συνολικό όφελος = CS+PS = ,7 Όµως, το εξωτερικό κόστος είνι: 1 * 571,4 = ,9 Εποµένως, µ το κθρό όφελος είνι: , ,9 = ,9 εσωτερίκευσης εξωτερικού κόστους Με βάση το Κ.Ο.Κ. (ενσωµάτωση του φόρου): 5,5Q = 2 +,2Q Q = 428,6 & P =285,7 CS = (5-285,7)*428,6/2 = ,4 PS = (285,7-2)*428,6/2 = ,9 Συνολικό όφελος = CS+PS = ,3 Επειδή το εξωτερικό κόστος είνι (φού έχει πλήρως ενσωµτωθεί στο κόστος πργωγής µέσω του φόρου), το κθρό όφελος είνι ,3, δηλ. υξάνετι κτά ,4 7
8 Θεώρηµ Coase O R. Coase δηµοσίευσε το 196 µί εργσί (γι την οποί βρβεύτηκε µε Νόµπελ Οικονοµικών των 1991), στην οποί ποδεικνύει ότι: «σε περίπτωση ρύπνσης σε ένν πόρο ελεύθερης πρόσβσης, ν πρχωρηθεί το δικίωµ ιδιοκτησίς σε οποιοδήποτε πό τ δύο µέρη (τον πργωγό ή τον ποδέκτη της ρύπνσης) θ νπτυχθεί υτόµτ µηχνισµός συνλλγής που θ οδηγήσει στο άριστο επίπεδο ρύπνσης» Θεώρηµ Coase Το θεώρηµ υποστηρίζει ότι τ δικιώµτ δεν νήκουν σε εκείνον στον οποίο τ πρχώρησε το δίκιο,, λλά σε εκείνον που τ ξιολογεί (τ θέλει) ) περισσότερο κι είνι πρόθυµος ν τ γοράσει (εφόσον φυσικά µπορεί ). Η γορά κθορίζει την κτνοµή των δικιωµάτων, λλά το δίκιο µπορεί ν επηρεάσει τη δινοµή του πλούτου προσδιορίζοντς σε ποιον νήκει κτρχήν το δικίωµ. 8
9 Πρδοχές θεωρήµτος Ο ριθµός των συνλλσσόµενων είνι µικρός, έτσι ώστε ν µπορέσει ν υπάρξει συνεύρεση κι κθορισµός του ντιτίµου Το κόστος συνλλγής είνι µικρό, έτσι ώστε ν µην ποθρρύνοντι οι συνλλσσόµενοι. Κριτική κι υπεράσπιση Κριτική: Οι δύο πρδοχές δεν είνι εύκολο ν επιτευχθούν στην πράξη Ή ρχή Ο ρυπίνων πληρώνει πρβιάζετι, κθώς γίνετι ποδεκτή η δυντότητ ν πληρώνει ο θιγόµενος γι ν περιορίσει την περιβλλοντική υποβάθµιση που υφίσττι, ενθρρύνοντς τις ρυπίνουσες δρστηριότητες Υπεράσπιση: Ο στόχος του θεωρήµτος είνι ν νδείξει τη σηµσί των δικιωµάτων ιδιοκτησίς των περιβλλοντικών πόρων κι τη συµβολή του µηχνισµού της γοράς στην ποδοτική χρήση τους. 9
10 Έστω ότι η πργωγή ενός προϊόντος επιφέρει, λόγω ρύπνσης, οφέλη σε µι επιχείρηση κι κόστη γι το κοινωνικό σύνολο Συνολικό ιδιωτικό όφελος = 2*1/2 = Η επιχείρηση θ επιδιώξει πργωγή που επιφέρει 2 µονάδες ρύπνσης, προκειµένου ν µεγιστοποιήσει το όφελός της. 1
11 Συνολικό κοινωνικό κόστος = 2*1/2 = Σε υτό το ύψος της πργωγής, όµως, µεγιστοποιείτι κι το κοινωνικό κόστος, φού εκλύετι η µέγιστη ποσότητ ρύπων Το βέλτιστο ύψος της πργωγής, στο οποίο µεγιστοποιείτι το κθρό όφελος, είνι 1 µονάδες ρύπνσης. Πώς θ επιτευχθεί σύµφων µε το θεώρηµ Coase; 11
12 Περίπτωση 1η: Η κοινωνί έχει τ «δικιώµτ» του πόρου κι ποφσίζει πόση υποβάθµιση επιτρέπει Αν ο πργωγός δεχτεί ν πληρώσει 2, τότε θ θελήσει ν πράγει ποσότητ τουλάχιστον 16 µονάδων ρύπνσης, ενώ η κοινωνί θ δεχτεί πργωγή το πολύ 4 µονάδων. 12
13 Αν ο πργωγός δεχτεί ν πληρώσει 4, τότε θ θελήσει ν πράγει τουλάχιστον 12 µονάδες ρύπνσης, ενώ η κοινωνί θ δεχτεί πργωγή το πολύ 8 µονάδων Η επιχείρηση έχει Έξοδ ρύπνσης: 5. Έσοδ: 75. Όφελος (κέρδος): 25. Η κοινωνί έχει Κόστος ρύπνσης: 25. Έσοδ πό πληρωµές: 5. Όφελος (κέρδος): 25. Αν ο πργωγός δεχτεί ν πληρώσει 5, τότε θ θελήσει ν πράγει ποσότητ 1 µονάδων ρύπνσης, η οποί είνι ποδεκτή πό την κοινωνί. Στο σηµείο υτό κι οι δύο θ µεγιστοποιήσουν τ οφέλη τους. 13
14 Περίπτωση 2η: Ο πργωγός έχει τ «δικιώµτ» του πόρου κι ποφσίζει πόση πργωγή θ έχει κι εποµένως κι πόση ρύπνση θ δηµιουργήσει Αν η κοινωνί δεχτεί ν πληρώσει 2, τότε θ θελήσει ν µειωθεί η πργωγή της ρύπνσης στο επίπεδο των 4 µονάδων, λλά ο πργωγός θ περιορίσει την πργωγή το πολύ σε 16 µονάδες. 14
15 Αν η κοινωνί δεχτεί ν πληρώσει 4, τότε θ θελήσει ν µειωθεί η πργωγή ρύπων στο επίπεδο των 8 µονάδων, λλά ο πργωγός θ περιορίσει την πργωγή το πολύ σε 12 µονάδες Η επιχείρηση έχει Έσοδ πό κοινωνί: 5. Έχσε έσοδ πό πωλήσεις: 25. Όφελος (κέρδος): 25. Η κοινωνί έχει Αποφυγή ρύπνσης: 75. Πληρωµές: 5. Όφελος (κέρδος): 25. Αν η κοινωνί δεχτεί ν πληρώσει 5, τότε θ θελήσει ν µειώσει την πργωγή ρύπων στην ποσότητ των 1 µονάδων, η οποί είνι ποδεκτή πό τον πργωγό. Στο σηµείο υτό κι οι δύο θ µεγιστοποιήσουν τ οφέλη τους. 15
16 Α = 25. Ζ = 25. Β = 25. Ε = 25. Γ = 25. = Τι επιτυγχάνουν τ δύο µέρη; 1η περίπτωση Κοινωνί Επιχείρηση Αρχική θέση Ρύπνση Οφέλη 5. Έσοδ 5. Πλήρωσε 1. Μονάδες ρύπνσης Τελική θέση 25. Όφελος µετά την πόδοση του κόστους της υπολειπόµενης ρύπνσης Βελτίωση θέσης Ρύπνση Έσοδ πό πργωγή 25. Όφελος (κέρδος) µονάδες (1 δηµιουργήθηκν λλά η ζηµιά ποκτστάθηκε) 16
17 Κοινωνί 2η περίπτωση Επιχείρηση Αρχική θέση 1.. Κόστος ρύπνσης 1.. Οφέλη 5. Πληρωµές 5. Έλβε 75. Μείωση του κόστους ρύπνσης 25. Υπολειπόµενο κόστος Τελική θέση 75. Πληρωµές + Υπολ. κόστη Βελτίωση θέσης Μείωση Ρύπνσης µονάδες (1. ποµένουν) 25. Έχσε πό µείωση πργωγής 75. Υπολειπόµενο όφελος Όφελος (κέρδος + πληρωµές) 17
Το υπόδειγµα Άριστης Οικονοµικής Μεγέθυνσης µε Παραγωγικές Εξωτερικότητες Κεφαλαίου (Romer-type externalities)
Το υπόδειγµ Άριστης Οικονοµικής Μεγέθυνσης µε Πργωγικές Εξωτερικότητες Κεφλίου Romer-ype exernales Α. Αποκεντρωµένη Οικονοµί Υποθέστε µί κλειστή οικονοµί η οποί πρτίζετι πό πλήθος νοικοκυριών κι πλήθος
Διαβάστε περισσότεραΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000
ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ερινό Εξάµηνο 1999-2000, 1 Ιουνίου 2000 Α Οδηγίες: Απντήστε όλες τις ερωτήσεις. Ν επιστρέψετε τ θέµτ. 1. (65 µόρι) ίνετι ο κόλουθος πίνκς πιτούµενων
Διαβάστε περισσότεραΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET14: ΤΟΜΕΑΚΗ ΣΥΝΘΕΣΗ ΑΠΑΣΧΟΛΗΣΗΣ
ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης κτγράφει τη σύνθεση της πσχόλησης νά περιφέρει κι ειδικότερ την ποσοστιί κτνομή κτά τομέ πργωγής (πρωτογενής, δευτερογενής, τριτογενής) κθώς
Διαβάστε περισσότερα1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.
) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος
Διαβάστε περισσότεραEI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα
EI.3 ΛΕΟΝΑΣΜΑΤΑ.Αξί κτνάλωσης.λεόνσμ κτνλωτή 3.Κόστος προμηθευτή 4.λεόνσμ προμηθευτή 3.Συνολικό πλεόνσμ. ργμτική ξί (Χρησιμότητ) της κτνάλωσης Η ντίστροφη συνάρτηση ζήτησης: = () έχει κτρχήν την γνωστή
Διαβάστε περισσότεραµε Horner 3 + x 2 = 0 (x 1)(x
998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (
Διαβάστε περισσότεραΔιαχείριση Περιβάλλοντος - Νομοθεσία
Διαχείριση Περιβάλλοντος - Νομοθεσία Ενότητα 5: Περιβαλλοντική Οικονομία Δ. Καλιαμπάκος - Δ. Δαμίγος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό
Διαβάστε περισσότεραMicro-foundations of macroeconomics (or Το υπόδειγμα Άριστης Οικονομικής Μεγέθυνσης)
Miro-foundaions of maroeonomis (or Το υπόδειγμ Άριστης Οικονομικής Μεγέθυνσης) Α. Αποκεντρωμένη Οικονομί Υποθέστε μί κλειστή οικονομί η οποί πρτίζετι πό πλήθος όμοιων νοικοκυριών κι πλήθος όμοιων επιχειρήσεων.
Διαβάστε περισσότεραΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ
ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017
ΔΙΑΓΩΝΙΜΑ ΕΚΠ. ΕΤΟΥ 2017-2018 ΑΠΑΝΤΗΕΙ ΔΙΑΓΩΝΙΜΑΤΟ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. ) ωστό β) ωστό γ) Λάθος δ)ωστό ε) Λάθος Α2. γ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. Το εισόδημ των κτνλωτών.
Διαβάστε περισσότεραΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
Διαβάστε περισσότεραιάλεξη 2 Βασικά ερωτήµατα 12/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµ Οικονοµικών Επιστηµών Ακδηµϊκό έτος 2016-17 ιάλεξη 2 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διβάζουμε κεφ. 4 πό Μ. Χλέτσο κι σημειώσεις στο eclass) Αντωνισμός, οικονομική
Διαβάστε περισσότεραΘεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός
Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon
Διαβάστε περισσότεραΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.
ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.
Διαβάστε περισσότεραΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ
Κεφάλιο 9 ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ Εισγωγή Στην νζήτηση γι τους προσδιοριστικούς πράγοντες της οικονοµικής µεγέθυνσης, στ υποδείγµτ µε εξωτερικές οικονοµίες δόθηκε ιδιίτερο βάρος στις τέλειες
Διαβάστε περισσότεραΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση
Διαβάστε περισσότεραν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για
165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι
Διαβάστε περισσότεραΣχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων
Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΤΜΗΜΤΡΧΗΣ : Δ. ΓΡΟΥΖΗΣ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕΣ : Ι.ΖΡΦΕΤ ΤΗΛ.210-3332864 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗΣ, ΝΤΓΩΝΙΣΤΙΚΟΤΗΤΣ, ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ 2013 ΦΟΡΕΣ : ΠΟΚΕΝΤΡΩΜΕΝΗ ΔΙΟΙΚΗΣΗ
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.
Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότερα3.3 Άριστο Επίπεδο Αποθεµάτων
3.3 Άριστο Επίπεδο Αποθεµάτων - ο λογισµός της επιχείρησης εκτείνετι σε δύο χρονικές περιόδους. - έχει την δυντότητ ν δηµιουργήσει ποθέµτ την πρώτη περίοδο τ οποί θ πουλήσει την δεύτερη. - Η πόφση πργωγής
Διαβάστε περισσότεραΜΕΡΟΣ ΙI ΥΠΟ ΕΙΓΜΑΤΑ ΕΝ ΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ
ΜΕΡΟΣ ΙI ΥΠΟ ΕΙΓΜΑΤΑ ΕΝ ΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 7 ΑΝΘΡΩΠΙΝΟ ΚΕΦΑΛΑΙΟ Εισγωγή Στ επόµεν Κεφάλι η νάλυση θ επικεντρωθεί στην κτηγορί υποδειγµάτων που ποκλούντι υποδείγµτ ενδογενούς οικονοµικής
Διαβάστε περισσότεραΚεφάλαιο 15 Ένα Νεο Κεϋνσιανό Υπόδειγµα µε Περιοδικό Προκαθορισµό των Ονοµαστικών Μισθών
Γιώργος Αλογοσκούφης, Δυνµική Μκροοικονοµική, Αθήν 2016 Κεφάλιο 15 Έν Νεο Κεϋνσινό Υπόδειγµ µε Περιοδικό Προκθορισµό των Ονοµστικών Μισθών Στο κεφάλιο υτό νλύουµε έν ενλλκτικό νέο κεϋνσινό υπόδειγµ µκροοικονοµικών
Διαβάστε περισσότεραΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ Ενότητα 11
νοικτά καδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΟΙΚΗΣΗ ΠΡΓΩΓΗΣ Ενότητα 11: Διάταξη Παραγωγής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Διαβάστε περισσότεραΕρωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης
Ερωτήσεις θεωρίς βσισμένες στο βιβλίο των μθημτικών της Γ τάξης 1ο ΕΠΑΛ ΣΑΛΑΜΙΝΑΣ 27 Απριλίου 29 2 Μθημτικά Γ Τάξης 1. Τι είνι πληθυσμός, άτομο κι μέγεθος ενός πληθυσμού; Πληθυσμός ονομάζετι το σύνολο
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου
Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της
Διαβάστε περισσότεραΆτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN
Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.
Διαβάστε περισσότεραΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ
ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονοµικής µεγέθυνσης θ ξεκινήσει εξετάζοντς το πιο πλό δυνµικό υπόδειγµ
Διαβάστε περισσότερα1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.
995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΤΜΗΜ: ΚΤΡΤΙΣΗ ΠΡΟΓΡΜΜΤΟΣ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ ΠΛΗΡΟΦΟΡΙΕΣ :. ΠΕΤΤ ΤΗΛ.210-3332937 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΝΥΤΙΛΙΣ ΚΙ ΤΟΥΡΙΣΜΟΥ ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ ΠΡΟΓΡΜΜ ΔΗΜΟΣΙΩΝ
Διαβάστε περισσότεραΑλγόριθµοι Άµεσης Απόκρισης
Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης
Διαβάστε περισσότεραB Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m.
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Πνεπιστήµιο Αθηνών Εργστήριο Φυσικών Επιστηµών, Τεχνολογίς, Περιβάλλοντος Μρτίου 008 Θεωρητικό Μέρος Θέµ o Λυκείου Συνοπτικές λύσεις των θεµάτων.
Διαβάστε περισσότεραQ T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου.
Ο 1 ος ΝΟΜΟΣ ΤΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ-1 σχετίζει τη µετβολή της θερµοκρσίς ενός ερίου µετηµετφορά ενέργεις µετξύ του ερίου κι του περιβάλλοντός του κι το πργόµενο/ποδιδόµενο έργο Q U W Q * *
Διαβάστε περισσότεραρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό
Διαβάστε περισσότεραΗ συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε
Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση
Διαβάστε περισσότεραΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Κρμάνος Α.Κ.*, Γκόγκος Σ. κι Ππδόπουλος Α.Μ. Εργστήριο Μετάδοσης Θερμότητς κι Περιβλλοντικής Μηχνικής, Τμήμ Μηχνολόγων Μηχνικών, Αριστοτέλειο
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΤΜΗΜΤΡΧΗΣ : Δ. ΓΡΟΥΖΗΣ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕΣ : Ε. ΚΟΡΔΩΣΗ ΤΗΛ.210-3332939/e.kordosi@mnec.gr ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗΣ, ΝΤΓΩΝΙΣΤΙΚΟΤΗΤΣ ΚΙ ΝΥΤΙΛΙΣ ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ
Διαβάστε περισσότεραγ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς :
Α) Μετάφρση Έγινε, λοιπόν, φνερό ότι πρέπει ν ορίσουµε νόµους γι την πιδεί κι ότι πρέπει ν την κάνουµε ίδι γι όλους. Ποιος όµως θ είνι ο χρκτήρς υτής της πιδείς κι µε ποιον τρόπο θ πρέπει ν διφύγουν την
Διαβάστε περισσότεραΥΠΟΧΡΕΩΣΕΙΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΙΑΦΑΝΕΙΑΣ ΣΤΗΝ ΚΕΦΑΛΑΙΑΓΟΡΑ
ΥΠΟΧΡΕΩΣΕΙΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΙΑΦΑΝΕΙΑΣ ΣΤΗΝ ΚΕΦΑΛΑΙΑΓΟΡΑ 1 γ Σε ποι πό τις πρκάτω περιπτώσεις δεν πιτείτι η έκδοση Ενημερωτικού Δελτίου; Προσφορά κινητών ξιών η οποί, μετξύ άλλων, πευθύνετι κι σε ειδικούς
Διαβάστε περισσότεραΑ5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.
Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142.
ΑΝΑΡΤΗΤΕΑ Λιβδειά 24 04-2015 Αριθ Πρωτ: 10259 ΑΠΟΣΠΑΣΜΑ Από το πρκτικό της ριθμ15-11 ης Συνεδρίσης της Οικονομικής Επιτροπής Δήμου Λεβδέων Αριθμός πόφσης : 142 Περίληψη Εκθεση ποτελεσμάτων εκτέλεσης προϋπολογισμού
Διαβάστε περισσότεραΔΕΥΤΕΡΟΓΕΝΗΣ ΔΙΑΠΡΑΓΜΑΤΕΥΣΗ ΚΑΙ ΕΚΚΑΘΑΡΙΣΗ ΣΥΝΑΛΛΑΓΩΝ
1 γ ΔΕΥΤΕΡΟΓΕΝΗΣ ΔΙΑΠΡΑΓΜΑΤΕΥΣΗ ΚΑΙ ΕΚΚΑΘΑΡΙΣΗ ΣΥΝΑΛΛΑΓΩΝ Ποι πό τ κόλουθ χρκτηριστικά ισχύουν γι τις οργνωμένες γορές; I. Αποτελούν πολυμερή συστήμτ συνλλγών. II. Η λειτουργί τους διέπετι πό κνόνες που
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού
Διαβάστε περισσότεραΠΕΡΙΛΗΨΗ Λήψη απόφασης για έγκριση και διάθεση πιστώσεων προϋπολογισμού έτους 2015.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΠΟΣΠΑΣΜΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ Από το πρκτικό της με ριθμό 29/205 ΔΗΜΟΣ ΑΓ. ΔΗΜΗΤΡΙΟΥ Συνεδρίσης της Οικονομικής Επιτροπής ΑΡΙΘΜΟΣ ΑΠΟΦΑΣΗΣ: 233/205 Γρφείο : Οικονομικής Επιτροπής ΑΝΑΡΤΗΤΕΑ
Διαβάστε περισσότεραΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n
ΣΕΙΡΕΣ Έστω. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ μι κολουθί πργμτικών ριθμών. Η κολουθί ( σ ) με γενικό όρο: σ + + + i ονομάζετι κολουθί μερικών θροισμάτων της κολουθίς ( ), ή σειρά των ριθμών,,,, κι σημειώνετι με i + + +
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε
Διαβάστε περισσότεραΘεωρήματα, Προτάσεις, Εφαρμογές
Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σττιστική είνι ο κλάδος των µθηµτικών που συγκεντρώνει στοιχεί τ τξινοµεί κι τ προυσιάζει σε κτάλληλη µορφή ώστε ν µπορούν ν νλυθούν κι ν ερµηνευτούν. Πληθυσµός είνι το σύνολο των
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,
Διαβάστε περισσότεραΘΕΜΑ: «Αίτημα συνάντησης για το Πράσινο Ταμείο και την ολοκλήρωση του πολεοδομικού σχεδιασμού για τους Δήμους»
ΑΘΗΝΑ 30/01/2017 Αριθμ. Πρωτ.: 341 ΚΕΝΤΡΙΚΗ ΕΝΩΣΗ ΔΗΜΩΝ ΕΛΛΑΔΑΣ κ. Γεώργιο Στθάκη Υπουργό Περιβάλλοντος κι Ενέργεις ΘΕΜΑ: «Αίτημ συνάντησης γι το Πράσινο Τμείο κι την ολοκλήρωση του πολεοδομικού σχεδισμού
Διαβάστε περισσότεραπου έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
Διαβάστε περισσότεραΙΔΙΩΤΙΚΟ ΣΥΜΦΩΝΗΤΙΚΟ ΚΑΘΑΡΙΣΜΟΥ 11 ΚΤΙΡΙΩΝ ΓΙΑ 3 ΜΗΝΕΣ
ΙΔΙΩΤΙΚΟ ΣΥΜΦΩΝΗΤΙΚΟ ΚΑΘΑΡΙΣΜΟΥ 11 ΚΤΙΡΙΩΝ ΓΙΑ 3 ΜΗΝΕΣ Σ Αθήν σήμερ 30 του μήν Μρτίου του έτους 2015 μετξύ των συμβλλομένων φ ενός μεν του ν.π.δ.δ. με επωνυμί «ΟΡΓΑΝΙΣΜΟΣ ΑΣΦΑΛΙΣΗΣ ΕΛΕΥΘΕΡΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ
Διαβάστε περισσότεραΠροτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών
Προτεινόµενες Ασκήσεις στ Στοιχεί δύο Ακροδεκτών πό το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργρη Πρόβληµ. Σ' έν πηνίο µε υτεπγωγή =5H το ρεύµ έχει τη µορφή του Σχ.. Σχεδιάστε την τάση στ άκρ του
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΤΜΗΜΤΡΧΗΣ : Δ. ΓΡΟΥΖΗΣ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕΣ : Ι.ΖΡΦΕΤ ΤΗΛ.210-3332864 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗΣ, ΝΤΓΩΝΙΣΤΙΚΟΤΗΤΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΦΟΡΩΝ ΚΙ ΔΙΚΤΥΩΝ ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΠΛΗΡΟΦΟΡΙΕΣ :. ΠΕΤΤ ΤΗΛ.210-3332937 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΝΥΤΙΛΙΣ ΚΙ ΤΟΥΡΙΣΜΟΥ ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ 2015 ΦΟΡΕΣ : ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΝΥΤΙΛΙΣ ΚΙ ΤΟΥΡΙΣΜΟΥ ΤΟΜΕΣ :
Διαβάστε περισσότεραΒιολογία Προσανατολισμού ΣΥΝΔΕΔΕΜΕΝΑ ΓΟΝΙΔΙΑ
ΣΥΝΔΕΔΕΜΕΝ ΓΟΝΙΔΙ Σημείωση: Τ συνδεδεμέν γονίδι νφέροντι στο ιλίο σε έγχρωμο πράθεμ στη σελίδ 80 του σχολικού ιλίου κι άσει του Φ.Ε.Κ. που νφέρει την εξετστέ ύλη, τ έγχρωμ πρθέμτ είνι εκτός εξετστές ύλης.
Διαβάστε περισσότεραΕπίλυση αποδεικτικών σχέσεων της Θερµοδυναµικής
Σηµειώσεις Χηµιής Θερµοδυνµιής/Β. Χβρεδάη Επίλυση ποδειτιών σχέσεων της Θερµοδυνµιής Συνοπτιά νφέροντι διάφοροι τρόποι προσέγγισης της επίλυσης σχέσεων της Θερµοδυνµιής. Θ πρέπει ν τονισθεί ότι οι νφερόµενες
Διαβάστε περισσότερα1. Υποκατάσταση συντελεστών στην παραγωγή
Ε9 ΕΛΑΣΤΙΚΟΤΗΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ.Υποκτάστση συντελεστών στην πργωγή 2.Ομογενείς συνρτήσεις πργωγής 3.Ελστικότητ υποκτάστσης συντελεστών 4.Στθερή ελστικότητ υποκτάστσης 5.Πργωγή στθερής ελστικότητς υποκτάστσης
Διαβάστε περισσότεραΠραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους
0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.
Διαβάστε περισσότεραV v= (1) n. i V. = n. (2) i (3) (4) (5) (7) (8) (9) = (6)
Μερικός γρµµοµορικός όγκος Ο όγκος είνι µι κύρι εκττική ιδιότητ θερµοδυνµικών συστηµάτων. Γρµµοµορικός όγκος δηλ. ο όγκος νά γρµµοµόριο είνι η ενττική ιδιότητ συστήµτος ενός συσττικού η οποί ορίζετι πό
Διαβάστε περισσότερα39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση
39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6
Διαβάστε περισσότεραf(x)dx = f(c)(b a) f(t)dt = f(c)(x a). c(x) a 1 = x a 2
Σελίδ 1 πό 10 Περίληψη Μερικά συµϖεράσµτ ϖάνω στ θεωρήµτ µέσης τιµής του διφορικού κι ολοκληρωτικού λογισµού Μϖάµϖης Στεργίου Σεϖτέµβριος 009 Το ϖρκάτω άρθρο γράφηκε µε φορµή τ όσ νφέροντι στις δύο σηµντικές
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))
Διαβάστε περισσότεραβ ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
Διαβάστε περισσότεραΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ
34175 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 2793 17 Οκτωβρίου 2014 ΠΕΡΙΕΧΟΜΕΝΑ ΑΠΟΦΑΣΕΙΣ Έγκριση κοινού Προγράμμτος Μετπτυχικών Σπουδών των Τμημάτων Ηλεκτρονικών
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ
ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς
Διαβάστε περισσότεραΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ
ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς
Διαβάστε περισσότεραΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ
ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη
Διαβάστε περισσότεραEIII.7 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ Ι
EIII.7 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ Ι.Κέρδος ντγωνιστικής πργωγής.κερδοφορί 3.Προσφορά προιόντος.κέρδος μονοπωλίου 5.Κέρδος με συντελεστή πργωγής.ζήτηση γθών στην κτνάλωση 7.Μέγιστο κέρδος. Κέρδος ντγωνιστικής
Διαβάστε περισσότερα3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ
ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό
Διαβάστε περισσότεραΟ Έλεγχος των Οικονομικών Κύκλων στις Χώρες της Ευρωπαϊκής Ένωσης.
Τεχνολογικό Εκπιδευτικό Ίδρυμ Κρήτης Σχολή Διοίκησης κι Οικονομίς Τμήμ Χρημτοοικονομικής κι Ασφλιστικής ΘΕΜΑ: Ο Έλεγχος των Οικονομικών Κύκλων στις Χώρες της Ευρωπϊκής Ένωσης. Πτυχική Εργσί: Μυρομμάτη
Διαβάστε περισσότεραΑπαντήσεις στο 1 ο Διαγώνισμα Α.Ο.Θ. Γ Λυκείου Θ Ε Μ Α Τ Α
Θέμα.1. Λάθος.2. Λάθος.3. Λάθος.4. Λάθος.5. Σωστό.6. Σωστό.7. Το Β.8. Το.9. Το Δ.10.Το Γ παντήσεις στο 1 ο Διαγώνισμα.Ο.Θ. Γ Λυκείου Θ Ε Μ Τ Ο Θ Θέμα Β Β.1. ΣΕΛΙΔΕΣ 23-24 Β.2. ΣΕΛΙΔ 53 Β.3. ΣΕΛΙΔ 93 Β.4.
Διαβάστε περισσότεραΤα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
Διαβάστε περισσότεραΥλοποίηση εφαρμογής πολυμέσων
Ασκήσεις Πολυμέσων 47 8 η 9 η Διδκτική Ενότητ λοποίηση εφρμογής πολυμέσων Προλεπόμενες διδκτικές ώρες: 4 έξεις Κλειδιά Ασκήσεις νθεώρηση έργου εσωτερική ξιολόγηση ξιολόγηση τύπου "άλφ" κλείδωμ ξιολόγηση
Διαβάστε περισσότεραΠαρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ
Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΔΙΑΙΤΗΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ 2010-2011
ΕΡΡΙΚΟΣ ΝΤΥΝΝ ΕΡΓΤΟΤΕΧΝΙΚ ΟΥ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΧΕΣΗ ΙΔΙΩΤΙΚΟΥ ΔΙΚΙΟΥ ΣΤΟ ΝΥΣΤΘΜΟ ΚΡΗΤΗΣ ΕΡΓΖΟΜΕΝΩΝ ΣΤΟΝ ΕΟΜΜΕΧ ΕΡΓΟΣΤΣΙΟ Γ. ΜΡΙΝΣ ΤΗΣ Σ NEXANS ΕΛΛΣ.Β.Ε. ΕΝΡΞΗ /ΚΙ ΔΙΡΚΕΙ 01/09/2009 09/12/2009 3,5% ΣΤΟΥΣ ΒΣΙΚΕΣ
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων
ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου
Διαβάστε περισσότεραΤο υπόδειγµα Άριστης Οικονοµικής Μεγέθυνσης µε ηµόσια Υποδοµή (Barro-type externalities)
Απουχίες γοράς (marke failures κι οικονοµική πολιική Το υπόδειγµ Άρισης Οικονοµικής Μεγέθυνσης µε ηµόσι Υποδοµή (Barro-ype exernaliies Α. Αποκενρωµένη Οικονοµί Υποθέσε µί κλεισή οικονοµί η οποί πρίζει
Διαβάστε περισσότερα( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:
Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο
Διαβάστε περισσότερα(µετά την µελέτη του αντιστοίχου κεφαλαίου να είστε σίγουροι ότι καταλάβατε τις ακόλουθες έννοιες.)
Βσικές έννοιες της Θεωρίς ιγνίων. µετά την µελέτη του ντιστοίχου κεφλίου ν είστε σίγουροι ότι κτλάβτε τις κόλουθες έννοιες.. Τ στοιχεί ου οτελούν έν ίγνιο είνι : Το σύνολο των ικτών φορέων οφάσεων...n.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΠΛΗΡΟΦΟΡΙΕΣ :.ΜΡΙΝΟΥ ΤΗΛ.210-3332926 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ 2015 ΦΟΡΕΣ : ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΤΟΜΕΣ : ΠΕΡΙΦΕΡΕΙΚ ΠΡΟΓΡΜΜΤ ΥΠΟΤΟΜΕΣ
Διαβάστε περισσότεραΑριστοτέλειο Πνεπιστήµιο Θεσσλονίκης Πολυτεχνική Σχολή Τµήµ Πολιτικών Μηχνικών Μετπτυχικό πρόγρµµ σπουδών «Αντισεισµικός Σχεδισµός Τεχνικών Έργων» Μάθηµ: «Αντισεισµικός Σχεδισµός Θεµελιώσεων, Αντιστηρίξεων
Διαβάστε περισσότεραΘέρµανση Ψύξη ΚλιµατισµόςΙΙ
Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους
Διαβάστε περισσότερα1. Δίνεται το τριώνυμο f x 2x 2 2 λ
0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές
Διαβάστε περισσότεραΟδηγίες, στήριξη από ICT.:
Τίτλος: Ώσμωση Θέμτ: Όσμωση, γρμμομόρι, συλλογή δεδομένων κι γρφική πράστση. Διάρκει: 120λεπτά Ηλικί: 14-16 Διφοροποίηση: Διφορετικά επίπεδ βοήθεις κι διφορετικές δρστηριότητες. Οδηγίες, στήριξη πό ICT.:
Διαβάστε περισσότερα1 Δύο εισροές-μία εκροή
Ε8 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ II 1.Δύο εισροές-μί εκροή.πργωγή τύπου Cobb-Douglas 3.Δύο εκροές-μί εισροή 4.Συμφέρουσες τιμές 5.Διφοροποίηση τιμών 6.Ελστικότητες στην διφοροποίηση τιμών 7.Εξωτερικότητες 8.Εισροές-Εκροές
Διαβάστε περισσότεραΘεωρήματα και προτάσεις
Σελίδ 1 πό 10 Περίληψη Μερικά συμπεράσμτ πάνω στ θεωρήμτ μέσης τιμής του διφορικού κι ολοκληρωτικού λογισμού Μπάμπης Στεργίου Σεπτέμβριος 009 Το πρκάτω άρθρο γράφηκε με φορμή τ όσ νφέροντι στις δύο σημντικές
Διαβάστε περισσότερα( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
Διαβάστε περισσότεραΓ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑ: Διχείριση της Διδκτές-Εξετστές ύλης των Μθημτικών της Γ τάξης Ημερησίου Γενικού Λυκείου κι της Δ τάξης Εσπερινού Γενικού Λυκείου γι το σχ. έτος 6-7 Μετά πό σχετική εισήγηση του Ινστιτούτου Εκπιδευτικής
Διαβάστε περισσότεραα β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α
ΟΡΙΖΟΥΣΕΣ β Έστω πίνκς Α Χ = γ δ Σε κάθε τετργωνικό πίνκα ντιστοιχίζοµε ένν πργµτικό ριθµό τον οποίο ονοµάζοµε ορίζουσ του πίνκ κι ορίζετι ως β Α = = δ β γ Η έννοι της ορίζουσς είνι νγκί προκειµένου ν
Διαβάστε περισσότεραΕΜΠΟΡΙΟ - ΑΝΤΙΠΡΟΣΩΠΕΙΕΣ - ΕΠΕΞΕΡΓΑΣΙΕΣ ΑΓΡΟΤΙΚΩΝ & ΚΤΗΝΟΤΡΟΦΙΚΩΝ ΠΡΟΪΟΝΤΩΝ
ΣΠΟΡΟΙ ΠΑΤΑΤΑΣ Τώρ Ολοκληρωμένες Λύσεις κι στη Γεωργί... 2ο ΧΛΜ. ΕΘΝ. ΟΔΟΥ ΑΓΡΙΝΙΟΥ - ΙΩΑΝΝΙΝΩΝ, τηλ.: 26410 47914, 26410 47918 - fax: 26410 55840 web site: www.karvelasavee.gr e-mail: karvelas1@ath.forthnet.gr,
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ
ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε
Διαβάστε περισσότεραsin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx
I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο
Διαβάστε περισσότεραΓιώργος Χ. Παπαδημητρίου. 8 Ιουλίου 2011
Λογισμός των Μετβολών Γιώργος Χ. Ππδημητρίου 8 Ιουλίου 2011 Οι προύσες σελίδες είνι μί χλρή εισγωγή στον λογισμό των μετβολών κι στις κυριότερες χρήσεις τους. Σκοπός τους είνι φ' ενός ν κλύψουν ρκετές
Διαβάστε περισσότεραΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ
ΤΜΗΜΤΡΧΗ : Δ. ΓΡΟΥΖΗ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕ :.ΜΡΙΝΟΥ ΤΗΛ.210-3332926 ΝΡΤΗΤΕ ΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗ ΚΙ ΝΤΓΩΝΙΤΙΚΟΤΗΤ ΠΛΤΕΙ ΥΝΤΓΜΤΟ, ΘΗΝ 2014 ΦΟΡΕ : ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗ ΚΙ ΝΤΓΩΝΙΤΙΚΟΤΗΤ
Διαβάστε περισσότερα