Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων"

Transcript

1 Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων που προσοµοιώνουν τη λειτουργί των φκών. () Συγκλίνων. () Αποκλίνων του λειτουργί είνι ο σχηµτισµός του ειδώλου ενός πργµτικού ντικειµένου. Τέτοις µορφής είδωλ είνι συνήθως µεγλύτερ πό τ ντικείµεν. Αν κι οι πλειοψηφί των φκών είνι κτσκευσµένη πό πλό γυλί, ειδικές κτηγορίες φκών κτσκευάζοντι πό άλλ διφνή υλικά, όπως γι πράδειγµ πλστικό ή quartz. Γι ν γίνει κτνοητή η ρχή άσει της οποίς λειτουργεί ένς φκός, φντστείτε µι σειρά πό πρίσµτ τοποθετηµέν όπως στο Σχήµ. Στην πρώτη περίπτωση τ πρίσµτ διθλούν τις προσπίπτουσες πράλληλες κτίνες κι τις συγκλίνουν έτσι που ν εστιάσουν στο σηµείο. Στη δεύτερη περίπτωση οι κτίνες ποκλίνουν κι εµφνίζοντι ως ν προέρχοντι πό έν κοινό σηµείο ( ). Κι στις δυο περιπτώσεις η µέγιστη εκτροπή των κτίνων εµφνίζετι στ πρίσµτ που ρίσκοντι στ άκρ των διτάξεων, ενώ δεν πρτηρείτι εκτροπή των κεντρικών κτίνων λόγω του ότι το κεντρικό πρίσµ έχει τις έδρες του πράλληλες. Στην πργµτικότητ ο φκός δεν ποτελείτι πό οµάδ πρισµάτων, λλά πό συ- µπγές κοµµάτι γυλιού του οποίου οι επιφάνειες έχουν σχήµ σφιρικό. Στο Σχήµ 2 προυσιάζοντι σε τοµή οι δυο σικοί τύποι φκών. Οι τρεις πρώτοι φκοί που είνι πιο πχείς στο κέντρο κι λεπτότεροι στ άκρ κλούντι συγκλίνοντες ή θετικοί φκοί, ενώ οι υπόλοιποι τρεις που είνι πιο λεπτοί στο κέντρο κι πχύτεροι στ άκρ κλούντι ποκλίνοντες ή ρνητικοί φκοί. Συνήθως οι χρησιµοποιούµενοι φκοί είνι λεπτοί, δηλ. το πάχος τους είνι µικρό σχετικά µε το άνοιγµά τους, ή Μήτσου Γ.

2 ισοδύνµ, οι προσπίπτουσες στον φκό κτίνες ρίσκοντι κοντά στον κύριο άξονά του. () (2) (3) () συγκλίνοντες φκοί () (2) (3) () ποκλίνοντες φκοί Σχήµ 2. Οι δυο σικοί τύποι φκών εστικό επίπεδο Κ Ο δευτερεύων άξονς Κ r 2 κύριος άξονς εστικό επίπεδο Σχήµ 3. Βσικά στοιχεί του φκού () () (γ) Τ στοιχεί που χρκτηρίζουν έν πλό λεπτό φκό είνι τ πρκάτω (Σχήµ 3): Οι κτίνες κµπυλότητάς του r κι, που είνι οι κτίνες των σφιρικών επιφνειών του φκού. Στην περίπτωση που η µι επιφάνει είνι επίπεδη, η σχετική κτίν κµπυλότητς είνι. Ο κύριος άξονς που είνι η ευθεί που διέρχετι πό το κέντρο του φκού κι είνι κάθετη προς τις δυο πλευρές του στ σηµεί που τις συνντά (ενώνει δηλδή τ δυο κέντρ Κ, Κ 2 κµπυλότητς του φκού). Το οπτικό κέντρο Ο πό το οποίο διέρχε- τι ο κύριος άξονς (κάθε άλλη ευθεί που διέρχετι πό το οπτικό κέντρο χωρίς ν είνι κάθετη προς τις πλευρές του φκού - ποτελεί το δευτερεύοντ άξον). Η κύρι εστί που ρίσκετι επάνω στον κύριο άξον κι ορίζετι, γι µεν το συγκλίνοντ φκό, ως το σηµείο εκείνο που θ συγκλίνει µι δέσµη πράλληλων προς τον κύριο άξον κτίνων, γι δε τον ποκλίνοντ φκό ως το σηµείο πό το οποίο φίνετι ν ξεκινά µι δέσµη πράλληλων προς τον κύριο άξον κτίνων. Λόγω συµ- µετρίς, κάθε φκός προυσιάζει δυο εστίες, µι σε κάθε πλευρά του κι στην ίδι πόστση πό το οπτικό του κέντρο. Το εστικό επίπεδο που είνι κάθετο προς τον κύριο άξον του φκού κι διέρχετι πό την κύρι εστί. Πράλληλες κτίνες φωτός που προσπίπτουν στο φκό κι δεν είνι πράλληλες προς τον κύριο άξον, θ εστιάσουν σε κάποιο σηµείο (δευτερεύουσ εστί) που ρίσκετι επάνω στο εστικό ε- πίπεδο. πίσης, λόγω συµµετρίς, υπάρχουν δυο εστικά επίπεδ: έν εµπρός κι έν πίσω πό το φκό. Η εστική πόστση που είνι η πό- Μήτσου Γ. 2

3 στση µετξύ της κύρις εστίς κι του οπτικού κέντρου κι εξρτάτι πό την κ- µπυλότητ των επιφνειών του φκού κι πό το δείκτη διάθλσης του υλικού. Όσο µεγλύτερη είνι η κµπυλότητ των σφιρικών επιφνειών του φκού, τόσο µικρότερη θ είνι η εστική του πόστση. Αυτό ερµηνεύετι πό το γεγονός ότι µεγλύτερη κµπυλότητ των επιφνειών προκλεί µεγλύτερη εκτροπή των κτίνων που διέρχοντι πό το φκό κοντά στ άκρ του. Η οπτική ισχύς D που είνι το ντίστροφο της εστικής πόστσης. Στην τεχνολογί της φωτογρφίς κθώς κι σε ιοµηχνικές εφρµογές, ένς φκός χρκτηρίζετι πό την οπτική του ισχύ πρά πό την εστική του πόστση. ίνι κτνοητό ότι όσο µικρότερη είνι η εστική πόστση, τόσο ισχυρότερος είνι ο φκός ως προς την ικνότητ σύγκλισης των κτίνων. Ότν η εκφράζετι σε m η ισχύς δίνετι σε διοπτρίες, δηλ. dpt = m - Μι πολύ σική ρχή νφορικά µε τους φκούς είνι η ντιστροφή των κτίνων. Αν µι σηµεική πηγή φωτός τοποθετηθεί στο σηµείο (Σχήµ 3), οι φωτεινές - κτίνες που προσπίπτουν στο φκό θ διθλστούν σε µι δέσµη πράλληλων κτίνων που διδίδετι προς τ ριστερά. Κτά πρόµοιο τρόπο, στο Σχήµ 3γ, ν οι - κτίνες συγκλίνουν προς την εστί θ διθλστούν πό το φκό σε µι δέσµη πράλληλων κτίνων. Στ πρκάτω θ νφερθούµε στους λεπτούς φκούς, θεωρώντς τις προσπίπτουσες κτίνες ξονικές (δηλδή ότι σχηµτίζουν µικρή γωνί σε σχέση µε τον κύριο άξον). 2. Σχηµτισµός πργµτικού ειδώλου Ότν έν ντικείµενο τοποθετηθεί πό τη µι πλευρά ενός συγκλίνοντ φκού κι πίσω πό την κύρι εστί του τότε πό την άλλη πλευρά του φκού θ σχηµτιστεί έν πργµτικό είδωλο (Σχήµ 4). Ν σηµειώσουµε εδώ ότι όσο το - Β ντικείµενο πλησιάζει προς την εστί τόσο το είδωλό του θ µεγλώνει 2 (µεγέθυνση) κι τόσο πιο µκριά θ 3 Ο Α σχηµτίζετι πό το φκό. Το ντίθετο συµίνει ότν το ντικείµενο Α ποµκρύνετι πό την εστί, δηλδή το είδωλο µικρίνει κι σχη- Β µτίζετι πιο κοντά στο φκό. Σχήµ 4. Γρφικός προσδιορισµός της θέσης κι του µεγέθους ειδώλου Γενικά, ο προσδιορισµός της θέσης του ειδώλου γίνετι µε δυο τρόπους: πό τη γρφική σύνθεση των κτίνων κι ριθµητικά πό τον τύπο των λεπτών φκών + = () όπου κι οι ποστάσεις του ντικειµένου κι ειδώλου ντίστοιχ πό το φκό Μήτσου Γ. 3

4 Η γρφική µέθοδος προυσιάζετι στο Σχήµ 4. Θεωρούµε το φωτεινό ντικείµενο ΑΒ τοποθετηµένο επάνω στον κύριο άξον ενός συγκλίνοντ φκού κι πίσω πό την εστί του. Από το σηµείο Β του ντικειµένου ξεκινά άπειρο πλήθος κτίνων, όµως εδώ θ σχοληθούµε µε τις τρεις κύριες κτίνες, όπως ποκλούντι, των ο- ποίων οι διδροµή είνι γνωστή. Πιο συγκεκριµέν:. Η κτίν () που οδηγείτι πράλληλ προς τον κύριο άξον θ διθλστεί πό το φκό κι θ περάσει πό την κύρι εστί του φκού. 2. Η κτίν (2) που περνάει πό το κέντρο του φκού δεν θ διθλστεί, λόγω του ότι οι πλευρές του φκού στην περιοχή υτή είνι πράλληλες κι θ συνεχίσει χωρίς ν µετάλλει την πορεί της. 3. Η κτίν (3) που διέρχετι πό την εστί, λόγω της ρχής της ντιστροφής των κτίνων θ διθλστεί πράλληλ προς τον κύριο άξον του φκού. Οι πρπάνω κτίνες συνντώντι στο σηµείο Β που ποτελεί την κορυφή του ειδώλου Α Β. Όλες οι υπόλοιπες κτίνες που ξεκινούν πό το Β θ εστιάσουν στο ίδιο σηµείο Β. Το Α Β ποτελεί το πργµτικό είδωλο του ντικειµένου ΑΒ. Σε ντίθεση µε το φντστικό είδωλο, το πργµτικό προκύπτει πό την τοµή των φωτεινών κτίνων (κι όχι των προεκτάσεών τους) κι µπορεί ν πεικονιστεί σε πέτσµ. Η χρήση του τύπου των λεπτών φκών γι τον προσδιορισµό της θέσης του ειδώλου περιγράφετι µε το πρκάτω πράδειγµ: Τοποθετούµε ντικείµενο 6 cm εµπρός πό συγκλίνοντ φκό εστικής πόστσης = 2 cm. Αν επιλύσουµε τη Σχέση () ως προς θ έχουµε x 6x 2 = κι ντικθιστώντς τις γνωστές ποσότητες: = = 3cm 6 2 Το είδωλο εποµένως θ σχηµτιστεί σε πόστση 3 cm πό το φκό, ενώ το µέγεθός του µπορεί ν υπολογιστεί πό την πλή σχέση: µ έγεθος ειδώλου πόστση ειδώλου = ή µ έγεθος ντικειµ ένου πόστση ντικειµ ένου Μ = = (2) Ο λόγος κλείτι εγκάρσι γρµµική µεγέθυνση. Το ρνητικό πρόσηµο στην τελευτί σχέση σηµίνει ότι το είδωλο είνι νεστρµµένο. 3. Σχηµτισµός φντστικού ειδώλου Όπως προνφέρµε, το είδωλο που σχηµτίστηκε πό το φκό στο Σχήµ 4 είνι πργµτικό. Ως πργµτικά ορίζοντι τ είδωλ που µπορούν ν πεικονιστούν σε πέτσµ κι διµορφώνοντι πό την τοµή των κτίνων. Τ φντστικά είδωλ δεν είνι πργµτικά, δεν µπορούν ν πεικονιστούν σε πέτσµ κι διµορφώνοντι Μήτσου Γ. 4

5 Β Β Α Α Ο + = () Π Β Α 2 Α Β Ο Π + = () Σχήµ 5. () Το ντικείµενο είνι τοποθετηµένο µέσ στην εστί ενός συγκλίνοντ φκού. Το είδωλο που σχηµτίζετι είνι φντστικό, ορθό κι µεγλύτερο του ντικειµένου. () Το είδωλο που σχηµτίζετι πό ποκλίνοντ φκό είνι φντστικό, ορθό κι µικρότερο του ντικειµένου πό τις προεκτάσεις των κτίνων. Φντστικά είδωλ µπορούν ν σχηµτιστούν: () πό συγκλίνοντ φκό ν το ντικείµενο τοποθετηθεί κοντά στο φκό κι µέσ στην εστί κι () πό ποκλίνοντ φκό µε το ντικείµενο τοποθετηµένο σε οποιοδήποτε σηµείο. Το γεγονός ότι έν φντστικό είδωλο δεν µπορεί ν πεικονιστεί σε πέτσµ δεν σηµίνει ότι είνι κι νύπρκτο, έχει δηλδή συγκεκριµένη θέση στην οποί σχηµτίζετι κθώς κι συγκεκριµένο µέγεθος κι µπορεί ν πρτηρηθεί µε το µάτι, ν κοιτάξουµε µέσ πό το φκό. Στο Σχήµ 5 προυσιάζοντι τ διγράµµτ των κτίνων των δυο περιπτώσεων. Στην πρώτη περίπτωση (Σχήµ 5) ο φκός χρησιµοποιείτι ως µεγεθυντικός φκός. Οι φωτεινές κτίνες που ξεκινούν πό το σηµείο Β θ διθλστούν πό το συγκλίνοντ φκό, λλά όχι ρκετά γι ν εστιάσουν στο ίδιο σηµείο. Στο µάτι του πρτηρητή στο σηµείο Π φίνοντι ως ν προέρχοντι πό το σηµείο Β πίσω πό το φκό. Το σηµείο Β ποτελεί την κορυφή ενός φντστικού ειδώλου, ορθού κι µεγλύτερου του ντικειµένου. Στην περίπτωση υτή το είδωλο έχει σχηµτιστεί στην ί- δι πλευρά του φκού που ρίσκετι κι το ντικείµενο σε πόστση η οποί φέρει ρνητικό πρόσηµο (-). Η Σχέση εξκολουθεί ν ισχύει, λµάνοντς όµως υπόψη τη µετολή του πρόσηµου του, δηλδή Μήτσου Γ. 5

6 + = (3) Κτά τ άλλ, η γρµµική µεγέθυνση εκφράζετι πό τη Σχέση 2, η οποί όµως φέρει θετικό πρόσηµο λόγω του ότι το είδωλο είνι ορθό, δηλδή Μ = = (4) Στην περίπτωση του ποκλίνοντ φκού (Σχήµ 5) το είδωλο θ είνι πάντ φντστικό, πιο κοντά στο φκό κι µικρότερο σε µέγεθος πό το ντικείµενο. Στο µάτι του πρτηρητή στο σηµείο Π οι κτίνες φίνοντι ως ν προέρχοντι πό το σηµείο Β πίσω πό το φκό, λλά πολύ κοντά του. Γι τον προσδιορισµό της θέσης του ειδώλου πρτηρούµε ότι η κτίν που είνι πράλληλη προς τον κύριο άξον του φκού θ πρέπει ν διθλστεί κτά τέτοιο τρόπο ώστε ν εµφνίζετι ως ν προέρχετι πό το σηµείο ενώ η κτίν 2 που διέρχετι πό το οπτικό κέντρο Ο δεν ε- κτρέπετι. πειδή οι δυο υτές κτίνες συνντώντι στο Β, το είδωλο θ σχηµτιστεί εκεί. Στην περίπτωση του ποκλίνοντ φκού η Σχέση διµορφώνετι ως + = (5) ενώ η γρµµική µεγέθυνση δίνετι πό τη Σχέση 4. Στον πρκάτω πίνκ συνοψίζουµε όλες τις δυντές περιπτώσεις δηµιουργίς ειδώλων Πίνκς Φκός Θέση ντικειµένου ίδωλο Τύπος φκών Μεγέθυνση Συγκλίνων + > Συγκλίνων + = Συγκλίνων + < Αποκλίνων - πργµτικό νεστρµµένο πργµτικό νεστρµµένο Φντστικό ορθό Φντστικό ορθό + = = + = + = Μ = = Μ = = Μ = = 4. Τύπος των κτσκευστών των φκών Οι πράγοντες που διµορφώνουν την τιµή της εστικής πόστσης, κτά το στάδιο της κτσκευής ενός φκού, είνι οι κτίνες κµπυλότητς των επιφνειών του κθώς κι ο δείκτης διάθλσης του υλικού πό το οποίο θ κτσκευστεί. Όλ υτά τ µεγέθη συνδέοντι µετξύ τους µε τη σχέση: Μήτσου Γ. 6

7 = (n ) r (6) όπου n είνι ο δείκτης διάθλσης του υλικού κι r, (Σχήµ 3) οι κτίνες κµπυλότητς της πρώτης επιφάνεις (όπως προσπίπτει το φως) κι της πίσω επιφάνεις ντίστοιχ Η Σχέση 6 είνι γνωστή ως τύπος των κτσκευστών των φκών. Τ πρόσηµ των r, διµορφώνοντι σύµφων µε τ πρκάτω: Οι φωτεινές κτίνες προσπίπτουν στο φκό πό ριστερά Ότν οι κτίνες προσπίπτουν σε κυρτή επιφάνει, η κτίν κµπυλότητς της επιφάνεις έχει (+) πρόσηµο Ότν οι κτίνες προσπίπτουν σε κοίλη επιφάνει, η κτίν κµπυλότητς της επιφάνεις έχει (-) πρόσηµο Γι πράδειγµ, στην περίπτωση µφίκυρτου φκού (Σχήµ 2.) η r έχει (+) πρόσηµο κι η (-) πρόσηµο κι εποµένως η Σχέση 6 γίνετι = (n ) πίσης: r = (n ) r + Αν η µι επιφάνει του φκού είνι επίπεδη (περίπτωση επιπεδόκυρτου ή επιπεδόκοιλου φκού Σχήµ 2.2 κι 2.2 ντίστοιχ), τότε η κτίν κµπυλότητς είνι άπειρη (εν προκειµένω r = ) κι εποµένως η Σχέση 6 γίνετι = (n ) (περίπτωση επιπεδόκυρτου φκού) ή = (n ) + (περίπτωση επιπεδόκοιλου φκού) Αν κι οι δυο επιφάνειες του φκού είνι επίπεδες, ο φκός προυσιάζει άπειρη ε- στική πόστση ( = ). Μήτσου Γ. 7

Φυσική Εικόνας & Ήχου Ι (Ε)

Φυσική Εικόνας & Ήχου Ι (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου Ι (Ε) Ενότητα 3: Γενικά περί φακών Αθανάσιος Αρααντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών Τεχνών Το περιεχόμενο

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 172 ΚΑΤΟΠΤΡΑ

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 172 ΚΑΤΟΠΤΡΑ ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 7 ΚΑΤΟΠΤΡΑ ΕΠΙΠΕ Α ΚΑΤΟΠΤΡΑ: Θεωρούµε γρµµικό ντικείµενο που βρίσκετι σε πόστση (πόστση του ντικειµένου) πό επίπεδο κάτοπτρο. A B Σχήµ 95 Μερικές πό τις κτίνες που εκπέµπει το φωτεινό

Διαβάστε περισσότερα

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε.

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε. Ερωτήσεις πολλπλής επιλογής 1. * Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = Β. = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. * Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α (1, -) κι Β (7, ), έχει συντετγµένες

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλιο ο: ΚΩΝΙΚΕ ΤΟΜΕ Ερωτήσεις του τύπου «ωστόάθος» 1. * Η εξίσωση + = ( > 0) πριστάνει κύκλο.. * Η εξίσωση + + κ + λ = 0 µε κ, λ 0 πριστάνει πάντ κύκλο.. * Ο κύκλος µε κέντρο Κ (1, 1) που περνά πό το

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. G. Mitsou

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. G. Mitsou ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Διάθλαση σε σφαιρική επιφάνεια Φακοί Ορισμοί Λεπτοί φακοί Συγκλίνοντες φακοί Δημιουργία ειδώλων Αποκλίνοντες φακοί Γενικοί τύποι φακών Σύστημα λεπτών φακών σε επαφή Ασκήσεις Διάθλαση

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

10. Το Φως ως Γεωμετρική Ακτίνα

10. Το Φως ως Γεωμετρική Ακτίνα 10. Το Φως ως Γεωμετρική Ακτίν Ελένη Κλδούδη Φινόμεν στ οποί εμπλέκετι ηλεκτρομγνητική κτινοβολί μεσίων συχνοτήτων που περιλμβάνει τις επιμέρους περιοχές του υπέρυθρου με συχνότητες 10 12 4.3x10 14 Hz

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση: Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΟΡΙΣΜΟΣ: Έστω Ε κι Ε δύο σημεί του επιπέδου. Έλλειψη με εστίες τ σημεί Ε κι Ε λέγετι ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων

Διαβάστε περισσότερα

Βιολογία Προσανατολισμού ΣΥΝΔΕΔΕΜΕΝΑ ΓΟΝΙΔΙΑ

Βιολογία Προσανατολισμού ΣΥΝΔΕΔΕΜΕΝΑ ΓΟΝΙΔΙΑ ΣΥΝΔΕΔΕΜΕΝ ΓΟΝΙΔΙ Σημείωση: Τ συνδεδεμέν γονίδι νφέροντι στο ιλίο σε έγχρωμο πράθεμ στη σελίδ 80 του σχολικού ιλίου κι άσει του Φ.Ε.Κ. που νφέρει την εξετστέ ύλη, τ έγχρωμ πρθέμτ είνι εκτός εξετστές ύλης.

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο ΟΜ φοιτητές, ο Χρήστος κι η λένη κάθοντι σε πρόμοιες κρέκλες γρφείου (τ πόδι της λένης είνι στον έρ). Ο Χρήστος πιέζει με τ πόδι του τ γόντ της λένης. πίλεξε το σωστό: ) ίνι μεγλύτερη η δύνμη που σκεί

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης 0 33 Η ΕΛΛΕΙΨΗ Ορισμός Έλλειψης Έστω E κι Ε δύο σημεί ενός επιπέδου Ονομάζετι έλλειψη με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ E κι

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης 1 Θ Ε Ω Ρ Ι Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης Ο Ρ Ι Σ Μ Ο Ι Τ Υ Π Ο Ι Ι Ι Ο Τ Η Τ Ε Σ Ι Α Ν Υ Σ Μ Α Τ Α Μηδενικό διάνυσµ: AA= 0 µε οποιδήποτε κτεύθυνση Μονδιίο διάνυσµ: AB = 1 Αντίθετ δινύσµτ: ντίθετη

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κωνικές Τοµές. Ασκήσεις Παραβολή

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κωνικές Τοµές. Ασκήσεις Παραβολή Μθηµτικά Κτεύθυνσης Β Λυκείου Κωνικές Τοµές Ασκήσεις Προλή 1. Ν ρεθεί η εστί κι η διευθετούσ των προλών: i) = - ii) = 8 iii) = 1 (Απ.: i) E(-1, 0), = 1 ii) E(, 0), = - iii) E(0, 3), = -3). Ν ρεθεί η εξίσωση

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 4ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 7-8 Θέμ A Α Έστω η συνάρτηση Ν ποδείξετε ότι η είνι πργωγίσιμη στο,, δηλδή κι ισχύει Ν ποδείξετε ότι η δεν είνι πργωγίσιμη στο μονάδες 7 A Ν

Διαβάστε περισσότερα

Μελέτη συστήματος φακών με τη Μέθοδο του Newton

Μελέτη συστήματος φακών με τη Μέθοδο του Newton Μελέτη συστήματος φακών με τη Μέθοδο του Newton.Σκοπός Σκοπός της άσκησης είναι η μελέτη της εστιακής απόστασης συστήματος φακών, η εύρεση της ισοδύναμης εστιακής απόστασης του συστήματος αυτού καθώς και

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

3. Να βρεθεί η εξίσωση κύκλου με κέντρο K( x0, y0 ) και ακτίνα ρ.

3. Να βρεθεί η εξίσωση κύκλου με κέντρο K( x0, y0 ) και ακτίνα ρ. ΚΕΦΑΛΑΙΟ 3ο ΚΩΝΙΚΕΣ ΤΟΜΕΣ Ο ΚΥΚΛΟΣ. Ν βρεθεί η εξίσωση κύκλου με κέντρο Ο(, κι κτίν ρ. Ποιος κύκλος ονομάζετι μονδιίος ; Έστω O έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο O(,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης

Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης Ερωτήσεις θεωρίς βσισμένες στο βιβλίο των μθημτικών της Γ τάξης 1ο ΕΠΑΛ ΣΑΛΑΜΙΝΑΣ 27 Απριλίου 29 2 Μθημτικά Γ Τάξης 1. Τι είνι πληθυσμός, άτομο κι μέγεθος ενός πληθυσμού; Πληθυσμός ονομάζετι το σύνολο

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΔΙΑΓΩΝΙΜΑ ΕΚΠ. ΕΤΟΥ 2017-2018 ΑΠΑΝΤΗΕΙ ΔΙΑΓΩΝΙΜΑΤΟ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. ) ωστό β) ωστό γ) Λάθος δ)ωστό ε) Λάθος Α2. γ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. Το εισόδημ των κτνλωτών.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n ΣΕΙΡΕΣ Έστω. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ μι κολουθί πργμτικών ριθμών. Η κολουθί ( σ ) με γενικό όρο: σ + + + i ονομάζετι κολουθί μερικών θροισμάτων της κολουθίς ( ), ή σειρά των ριθμών,,,, κι σημειώνετι με i + + +

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

1. Υποκατάσταση συντελεστών στην παραγωγή

1. Υποκατάσταση συντελεστών στην παραγωγή Ε9 ΕΛΑΣΤΙΚΟΤΗΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ.Υποκτάστση συντελεστών στην πργωγή 2.Ομογενείς συνρτήσεις πργωγής 3.Ελστικότητ υποκτάστσης συντελεστών 4.Στθερή ελστικότητ υποκτάστσης 5.Πργωγή στθερής ελστικότητς υποκτάστσης

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα