(µετά την µελέτη του αντιστοίχου κεφαλαίου να είστε σίγουροι ότι καταλάβατε τις ακόλουθες έννοιες.)
|
|
- Δάμων Κορωναίος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Βσικές έννοιες της Θεωρίς ιγνίων. µετά την µελέτη του ντιστοίχου κεφλίου ν είστε σίγουροι ότι κτλάβτε τις κόλουθες έννοιες.. Τ στοιχεί ου οτελούν έν ίγνιο είνι : Το σύνολο των ικτών φορέων οφάσεων...n. Το σύνολο των δυνητικών στρτηγικών ενεργειών S. Το σύνολο υτό υοδιιρείτι σε υοσύνολ το κθέν των οοίων ερικλείει τις δυνητικές στρτηγικές κάθε ίκτη S { S ;... N}. - Τ υοσύνολ S δεν έχουν νγκστικά τον ίδιο ριθµό στοιχείων. Κάθε έν ό υτά οτελείτι ό Κ δυνητικές στρτηγικές. Έν συγκεκριµένο στοιχείο συµβολίζετι µε το s...k. - Έν διάνυσµ ου οτελείτι ό µί στρτηγική γι κάθε ίκτη συµβολίζετι ό s { s ;... N όου το δεν είνι νγκστικά το ίδιο γι όλ τ. - Το διάνυσµ s µορεί ν γρφτεί s s ; s. Το υοδιάνυσµ s { s k... s h s+... snz { εριέχει όλ τ στοιχεί του s λην του s κι κλείτι το συµλήρωµ της στρτηγικής s. Το υοδιάνυσµ s οτελείτι ό το στοιχείο s. 3 Την συνάρτηση οδόσεων U s ; s. Η συνάρτηση υτή ντιστοιχεί κάοι όδοση σε κάθε στρτηγική του ίκτη δεδοµένης της στρτηγικής ου θ ειλεγεί ό τους υολοίους ίκτες. Έτσι η όδοση κάθε οφάσεως ενέργεις ενός τόµου γίνετι συνάρτηση των οδόσεων
2 των υολοίων ικτών. Οότε η ίδι στρτηγική µορεί ν έχει διφορετική όδοση κθώς µετβάλλετι η σύνθεση του συµληρώµτος της. Τ κι 3 οτελούν την κνονική µορφή ενός ιγνίου. Στην ερίτωση όου υάρχουν δύο ίκτες το ίγνιο στην κνονική µορφή του µορεί ν ρουσιστεί µε την βοήθει ενός ίνκ οδόσεων.
3 Ορισµοί. Κλύτερη ντίδρση του δεδοµένων των οφάσεων των υολοίων ικτών είνι η ειλογή εκείνης της ενέργεις ου µεγιστοοιεί την όδοση του. U s ; s U s ; s Γι ν υάρχει Κυρίρχη ντίδρση του ρέει γι οοιοδήοτε συνδυσµό ενεργειών του συµληρώµτος κάοι ενέργει ν δίνει άντ την µεγλύτερη δυντή όδοση. U s ; s U s ; s - ; > 3 Μί στρτηγική h του ίκτη οτελεί κυριρχούµενη ντίδρση ν υάρχει κάοι άλλη δυντή στρτηγική του.χ. η f ου ν δίνει µεγλύτερες οδόσεις ότι κι ν οφσίσουν οι υόλοιοι ίκτες όοι κι ν είνι η σύνθεση του συµληρώµτος.. U s ; s U s ; s - f > h Αν η νισότητες στην κι 3 ντικτστθούν µε νισότητ ή ισότητ δηλδή ν το σύµβολο > ντικτστθεί ό το τότε οι ενέργειες οκλούντι δύνµ κυρίρχες κι δύνµ κυριρχούµενες ντίστοιχ. 5 Ισορροί κτά Nash οκλείτι έν σύνολο µοιβί κλυτέρων ντιδράσεων. Ενλλκτικά ν οι οφάσεις των µελών του συµληρώµτος οτελούν κλύτερες ντιδράσεις τότε γι ν έχουµε ισορροί κτά Nash ρέει κι η όφση του ν είνι κλύτερη ντίδρση. U s ; s > U s; s 6 Στο σηµείο ισορροίς κτά Nash δεν υάρχει κίνητρο ώστε ένς ίκτης ν λλάξει µονοµερώς την όφση του. δηλδή ν κερδίσει ερισσότερο ειλέγοντς µί άλλη στρτηγική ενώ όλοι οι άλλοι ειµένουν στην ρχική τους όφση. 3
4 Ισορροί κυριάρχων στρτηγικών οκλείτι έν σηµείο ισορροίς κτά Nash όου όλες οι στρτηγικές των εµλεκοµένων ικτών είνι κυρίρχες στρτηγικές. U s ; s > U s; s ; Α Στον ίνκ. οι κλύτερες ντιδράσεις του Α είνι οι υογρµµισµένες οδόσεις ενώ του Β υτές µε βρύ µύρο. Προσδιορίστε τις κλύτερες οδόσεις των δύο ικτών στον ίνκ. Β Βρείτε τις Κυρίρχες στρτηγικές στους ίνκες.3 κι. Γ βρείτε τ σηµεί ισορροίς στους υόλοιους ίνκες. Πίνκς. Πίνκς. a b a b I 0 ; ; 0 5 ; 3 I ; 7 ; 0 7 ; A II ; 0 0 ; 5 ; 3 A II 7 ; ; 0 ; 7 III 3 ; 5 3 ; 5 6 ; 6 III 0 ; 3 ; 7 0 ; Πίνκς.3 Πίνκς. a b a b I ; 8 9 ; 7 8 ; I 53 ; 5 37 ; 6 ; A II 8 ; 9 ; 7 ; 8 A II 60 ; 6 5 ; -8 ; 3 III 7 ; 9 0 ; 7 ; 9 III 8 ; 7 3 ; 3 ; 9
5 Πίνκς. Πίνκς. a b a b I ; 0 ; I 5 ; 0 ; 7 A II 0 ; 3 0 ; A II 3 ; 6 ; Πίνκς.3 Πίνκς a b a b I ; 8 9 ; 7 8 ; I 60 ; ; 9 53 ; 9 A II 8 ; ; 7 9 ; 8 A II 67 ; 3 ; 3 9 ; III 7 ; 9 0 ; 7 ; 9 III 5 ; 50 ; 8 ; 6 5
6 Μέρος Α : Ισχύς στην Αγορά Ισχύς στην γορά σηµίνει ότι µι ειχείρηση µορεί ν εηρεάσει την τιµή στην οοί ειλέγει ν ροσφέρει κάοι οσότητ ροϊόντος. Η κρί ερίτωση ισχύος στην γορά είνι το µονοώλιο. Στην ερίτωση υτή η ειχείρηση ντιµετωίζει την γορί κµύλη ζήτησης κι ως γνωστό µορεί ν ειτύχει υερκνονικά κέρδη νάλογ µε την ελστικότητ της ζήτησης υτής. Ισχύ στην γορά όµως µορούµε ν έχουµε κόµη κι ότν υάρχει έν µέτρο ντγωνισµού στην γορά. Έτσι ότν δύο ειχειρήσεις ντγωνίζοντι σε µι γορά υάρχει ερισσότερος ντγωνισµός ό ότν υάρχει µόνο µι ειχείρηση λλά όχι τόσος ώστε οι ειλογές των ειχειρήσεων ν µην εηρεάζουν την τιµή ροσφοράς. Βέβι ν οι ειχειρήσεις συµράξουν ώστε ν οφύγουν τον ντγωνισµό τότε συµεριφέροντι ως ν ήτν µονοωλητές. Όσο υξάνετι ο ριθµός των ειχειρήσεων ο βθµός ντγωνισµού υξάνετι τείνοντς στο όριο στις συνθήκες τέλειου ντγωνισµού. Ειλέον η σύµρξη γίνετι ιο δύσκολη όσες ερισσότερες ειχειρήσεις µετέχουν στην ργωγή.. υοώλιο Cournot Στ λίσι του τελούς ντγωνισµού η ειλογές κάθε ειχείρησης εηρεάζουν την κερδοφορί των υολοίων ειχειρήσεων ου δρστηριοοιούντι στον κλάδο. Κτά συνέει η ειλογή κάθε ειχείρησης ρέει ν γίνει µε γνώµον τις δυνητικές οφάσεις των υολοίων δηλδή οι ειχειρήσεις υεισέρχοντι σε έν ίγνιο. Στο υόδειγµ του Cournot οι ειχειρήσεις ειλέγουν το ύψος του ροϊόντος ου θ ροσφέρουν στην γορά. Ο ντγωνισµός γίνετι µέσ ό την ροσφερόµενη οσότητ. Έτσι η ειλογή του ειέδου ργωγής οτελεί µί στρτηγική κάθε ειχείρησης ενώ το εδίο της δυνητικής ργωγής οτελεί το σύνολο των δυνητικών στρτηγικών κάθε ειχείρησης. Έστω η ντίστροφη συνάρτηση ζήτησης 6
7 Q Q P Q > for 0 Q P το κόστος κάθε ειχείρησης είνι C Η συνάρτηση οδόσεων κάθε ειχείρησης είνι ίση µε την συνάρτηση κέρδους της φού έχουµε υοθέσει ότι οι ειχειρήσεις µεγιστοοιούν τ κέρδη τους. Οότε ] [ ] [ P + +. Άµεσος υολογισµός του σηµείου ισορροίς κτά Nash Η ισορροί κτά Nash δίδετι ό ] [ ma ma o o + < < λύνοντς τις συνθήκες ρώτης τάξης έχουµε ή 7
8 έχουµε 3. Λύση χρησιµοοιώντς τις κµύλες ντίδρσης. Ένς ενλλκτικός τρόος λύσης του ροβλήµτος είνι ν υολογιστούν όλες οι κλύτερες ντιδράσεις των δύο ειχειρήσεων κι ν ειλεγεί το σηµείο εκείνο όου συµίτουν οι κλύτερες ντιδράσεις. Έτσι γι κάθε ύψος ργωγής κάθε δυντή στρτηγική του η κλύτερη ντίδρση του δίνετι ό R κι ντίστοιχ γι τον R Σχεδιάστε τις δύο κµύλες κλύτερης ντίδρσης στον χώρο. H τοµή των δύο κµυλών δίνει την ισορροί κτά Nash Cournot. 3. Λύση µε την λοιφή κυριρχούµενων στρτηγικών. Ένς τρίτος τρόος ροσέγγισης του ροβλήµτος είνι µέσ ό την λοιφή των κυριρχούµενων στρτηγικών. Γνωρίζουµε ότι το µέγιστο κέρδος ου µορεί ν ειτευχθεί σε µί γορά είνι υτό της µονοωλικής ειχείρησης. Το ύψος ργωγής στην ερίτωση υτή είνι 8
9 m Θ οδείξουµε ότι όλες οι στρτηγικές ου εριγράφοντι ό m +χ κυριρχούντι ό την m. ηλδή ότι m m + > γι όλ τ κι Έτσι m ενώ m m ο.ε.δ. Στη συνέχει θ οδείξουµε ότι η στρτηγική ου ορίζετι ό το µισό της µονοωλικής ργωγής κυριρχεί όλες τις στρτηγικές ου οδηγούν σε κόµη µικρότερο είεδο ργωγής ˆ ˆ. ˆ 0 < < οότε ρέει ˆ ˆ > Το κέρδος στο µισό της µονοωλικής ργωγής είνι 3 ˆ 9
10 ενώ το κέρδος γι όλ τ µικρότερ είεδ ργωγής δίδετι ό + + ˆ 3 ˆ ο.ε.δ. Ενλµβάνοντς την διδικσί συγκλίνουµε στο σηµείο ισορροίς κτά Nash 3 g. Αριθµητική ρουσίση του 3 Κάθε σηµείο του χώρου ; ντιστοιχεί σε κάοιο ζεύγος στρτηγικών των δύο ειχειρήσεων κτά συνέει κι σε έν ζεύγος οδόσεων. Ο ίνκς δίνει τ κέρδη των δύο ειχειρήσεων ότν 0. Μερικά ό τ σηµεί του ίνκ υτού νράγοντι στο σχήµ. Με την διδοχική εξίρεση των κυριρχούµενων στρτηγικών του ίνκ δείξτε ότι θ κτλήξουµε στο σηµείο ισορροίς κτά Nash. 0
11 Σχήµ Πίν Ειχ Ειχ
12 5. ιγρµµτική ρουσίση του 3 Η συνάρτηση ίσου κέρδους της ειχείρησης υολογίζετι κρτώντς το διφορικό των κερδών ίσο µε µηδέν. Οότε [ + ] d d d d 0 κι d d λλά η κλίση της κµύλης ίσου κέρδους ισούτι µε µηδέν ότν 0 Η συνθήκη υτή είνι η ίδι µε την συνθήκης ης τάξης γι την µεγιστοοίηση των κερδών της ειχείρησης. Ανδιτάσσοντς έχουµε δηλδή σε όλ τ σηµεί της κµύλης ντίδρσης κλύτερης ντίδρσης του η κµύλη ίσου κέρδος έχει µηδενική κλίση. είξτε ότι η κµύλη ίσου κέρδους είνι κοίλη ρος τον άξον.υολογίστε την δεύτερη ράγωγο της d d ως ρος.
13 Σχήµ m Στο σχήµ ρουσιάζετι η κµύλη ντίδρσης του. η νεξάρτητη µετβλητή ου είνι το είεδο ργωγής του είνι στον κάθετο άξον ντίθετ µε την µθηµτική ορθότητ λλά σύµφων µε συνήθη ρκτική των οικονοµολόγων. Οι στρτηγικές του θεωρούντι ως εξωγενείς στον λογισµό του δηλδή γι κάθε είεδο ροσφοράς του η κµύλη ντίδρσης του δίνει την άριστη άντηση του. Αν ο ροσφέρει 0 τότε ο είνι µονοωλητής κι ροσφέρει το είεδο εκείνο του ροϊόντος ου µεγιστοοιεί τ κέρδη του m. Αν ο ροσφέρει τόσο ροϊόν ώστε ν µηδενιστούν τ κέρδη του δηλδή το είεδο ροσφοράς ου ντιστοιχεί στην ντγωνιστική ισορροί τότε ο ροσφέρει 0. Αν ροσφέρει θετική οσότητ στην ερίτωση υτή θ κάνει ρνητικά κέρδη. Ως γνωστό το µονοώλιο ροσφέρει λιγότερο ό το ντγωνιστικό είεδο ροϊόντος. Το µέγιστο δυντό κέρδος γι τον είνι το µονοωλικό κέρδος. Άρ οι κµύλες ίσου κέρδους ντιστοιχούν σε ψηλότερο είεδο κέρδους όσο λησιάζουνε τον οριζόντιο άξον. >. Γι ροσφορά του το µέγιστο κέρδος του ειτυγχάνετι στο σηµείο εφής της κθέτου στο σηµείο κι της ψηλότερης δυντής κµύλης ίσου κέρδους. Σχεδιάστε την ντίστοιχη κµύλη ντίδρσης του. 3
14 Αν στρέψουµε τους άξονες του σχήµτος ου σχεδιάστε κι το ενοθέσουµε στο ροηγούµενο σχήµ έχουµε το σχήµ. Σχήµ a m m Αό το σηµείο ισορροίς ερνούν οι κµύλες ίσου κέρδους ου ντιστοιχούν στο ριστοοιητικό είεδο κέρδους της κάθε ειχείρησης. Υάρχει δυντότητ κτά Pareto βελτίωσης;
15 Άσκηση Ι Έστω ότι υάρχουν δύο µόνο µέθοδοι ργωγής ενός νέου γθού ου θ διτεθούν µόνο σε έν ργωγό η κθεµί. Τ δικιώµτ στην ρώτη µέθοδο κοστίζουν 300 ενώ στην δεύτερη 00. Η διάρκει της ευρεσιτεχνίς είνι δύο ετών δηλδή µετά την άροδο δύο ετών κι οι δύο µέθοδοι θ διτίθεντι ελεύθερ σε όοιον ενδιφέρετι. Η ζήτηση στην γορά κάθε χρονική ερίοδο είνι P ειχείρηση ου χρησιµοοιεί την µέθοδο είνι. Τ κόστη νά χρονική ερίοδο γι την ενώ γι την δεύτερη είνι 00. Ο ντγωνισµός στην γορά γίνετι µέσ 0 + ό τον κθορισµό των οσοτήτων. Ποι θ είνι τ συνολικά κέρδη των δύο ειχειρήσεων; ο ροεξοφλητικός συντελεστής είνι ίσος µε. Άσκηση ΙΙ Εξηγείστε µε λόγι κι τη βοήθει διγράµµτος χωρίς µθηµτικά γιτί οι κµύλες ντίδρσης τέµνουν τις κµύλες ίσου κέρδους στο ελάχιστο σηµείο. Άσκηση ΙΙΙ Ερµηνεύστε τ δύο άκρ της κµύλης ντίδρσης µις ολιγοωλικής ειχείρησης. 5
Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )
9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ.8: Κυρτότητ Σημεί Κμής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Δίνοντι οι συνρτήσεις f, g ορισμένες στο [, ]
7. Επαναλαµβανόµενα υναµικά Παίγνια.
7 Εαναλαµβανόµενα υναµικά Παίγνια Τα εαναλαµβανόµενα υναµικά αίγνια αοτελούν συνυασµό ταυτόχρονου και υναµικού αιγνίου, είτε στην ερίτωση ου ένα ταυτόχρονο αίγνιο εαναλαµβάνεται ιαχρονικά, είτε εανάληψη
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5 η Ηµεροµηνί Αοστολής στον Φοιτητή: 7 Μρτίου 8 Ηµεροµηνί ράδοσης της Εργσίς: Μϊου 8 Πριν ό την λύση κάθε
2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017
ΔΙΑΓΩΝΙΜΑ ΕΚΠ. ΕΤΟΥ 2017-2018 ΑΠΑΝΤΗΕΙ ΔΙΑΓΩΝΙΜΑΤΟ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. ) ωστό β) ωστό γ) Λάθος δ)ωστό ε) Λάθος Α2. γ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. Το εισόδημ των κτνλωτών.
Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα
Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ
3x 2x 1 dx. x dx. x x x dx.
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)
και βρίσκει τη Συνθήκη α' τάξης ενώ ικανοποιείται η Συνθήκη β' τάξης (µέγιστο ως προς Q
. Με δεδοµένο ότι (α) οι ειχειρήσεις ειλέγουν ταυτόχρονα την οσότητα του ροϊόντος την οοία θα αράγουν και (β) το ροϊόν είναι οµοιογενές, ρόκειται για το υόδειγµα Courot-Nash. Υόθεση συµεριφοράς των ειχειρήσεων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 Μάθημ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνί κι ώρ εξέτσης: Δευτέρ, 6/6/16 8: 11: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.
) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος
( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:
Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 2004 ΕΚΦΩΝΗΣΕΙΣ. log x2
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ1ο Α. Αν > 0 µε 1, θ > 0 κι k R, ν δείξετε ότι ισχύει: log θ k klog θ. Μονάδες 9 Β. Ν χρκτηρίσετε τις ροτάσεις ου κολουθούν γράφοντς στο τετράδιό σς
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές
Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.
Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ
Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν
ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυρική 8--00 Η
1. Θετικές δυνάµεις: 3. Εκθετική: exp xή. e 4. Λογαριθµική: ln x ή. 5. Αλλαγή βάσης. ln x. lnx. x α> x α> 0 2. Αρνητικές δυνάµεις: Ιδιότητες: e e e +
A. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.θετικές δυνάµεις.αρνητικές δυνάµεις 3.Εκθετική 4.Λογριθµική 5.Αλλγή βάσης 6.Πολυωνυµικές 7.Ρητές 8.Περιοδικές συνρτήσεις-τριγωνοµετρικές 9.Τµηµτικά
ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό
Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.
Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι
3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
OΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Στην ράγρφο είδμε ότι, ν μι συνάρτηση f είνι συνεχής σε έν διάστημ [, ] κι f ( γι κάθε [, ], τότε το εμδόν του χωρίου Ω ου ορίζετι ό τη γρφική ράστση της
4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση
Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN
Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών
ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι
που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
ΚΕΦΑΛΑΙΟ 2: ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΣΥΝΟΛΙΚΟΥ ΑΝΑΜΕΝΟΜΕΝΟΥ ΑΠΟΠΛΗΘΩΡΙΣΜΕΝΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΑ ΜΟΝΤΕΛΑ ΤΟΥ ΑΠΕΙΡΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ
ΚΕΦΑΛΑΙΟ : ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΣΥΝΟΛΙΚΟΥ ΑΝΑΜΕΝΟΜΕΝΟΥ ΑΠΟΠΛΗΘΩΡΙΣΜΕΝΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΑ ΜΟΝΤΕΛΑ ΤΟΥ ΑΠΕΙΡΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ. Εισγωγή στον οληθωρισµένο δυνµικό ρογρµµτισµό Θεωρούµε ότι ρτηρούµε µί εν εξελίξει
3.3 Άριστο Επίπεδο Αποθεµάτων
3.3 Άριστο Επίπεδο Αποθεµάτων - ο λογισµός της επιχείρησης εκτείνετι σε δύο χρονικές περιόδους. - έχει την δυντότητ ν δηµιουργήσει ποθέµτ την πρώτη περίοδο τ οποί θ πουλήσει την δεύτερη. - Η πόφση πργωγής
συν 2α = συν α ηµ α = 1 2ηµ α = 2συν α εφα+ εφα 2εφα Μάθηµα 10 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί της Γωνίας 2α
Μάθηµ 0 Κεφάλιο: Τριγωνοµετρί Θεµτικές Ενότητες:. Τριγωνοµετρικοί Αριθµοί της Γωνίς Εισγωγή Χρησιµοοιώντς τους τύους ου υολογίζουν τους τριγωνοµετρικούς ριθµούς του θροίσµτος (ροηγούµενο µάθηµ), ροσδιορίζουµε
Ασκήσεις σχ. βιβλίου σελίδας
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ( ΟΜΑ ΑΣ) Ασκήσεις σχ. ιλίου σελίδς 19 19 1. Ν λύσετε την η εξίσωση ηµ ηµσυν συν ηµ ηµσυν συν ηµ ηµσυν συν (ηµ + συν ) ηµ ηµσυν συν + ηµ + συν 0 (1 + )ηµ ηµσυν + ( 1)συν 0 Αν συν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 4 Φεβρουαρίου 005 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1 ο (.5) Αναλύστε
(Π1) Θετικό Κόστος Εισόδου (F>0)
(Π) Θετικό Κόστος Εισόδου (>0) - Το δυναμικό αίγνιο μεταξύ των ειχειρήσεων, έχει την εξής χρονική διάρθρωση: Στάδιο : Η (υφιστάμενη) ειχείρηση ειλέγει την αραγωγική δυναμικότητα k. Στάδιο : Η ειχείρηση
με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,
Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις ολλλής ειλογής. * Αν η συνάρτηση f έχει γρφική ράστση ου φίνετι στο διλνό σχήµ, τότε µί ράγουσά της µορεί ν έχει γρφική ράστση την B.. 34 . * Αν f () = e, τότε µί ράγουσ της f µορεί ν έχει γρφική
Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα
Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ
α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α
ΟΡΙΖΟΥΣΕΣ β Έστω πίνκς Α Χ = γ δ Σε κάθε τετργωνικό πίνκα ντιστοιχίζοµε ένν πργµτικό ριθµό τον οποίο ονοµάζοµε ορίζουσ του πίνκ κι ορίζετι ως β Α = = δ β γ Η έννοι της ορίζουσς είνι νγκί προκειµένου ν
2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει
Η ΑΠΟ ΕΙΞΗ ΤΗΣ ΜΕΤΑΚΙΝΗΣΗΣ ΤΟΥ ΠΕΡΙΗΛΙΟΥ ΤΟΥ ΠΛΑΝΗΤΗ ΕΡΜΗ
Η ΑΠΟ ΕΙΞΗ ΤΗΣ ΜΕΤΑΚΙΝΗΣΗΣ ΤΟΥ ΠΕΡΙΗΛΙΟΥ ΤΟΥ ΠΛΑΝΗΤΗ ΕΡΜΗ Α. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Όως είνι γνωστό, όλ τ ουράνι σώµτ του Ηλικού συστµτος, λντες, στεροειδείς, κοµτες κλ. κθώς
7.1. Το ορισµένο ολοκλήρωµα
Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση
E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.
ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3
Micro-foundations of macroeconomics (or Το υπόδειγμα Άριστης Οικονομικής Μεγέθυνσης)
Miro-foundaions of maroeonomis (or Το υπόδειγμ Άριστης Οικονομικής Μεγέθυνσης) Α. Αποκεντρωμένη Οικονομί Υποθέστε μί κλειστή οικονομί η οποί πρτίζετι πό πλήθος όμοιων νοικοκυριών κι πλήθος όμοιων επιχειρήσεων.
f(x) dx ή f(x) dx f(x) dx
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο
Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η
ΜΑΘΗΜΑ.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η έοι του τοικού κρόττου Προσδιορισµός τω τοικώ κρόττω Θεώρηµ Frmat Θεωρί Σχόλι Μέθοδοι Ασκήσεις Frmat Αισώσεις ΘΕΩΡΙΑ. Ορισµός Μι συάρτηση µε εδίο ορισµού Α, θ λέµε
EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα
EI.3 ΛΕΟΝΑΣΜΑΤΑ.Αξί κτνάλωσης.λεόνσμ κτνλωτή 3.Κόστος προμηθευτή 4.λεόνσμ προμηθευτή 3.Συνολικό πλεόνσμ. ργμτική ξί (Χρησιμότητ) της κτνάλωσης Η ντίστροφη συνάρτηση ζήτησης: = () έχει κτρχήν την γνωστή
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν
1. Έστω ότι η αγοραία συνάρτηση ζήτησης για κάποιο αγαθό είναι:
ΟΙΚ 361 ΟΙΚΟΝΟΜΙΚΑ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ 10 η Σειρά Ασκήσεων 1 Έστω ότι η αγοραία συνάρτηση ζήτησης για κάοιο αγαθό είναι: q( p) = 1000 50 p Υοθέτουμε αρχικά ότι υάρχει μία ειχείρηση στην αγορά και η συνάρτηση
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την
ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
Η έννοια της συνάρτησης
Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν
Το υπόδειγµα Άριστης Οικονοµικής Μεγέθυνσης µε Παραγωγικές Εξωτερικότητες Κεφαλαίου (Romer-type externalities)
Το υπόδειγµ Άριστης Οικονοµικής Μεγέθυνσης µε Πργωγικές Εξωτερικότητες Κεφλίου Romer-ype exernales Α. Αποκεντρωµένη Οικονοµί Υποθέστε µί κλειστή οικονοµί η οποί πρτίζετι πό πλήθος νοικοκυριών κι πλήθος
η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.
Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας
( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΠΑΡΑΓΟΥΣΑ ΑΣΚΗΣΕΙΣ Ν ρείτε τις ράγουσες F των ρκάτω συνρτήσεων ( ) = ( +) ( -) log ( -) γ ( ) = ( +) ( - ) +, > ln( -) ln( -) ( ) = + 5, > δ ( ) = 5 +, > Ν ρείτε
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις
Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων
Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων
Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός
Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες
ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε
ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ
ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση
1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,
Physics by Chris Simopoulos
ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές
ΑΝΑΛΥΣΗ Γ ΛΥΚΕΙΟΥ. Ανισότητες στα ολοκληρώµατα. Η συνάρτηση x a. Εισήγηση Νικ. Ιωσηφίδη. 3 ο Σεµινάριο Ο.Ε.Φ.Ε Σάββατο 19 εκεµβρίου 2015
ΑΝΑΛΥΣΗ Γ ΛΥΚΕΙΟΥ Ανισότητες στ ολοκληρώµτ. Η συνάρτηση a f(t)dt Εισήγηση Νικ. Ιωσηφίδη ο Σεµινάριο Ο.Ε.Φ.Ε Σάτο 9 εκεµρίου 5 Θεσσλονίκη, Ξενοδοχείο The Met Νικ. Ιωσηφίδης: Ανισότητες στ ολοκληρώµτ. Συνάρτηση
ΜΑΘΗΜΑ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ
ΜΑΘΗΜΑ 9. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις νισοτήτων ΘΕΩΡΙΑ. Ορισµός Αν f συνεχής στο [, ], τότε ν f ()d lim f ( ξκ ) ν + κ. Εισήµνση Το ολοκλήρωµ δεν εξρτάτι ό τη µετλητή, δηλδή f
είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i
Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ 7 MAΪΟΥ 13 Λύσεις των θεμάτων Έκδοση 1
Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης
Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον
β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.
Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ 1. Ν χρκτηρίσετε τις πρκάτω προτάσεις με Σωστό ( Σ ) ή Λάθος ( Λ ) i. ( - ) =- ii. ( 1- ) =1- iii. Αν χ < 1 τότε χ -χ + 1 = χ - 1 iv. Ισχύει: χ = Û χ = v.
3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής
6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε
f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,
αριθμών Ιδιότητες της διάταξης
Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή
Γ ΛYKEIOY. Μαθηματικά Προσανατολισμού. ανάλυση Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση.
νάλυση Γ ΛYKEIOY Μθημτικά Προσντολισμού 9 - Mίλτος Πγρηγοράκης Χνιά 65 Τξινομημένες σκήσεις γι λύση Ολοκληρώμτ & Γενικές Ασκήσεις Τξη: Γ Γενικού Λυκείου Μθημτικά ροσντολισμού Θετικών Σουδών & οικονομίς
Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών
Προτεινόµενες Ασκήσεις στ Στοιχεί δύο Ακροδεκτών πό το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργρη Πρόβληµ. Σ' έν πηνίο µε υτεπγωγή =5H το ρεύµ έχει τη µορφή του Σχ.. Σχεδιάστε την τάση στ άκρ του
Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.
Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε
Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα
Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης
ΜΕΡΙΚΑ ΣΧΟΛΙΑ, ΠΑΡΑΤΗΡΗΣΕΙΣ και ΑΣΚΗΣΕΙΣ στα ΚΕΦΑΛΑΙΑ 1, 2
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΗΛΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ κι ΦΑΡΜΟΓΣ ΜΡΙΚΑ ΣΧΟΛΙΑ, ΠΑΡΑΤΗΡΗΣΙΣ κι ΑΣΚΗΣΙΣ στ ΚΦΑΛΑΙΑ 1, ρ. Α. Μγουλάς Φερουάριος 015 1 Μερικά σχόλι ρτηρήσεις γι το εδίο ροής συνεχούς ηλεκτρικού ρεύµτος
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x
ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:
Απάντηση: όπου c R. Δίνεται όμως ότι f(0) = 1, άρα η προηγούμενη για x = 0, δίνει c = ½. Παίρνουμε λοιπόν την
_ Θέμ Γ Θεωρούμε τις συνρτσεις,:rr, με την ργωγίσιμη κι τέτοιες, ώστε: () = κι, γι κάθε R, Γ Ν οδείξετε ότι, R Γ Ν βρείτε το λθος των ργμτικών ριζών της εξίσωσης Γ Ν οδείξετε ότι υάρχει τουλάχιστον ένς,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές
Γ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση.
Γ Λυκείου Μθημτικά Προσντολισμού 6-7 Mίλτος Πγρηγοράκης Χνιά νάλυση Τξινομημένες σκήσεις γι λύση Ολοκληρώμτ & Γενικές Ασκήσεις Τξη: Γ Γενικού Λυκείου Μθημτικά ροσντολισμού Θετικών Σουδών & οικονομίς κι
τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για
3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων
ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1
ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι
Άσκηση 6 η Γεωμετρική χωροστάθμηση
Σ.Α.Τ.Μ. ΕΜΠ Εργ. Γεν. Γεωδισίς Γεωδισί ΙΙ Άσκηση 6 1 Άσκηση 6 η Γεωμετρική χωροστάθμηση Γι τον υολογισμό των υψομέτρων στ σημεί 1,, 3, 4, 5, 6, 7 κι 8 έγινν δυο γεωμετρικές χωροστθμεύσεις σε μετάβση κι
Μαθηματικά Γ Λυκείου Προσανατολισμού
5- Μθημτικά Γ Λυκείου Προσντολισμού Σημειώσεις μθημτικών ου ευθύνοντι σε μθητές της Γ Λυκείου. Χωρισμένες σε ενότητες γι την κλύτερη κτνόηση της ύλης Δούδης Δημήτρης ο Ενιίο Λύκειο Αλεξνδρούολης 5- Πρόλογος
3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ
. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ. Η γενική µορφή της β βάθµις εξίσωσης + β + γ 0, 0. Οι λύσεις της β βάθµις εξίσωσης β 4γ Η εξίσωση + β + γ 0, 0 Ότν > 0 Έχει δύο ρίζες άνισες, τις, Ότν 0 Έχει µί διπλή ρίζ,
Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές
. ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.
Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό
Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά
Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο