ιάλεξη 2 Βασικά ερωτήµατα 12/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιάλεξη 2 Βασικά ερωτήµατα 12/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµ Οικονοµικών Επιστηµών Ακδηµϊκό έτος ιάλεξη 2 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διβάζουμε κεφ. 4 πό Μ. Χλέτσο κι σημειώσεις στο eclass) Αντωνισμός, οικονομική ποτελεσμτικότητ κι δινομή εισοδήμτος 1 Βσικά ερωτήµτ Κάθε κοινωνί πρέπει ν πντήσει σε ορισμέν βσικά ερωτήμτ: Τι θά θ πρχθούν; Με ποιον τρόπο; Πώς θ δινεμηθούν; Στο σημερινό οικονομικό σύστημ οι ποφάσεις υτές λμβάνοντι μέσ πό την ορά. Χρειάζετι επομένως η κρτική πρέμβση; Μπορεί το μοντέλο του τέλειου ντωνισμού ν εφρμοστεί πλήρως στην πράξη; Βσικά ερωτήµτ Σε υτή τη διάλεξη θ εξηήσουμε με ποιον τρόπο λμβάνοντι οι ποφάσεις πό τους πρωούς κι τους κτνλωτές, εάν κι πώς επιτυχάνετι η οικονομική ποτελεσμτικότητ πό την ορά Πώς ίνετι η κτνομή του εισοδήμτος πό την ορά. Στόχος είνι ν εξηήσουμε με οικονομικούς όρους τους λόους ύπρξης κοινωνικής προστσίς (στις επόμενες διλέξεις). Αντωνισμός κι οικονομική ποτελεσμτικότητ Μι πό τις πιο βσικές δικρίσεις στην οικονομική θεωρί είνι μετξύ των εννοιών της οικονομικήςποτελεσμτικότητς (economic efficiency) κι της οικονομικής δικιοσύνης (equity). H ποτελεσμτικότητ νφέρετι στην κτνομή των πόρων σε διάφορες δρστηριότητες έτσι ώστε ν μειστοποιηθεί η ευημερί των τόμων μις κοινωνίς. H οικονομική δικιοσύνη στο πώς η ευημερί υτή δινέμετι νάμεσ στ μέλη της κοινωνίς. Αντωνισμός κι οικονομική ποτελεσμτικότητ Ακόμη κι ν η κτνομή των πόρων ικνοποιεί τ κριτήρι της ποτελεσμτικότητς, το ποτέλεσμ μπορεί ν μην είνι επιθυμητό πό άποψη οικονομικής δικιοσύνης. Μετξύ των δύο κριτηρίων υπάρχει ενικά μι ντίστροφη σχέση. Η μεάλη δυσκολί της οικονομικής επιστήμης λλά κι της οικονομικής πολιτικής έκειτι στο ν επιλέξει εκείνη τη σχέση που είνι «άριστη» ι μι κοινωνί

2 Αποτελεσμτικότητ κτά areto Το κριτήριο της ποτελεσμτικότητς που συνήθως χρησιμοποιούμε είνι εκείνο που διτύπωσε ο areto. Αποτελεσμτικότητ έχουμε ότν οι διθέσιμοι πόροι χρησιμοποιούντι, μέσ σε μι ορισμένη χρονική περίοδο, με τέτοιο τρόπο ώστε ν είνι δύντο ν βελτιωθεί η ευημερί κάποιου τόμου χωρίς ν μειωθεί η ευημερί κάποιου άλλου. Αποτελεσμτικότητ κτά areto Βσικό χρκτηριστικό του κριτηρίου του areto είνι ο τομικισμός, με την έννοι ότι: 1. Το άτομο είνι η βσική μονάδ της οικονομικής νάλυσης κι η ευημερί του εξρτάτι ποκλειστικά κι μόνο πό το δικό του εισόδημ, το δικό του πλούτο, το δικό του διθέσιμο χρόνο. 2. Το άτομο είνι ο κλύτερος κριτής της δικής του ευημερίς. 3. Η βελτίωση της θέσης ενός τόμου είνι ποδεκτή μόνο ότν η θέση κνενός άλλου τόμου δεν χειροτερεύει. 7 8 Αποτελεσμτικότητ κτά areto Οι πιο πάνω ξιολοικές κρίσεις υποδηλώνουν ότι η κοινωνί μπορεί ν νλυθεί επρκώς κτά τρόπο μη ορνικό, δηλδή ως εάν η κοινωνί ν είνι πλά κι μόνο το άθροισμ των τόμων που την ποτελούν κι τίποτ περισσότερο. Η έννοι του κράτους ως κάτι διφορετικού πό τ άτομ που το ποτελούν δεν ννωρίζετι κι η ύπρξη ορνωμένων κι πολλές φορές συκρουόμενων συμφερόντων νοείτι Αποτελεσμτικότητ κτά areto Ο ορισμός της ποτελεσμτικότητς κτά areto είνι ρκετά περιοριστικός κι πολύ «συντηρητικός», φού με βάση τον ορισμό υτό η άσκηση οικονομικής πολιτικής είνι πρκτικά δύντη. Πρά τις μεάλες του δυνμίες όμως, ο ορισμός υτός είνι ιδιίτερ ελκυστικός στους οικονομολόους κι πολύ χρήσιμος, ιδιίτερ σε ό,τι φορά την πρωή θών κι υπηρεσιών 9 10 Αποτελεσμτικότητ κι η κμπύλη δυντοτήτων χρησιμότητς Αποτελεσμτικότητ κι η κμπύλη δυντοτήτων χρησιμότητς Ας υποθέσουμε μιν πλή οικονομί η οποί ποτελείτι πό δύο μόνο άτομ τ Α κι Β. Έστω τώρ ότι προσδιορίζουμε το επίπεδο χρησιμότητς (ευημερίς) του ενός τόμου, π.χ. του Β κι ζητούμε ν δούμε πόσο υψηλό επίπεδο χρησιμότητς μπορούμε ν δώσουμε στο άλλο άτομο Α, με δεδομένους τους πόρους που έχουμε. Η κμπύλη που δίνει το μέιστο επίπεδο ευημερίς του ενός τόμου, με δεδομένο το επίπεδο ευημερίς του άλλου, ονομάζετι κμπύλη δυντοτήτων χρησιμότητς κι προυσιάζετι στο διάρμμ 1.1. U 0 Δ Γ U

3 Αποτελεσμτικότητ κι η κμπύλη δυντοτήτων χρησιμότητς Από το διάρμμ είνι φνερό ότι όλ τ σημεί της κμπύλης δυντοτήτων χρησιμότητς είνι άριστ, φού δεν είνι δυντό ν υξήσει κνείς τη χρησιμότητ του ενός τόμου χωρίς τυτόχρον ν μειώσει τη χρησιμότητ του άλλου. Το σημείο Γ δεν είνι σφλώς άριστο κτά areto, φού μπορούμε με μι νδινομή της χρησιμότητς ν βελτιώσουμε τη θέση του ενός τόμου χωρίς ν χειροτερεύσουμε τη θέση του άλλου ή κι ν βελτιώσουμε τη θέση κι των δύο τόμων. Αποτελεσμτικότητ κι η κμπύλη δυντοτήτων χρησιμότητς Αυτό όμως συμβίνει ότν η νκτνομή χρησιμότητς ίνει στο διάστημ που περικλείετι πό τις ρμμές που ξεκινούν πό το σημείο Γ κι είνι πράλληλες προς τους άξονες. Αν η νκτνομή μς οδηήσει σε έν σημείο της κμπύλης όπως το Δ, τότε υπάρχει πρόβλημ. το σημείο δ ν κι άριστο κτά areto δεν ποτελεί βελτίωση κτά areto σε σχέση με το σημείο Γ, το οποίο δεν είνι άριστο. Γι τέτοιες περιπτώσεις το κριτήριο του areto δεν δίνει πάντηση κι οι οικονομολόοι έχουν επινοήσει συμπληρωμτικά κριτήρι Τ δύο θεμελιώδη θεωρήμτ των οικονομικών της ευημερίς Τ δύο θεμελιώδη θεωρήμτ των οικονομικών της ευημερίς Πρώτο θεμελιώδες θεώρημ Κάτω πό ορισμένες συνθήκες, οι ντωνιστικές ορές οδηούν σε μι κτνομή των πόρων τέτοι ώστε ν μην είνι δυντό με νκτνομή των πόρων, είτε στην πρωή είτε στην κτνάλωση, ν μπορούμε ν βελτιώσουμε τη θέση ενός τόμου χωρίς ν χειροτερεύσουμε τη θέση κάποιου άλλου. Με άλλ λόι, η λειτουρί των ντωνιστικών ορών μς οδηεί σε μι κτάστση που είνι άριστη κτά areto Δεύτερο θεμελιώδες θεώρημ Κάθε σημείο της κμπύλης δυντοτήτων χρησιμότητς μπορεί ν επιτευχθεί πό έν ντωνιστικό σύστημ ορών, με δεδομένο ότι ρχίζουμε με τη σωστή κτνομή των πόρων. Στην περίπτωση υτή ο ρόλος του κράτους θ μπορούσε ν περιοριστεί στο ν επιτευχθεί ρχικά υτή η σωστή κτνομή των πόρων Τέλειος ντωνισμός κι ποτελεσμτικότητ κτά areto Ο ντωνισμός οδηεί σε ποτελεσμτικότητ επειδή: ότν τ άτομ ποφσίζουν πόσο θ οράσουν πό έν θό, εξισώνουν το ορικό όφελος που ποκομίζουν πό την κτνάλωση μις επιπλέον μονάδς θού με το ορικό κόστος οράς της επιπλέον μονάδς, το οποίο είνι κι η τιμή που πληρώνουν. οι επιχειρήσεις ότν ποφσίζουν πόση ποσότητ ενός θού θ πουλήσουν, εξισώνουν την τιμή που εισπράττουν με το ορικό κόστος πρωής μις επιπλέον μονάδς θού. Έτσι το ορικό όφελος πό την κτνάλωση μις επιπλέον μονάδς εξισώνετι με το ορικό κόστος της επιπλέον μονάδς Όπως είνι νωστό πό τη μικροοικονομική θεωρί, η σχέση ορικού οφέλους-τιμής δίνετι πό την κμπύλη ζήτησης κι η σχέση ορικού κόστους-τιμής πό την κμπύλη προσφοράς του θού Τέλειος ντωνισμός κι ποτελεσμτικότητ κτά areto d Αποτελεσμτικότητ κτά areto: νάλυση μερικής ισορροπίς S D β ε δ S D q q q q 3

4 Αποτελεσμτικότητ κτά areto: νάλυση μερικής ισορροπίς Στο βθμό που η κμπύλη ζήτησης εκφράζει την ορική προθυμί πληρωμής του κτνλωτή ι το θό, τότε στην τιμή ισορροπίς της οράς νά μονάδ προϊόντος, μπορούμε ν βρούμε το πλεόνσμ του κτνλωτή, το οποίο είνι η περιοχή D. Ανάλο η κμπύλη προσφοράς μπορεί ν θεωρηθεί ως το ελάχιστο ποσό που θ ποδεχότν ο πρωός ι ν προσφέρει μι επιπλέον μονάδ θού, είνι δηλδή η κμπύλη ορικού κόστους. το πλεόνσμ του πρωού είνι η περιοχή S. Αν δεχτούμε ότι το πλεόνσμ του κτνλωτή μζί με το πλεόνσμ του πρωού εκφράζουν το κοινωνικό πλεόνσμή με άλλ λόι την κοινωνική ευημερί, τότε υτή δίνετι πό την περιοχή DSD+S. ποτελεσμτικότητ κτά areto: νάλυση μερικής ισορροπίς Στο σημείο ισορροπίς της πιο πάνω ντωνιστικής οράς η τιμή είνι ίση με το ορικό κόστος κι το κοινωνικό πλεόνσμ μειστοποιείτι. Αυτό ίνετι φνερό πό το εονός ότι μι μείωση της πρωής π.χ. πό το q στο q μειώνει το πλεόνσμ κτνλωτή κι πρωού δηλδή την ευημερί κτά το τρίωνο β. Πρόμοι, μι επέκτση της πρωής πέρ πό το q π.χ. στο q, θ προκλέσει πώλει ευημερίς κτά το τρίωνο δε, φού το επιπλέον προϊόν έχει συνολικό κόστος qεq κι συνολικό όφελος qδq. Άρ, η ντωνιστική ορά οδηεί σε μειστοποίηση της κοινωνικής ευημερίς κι οποιδήποτε πρέμβση που μετβάλλει το ποτέλεσμ της οδηεί σε μείωση της ευημερίς Αποτελεσμτικότητ κτά areto: νάλυση ενικής ισορροπίς Με την νάλυση ενικής ισορροπίς εννοούμε ότι ότν εξετάζουμε π.χ. τη μετβολή της τιμής ενός θού ή ενός συντελεστή πρωή, λμβάνουμε υπόψη κι τις επιδράσεις που μπορεί υτή η μετβολή ν έχει σε άλλες ορές θών ή συντελεστών πρωής. Γι ν μπορέσουμε ν κάνουμε την νάλυση μς πλή κι ν χρησιμοποιήσουμε διρμμτικά ερλεί θ υποθέσουμε μι πλή οικονομί, η οποί έχει δύο θά κι το κάθε θό πράετι με τη χρήση δύο συντελεστών πρωής. 22 Αποτελεσμτικότητ στην ντλλή Ας υποθέσουμε ότι στην οικονομί μς υπάρχουν δύο άτομ το Α κι το Β κι το κθέν έχει μι συνάρτηση χρησιμότητς η οποί εξρτάτι πό την κτνάλωση των δύο θών που υπάρχουν των Χ κι κι οι ποσότητες των οποίων θεωρούντι δεδομένες. U U U U (, ) (, ) Οι δεδομένες ποσότητες των θών είνι + + Αποτελεσμτικότητ στην ντλλή Χρησιμοποιώντς το διάρμμ-κουτί των Edgeworth-owley έχουμε Αποτελεσμτικότητ στην ντλλή Με βάση τις συνρτήσεις χρησιμότητς των τόμων μπορούμε ν πεικονίσουμε τις προτιμήσεις των τόμων με κμπύλες διφορίς 1 y υ k 0 β β u 4 a u 3 a u 2 a u 1 b u 1 a x 24 0 a u 4 b u 3 b u 2 b χ 4

5 Αποτελεσμτικότητ στην ντλλή Αποτελεσμτικότητ στην ντλλή 25 Ας υποθέσουμε ότι η ρχική κτνομή των θών Χ κι δίνετι π.χ. πό το σημείο. Με μι νκτνομή των Χ κι το άτομο Α μπορεί ν μετκινηθεί πό το σημείο στο σημείο β, όπου το άτομο Β πρμένει στην ίδι κμπύλη διφορίς U 1Β λλά το άτομο Α μετκινείτι σε μι νώτερη κμπύλη διφορίς την U 3Α. Έχουμε δηλδή μι βελτίωση κτά areto Περιτέρω βελτίωση δεν μπορεί ν ίνει, φού υτό θ σήμινε ότι ν η ευημερί του Α υξηθεί π.χ. στο επίπεδο της κμπύλης διφορίς U 4Α θ πρέπει ν μειωθεί η ευημερί του Β ιτί θ βρεθεί σε μι χμηλότερη κμπύλη διφορίς. Άρ, το σημείο β είνι άριστο κτά areto Το σημείο υτό όμως δεν είνι το μόνο άριστο κτά areto. Με το ίδιο σκεπτικό όπως πριν μπορούμε ν δείξουμε ότι κι το σημείο είνι άριστο κτά areto. ξεκινώντς δηλδή πό έν υθίρετο σημείο όπως το είδμε ότι μπορούμε ν έχουμε μι σειρά πό άριστ σημεί κτά areto. ενώνοντς τ σημεί υτά ποκτούμε τη (δικεκομμένη) ρμμή 0 0 β, η οποί ποκλείτι ρμμή άριστων σημείων. Στ σημεί όμως επφής των κμπυλών διφορίς οι κλίσεις των δύο κμπυλών είνι ίσες κι επειδή η κλίση της κμπύλης διφορίς είνι ίση με τον ορικό λόο υποκτάστσης μετξύ των δύο θών χ κι υ, ισχύει η σχέση 26 Αποτελεσμτικότητ στην ντλλή κι ντωνιστικές ορές Αποτελεσμτικότητ στην ντλλή κι ντωνιστικές ορές Σε μι ντωνιστική ορά οι τιμές των θών θεωρούντι δεδομένες ι τους κτνλωτές κι ο κάθε κτνλωτής, με δεδομένο το εισόδημ του, μειστοποιεί την ευημερί του με το ν εξισώνει τον ορικό λόο υποκτάστσης μετξύ των θών με το λόο των τιμών τους. έχουμε δηλδή ότι Γι ν δούμε ν πράμτι ισχύει το πρώτο θεμελιώδες θεώρημ σ έν πλίσιο ενικής ισορροπίς θ χρησιμοποιήσουμε κι πάλι το διάρμμ-κουτί του Edgeworth. Χ Β U Περίσσευμ 0 Χ Χ Β Ελλειμμ Χ U Χ 0 Β Β Αποτελεσμτικότητ στην ντλλή κι ντωνιστικές ορές Αποτελεσμτικότητ στην ντλλή κι ντωνιστικές ορές 29 0 Β θέλει ν πουλήσει θέλει ν πουλήσει Βθέλει ν οράσει δ θέλει ν οράσει 0 30 Τ άτομ θ ρχίσουν επομένως την ντλλή μέχρις ότου οι ορικοί λόοι υποκτάστσης των δύο τόμων, μετξύ των δύο θών, εξισωθούν ώστε ν μην υπάρχει πλέον κίνητρο ι ντλλή. Αυτό θ οδηήσει στο σημείο δ όπου οι δύο κμπύλες διφορίς εφάπτοντι μετξύ τους κι με τη ρμμή τιμών. Στο σημείο υτό ο ορικός λόος υποκτάστσης μετξύ των δύο θών είνι ίσος με το λόο των τιμών των δύο θών κι υτός είνι ο ίδιος κι ι τ άτομ. Έχουμε δηλδή τη σχέση 5

6 Αποτελεσμτικότητ στην ντλλή κι ντωνιστικές ορές Αποτελεσμτικότητ στην πρωή Η σχέση υτή επιβεβιώνει ότι πράμτι η ντωνιστική οικονομί οδηεί σε μι συνθήκη στην οποί ο ορικός λόος υποκτάστσης μετξύ των δύο θών είνι ο ίδιος ι τ δύο άτομ, συνθήκη που μειστοποιεί την κοινωνική ευημερί. Ας δούμε τώρ πως η οικονομί που εξετάζουμε πράει τ δύο θά Χ κι με τη χρήση δύο συντελεστών πρωής Κ (κεφάλιο) κι L (ερσί), τ οποί είνι σε νελστική προσφορά κι έχουμε πλήρη πσχόληση τους. Ως βσικό ερλείο νάλυσης θ χρησιμοποιήσουμε κι πάλι το διάρμμ-κουτί των Edgeworth-owley Οι συνρτήσεις πρωής των δύο θών, που χρκτηρίζοντι πό στθερές ποδόσεις κλίμκς, δίνοντι πό τις ενικές σχέσεις F ( L, K ) G ( L, K ) Αποτελεσμτικότητ στην πρωή Αποτελεσμτικότητ στην πρωή Ο περιορισμός, υπό τον οποίο οι επιχειρήσεις μειστοποιούν τ κέρδη τους είνι Κ K ε L 0 K L L + L K K + K Προϊόν η ζ Προϊόν Ακολουθώντς την ίδι μεθοδολοί με την νάλυση ι την ποτελεσμτικότητ στην ντλλή, ξεκινούμε με το κόλουθο διάρμμ-κουτί των Edgeworth-owley Περιοχή βελτίωσης κτά areto 0 L q q L Αποτελεσμτικότητ στην πρωή Είνι σφές πό το διάρμμ ότι το ε δεν είνι ποτελεσμτικό. Με μι νδιάτξη του κεφλίου κι της ερσίς είνι δυντό ν υξηθεί η ποσότητ του Χ χωρίς ν μειωθεί η πρωή του. Έν τέτοιο σημείο είνι το ζ. Έν άλλο σημείο στο οποίο έχουμε ύξηση της πρωής του, χωρίς ν μειωθεί η πρωή του Χ είνι το η. Πρτηρούμε δηλδή ότι μι μετκίνηση πό το ε προς τ σημεί ζ κι η έχουμε βελτίωση κτά areto. Άρ η κτνομή στο σημείο ε δεν είνι άριστη. Είνι όμως τ σημεί ζ κι η άριστ κτά areto; Η πάντηση είνι θετική φού η επιπλέον ύξηση της πρωής του ενός θού δεν μπορεί ν ίνει χωρίς τη μείωση της πρωής του άλλου θού. Άρ τ σημεί ζ κι η είνι άριστ κτά areto 36 Αποτελεσμτικότητ στην πρωή Αν συνεχίσουμε την ίδι διδικσί κι με άλλες ρχικές κτνομές κεφλίου κι ερσίς θ ποκτήσουμε έν άπειρο ριθμό άριστων σημείων, οι οποίοι είνι πάνω στη ρμμή άριστων σημείων την 0 Χ 0 στο πιο κάτω διάρμμ K 0 q 2 L q 1 β q 1 q 2 L 0 K 6

7 Αποτελεσμτικότητ στην πρωή Αποτελεσμτικότητ στην πρωή κι ντωνιστικές ορές Η κλίση μις κμπύλης ίσου προϊόντος δείχνει, σε κάθε της σημείο, τον ορικό λόος τεχνικής υποκτάστσης μετξύ κεφλίου κι ερσίς, (MRTS ΚL ) Ξέρουμε επίσης ότι ο ορικός λόος τεχνικής υποκτάστσης μετξύ κεφλίου κι ερσίς είνι ίσος με το λόο των ορικών τους προϊόντων, δηλδή: ML MRTS KL M 37 Επειδή όπως είδμε στ άριστ σημεί οι κλίσεις των κμπυλών ίσου προϊόντος είνι ίσες, υτό σημίνει ότι η ποτελεσμτικότητ στην πρωή ικνοποιείτι ότν ο ορικός λόος τεχνικής υποκτάστσης μετξύ των συντελεστών πρωής είνι ο ίδιος ι όλ τ θά, δηλδή MRTS MRTS KL K KL 38 Ξέρουμε ότι η επιχείρηση μειστοποιεί τ κέρδη της στο σημείο επφής της κμπύλης ίσου προϊόντος με τη ρμμή ίσου κόστους, ισχύει δηλδή η σχέση w MRTS KL r Όπως κι στην περίπτωση της ντλλής, οι κλίσεις των κμπυλών ίσου προϊόντος είνι ίσες στη ρμμή άριστων σημείων, όπότε όπως φίνετι πό τ πιο κάτω διράμμτ ισχύει η σχέση MRTS MRTS KL KL w r Αποτελεσμτικότητ στην πρωή κι ντωνιστικές ορές Αποτελεσμτικότητ στην πρωή κι ντωνιστικές ορές L K Χ ε Μείωση ερσίς Αύξηση κεφλίου 0 K K L ε 0 K Μείωση κεφλίου Μ Αύξηση ερσίς 0 L 0 L Η ρμμή άριστων σημείων στο κουτί Edgeworth-owley ι την πρωή μπορεί ν μετρφεί ως κμπύλη πρωικών δυντοτήτωνττ στο πιο κάτω διάρμμ. Τ σημεί,β,, ντιστοιχούν στ ίδι σημεί εκείνου του διράμμτος. Τ Δ Χ 1 ΔΧ Χ 2 MRTΔ/ΔΧ β Τ Χ 42 Είνι νωστό ότι η κλίση της κμπύλης πρωικών δυντοτήτων μς δείχνει πόσες μονάδες του ενός θού πρέπει ν θυσιάσουμε ι ν ποκτήσουμε μι μονάδ του άλλου θού κι η κλίση υτή ποκλείτι ορικός λόος μετσχημτισμού (MRT) μετξύ των θών. Κάθε σημείο της κμπύλης στο πιο πάνω διάρμμ μς δείχνει κι έν διφορετικό συνδυσμό Χ κι. Αν υποθέσουμε ότι πράετι ο συνδυσμός Χ κι του σημείου. Πώς κτνέμοντι οι ποσότητες των θών υτών μετξύ των δύο τόμων, της πλής οικονομίς μς, Α κι Β; Γι ν το δούμε υτό μπορούμε ν κτσκευάσουμε έν διάρμμ-κουτί του Edgeworth ι την ντλλή, εντός του διράμμτος της κμπύλης πρωικών δυντοτήτων, όπως στο πρκάτω διάρμμ 7

8 * β 0 Β 0 Α Χ Χ Χ* Χ Ας υποθέσουμε ότι βρισκόμστε στο σημείο β της κμπύλης πρωικών δυντοτήτων, οπότε πράετι 0 * ποσότητ του κι 0 * του Χ. Μπορούμε ν θεωρήσουμε την ρχή των ξόνων ως την ρχή του κουτιού του Edgeworth ι το άτομο Α κι το σημείο β ως ρχή ι το άτομο Β. Έτσι το ορθοώνιο 0 Α *0 Β Χ* είνι το κουτί του Edgeworth ι την ντλλή κι η ρμμή 0 Α 0 Β είνι η ρμμή άριστων σημείων. Αν ντί ι το σημείο β είχμε επιλέξει το σημείο θ είχμε έν άλλο κουτί του Edgeworth ι ντλλή το 0 Α 0 Β Χ, κ.ο.κ Με δεδομένη την κμπύλη πρωικών δυντοτήτων κι την πειρί των συνδυσμών πρωής Χ κι που υπάρχουν το ερώτημ που νκύπτει είνι ποιο συνδυσμό θ επιλέξουμε τελικά. Με δεδομένες τις τιμές της οράς ι τ Χ κι έχουμε έν σημείο της κμπύλης πρωικών δυντοτήτων στο οποίο ο ορικός λόος μετσχημτισμού είνι ίσος με το λόο των τιμών. Ας υποθέσουμε ότι είμστε στο σημείο 0 Β του τμήμτος (Ι) του διράμμτος. Έχουμε έτσι το κουτί του Edgeworth ι ντλλή το 0 Α *0 Β Χ* με κμπύλη άριστων σημείων την 0 Α 0 Β κτά μήκος της οποίς ο ορικός λόος υποκτάστσης μετξύ των θών Χ κι είνι ο ίδιος ι τ άτομ Α κι Β. (Ι) (ΙΙ) 0 * * MRT 0 S / t 0 Χ Χ* 0 Χ* Όπως φίνετι πό το τμήμ (ΙΙ) του διράμμτος, θ ίνουν τέτοιες νδιτάξεις στην κτνάλωση, έτσι ώστε ν ισχύει η σχέση: MRT Με την ισότητ ορικού λόου υποκτάστσης κι ορικού λόου μετσχημτισμού είνι σφές ότι η τελική ποτελεσμτική επιλοή δεν θ περιλμβάνει όλ τ σημεί της ρμμής Ο Α Ο Β. Ο ορικός λόος μετσχημτισμού στο Ο Β μετράτι πό την κλίση της ρμμής, η οποί εφάπτετι της κμπύλης δυντοτήτων πρωής στο σημείο υτό. Εξετάζοντς στη συνέχει τους ορικούς λόους υποκτάστσης κτά μήκος της Ο Α Ο Β μπορούμε ν βρούμε έν σημείο όπως το, όπου η κοινή κλίση των κμπυλών διφορίς στο σημείο επφής τους (t) έχει την ίδι κλίση κι τιμή με τον ορικό λόο μετσχημτισμού. 48 Στον τέλειο ντωνισμό ο ορικός λόος μετσχημτισμού μετξύ δύο θών είνι ίσος με το λόο των τιμών των δύο θών, συνθήκη που είνι πρίτητη ι τη μειστοποίηση του κέρδους κι της πρωής. Επίσης στον τέλειο ντωνισμό ο κτνλωτής μειστοποιεί την ευημερί του ότν ο ορικός λόος υποκτάστσης μετξύ δύο θών είνι ίσος με το λόο των τιμών των θών υτών Άρ, με συνδυσμό υτών των δύο έχουμε ότι: MRT 8

9 49 Με δεδομένο ότι στον τέλειο ντωνισμό οι τιμές των θών είνι οι ίδιες ι όλ τ άτομ, το ίδιο συμβίνει κι ι τον ορικό λόο μετσχημτισμού κι τον ορικό λόο υποκτάστσης. Είνι σφές επομένως ότι έν σύστημ τέλει ντωνιστικών ορών οδηεί σε μειστοποίηση της κοινωνικής ευημερίς. Άρ το πρώτο θεμελιώδες θεώρημ των οικονομικών της ευημερίς ικνοποιείτι. 50 Σύνοψη Η ενική ντωνιστική ισορροπί συνεπάετι Αποτελεσμτικότητ κτά areto Μειστοποίηση ευημερίς κτνλωτή συνεπάετι Αποτελεσμτικότητ στην ντλλή Ελχιστοποίηση του κόστους συνεπάετι Αποτελεσμτικότητ στην w πρωή MRTS LK r MRTS w MRTS KL MRTS KL LK r Μειστοποίηση κέρδους MC MC Συνεπάετι MC MRT MC 9

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Κεφάλαιο 6ο Leader-Follower model Leader-Follower εταιρεία I ο ηγέτης Η µεθοδολογία είναι γενική.

Κεφάλαιο 6ο Leader-Follower model Leader-Follower εταιρεία I ο ηγέτης Η µεθοδολογία είναι γενική. Κεφάλιο 6ο Ας δούµε έν - δύο πράµτ κόµ σε σχέση µε πίνι όπου τ άτοµ έχουν έν άπειρο ριθµό στρτηικών. Leader-Follower model (Ηέτης - Ακόλουθος: είνι η νωστή ισορροπί κτά tackelberg. Το πρόληµ του Leader-Follower

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

3.3 Άριστο Επίπεδο Αποθεµάτων

3.3 Άριστο Επίπεδο Αποθεµάτων 3.3 Άριστο Επίπεδο Αποθεµάτων - ο λογισµός της επιχείρησης εκτείνετι σε δύο χρονικές περιόδους. - έχει την δυντότητ ν δηµιουργήσει ποθέµτ την πρώτη περίοδο τ οποί θ πουλήσει την δεύτερη. - Η πόφση πργωγής

Διαβάστε περισσότερα

EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα

EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα EI.3 ΛΕΟΝΑΣΜΑΤΑ.Αξί κτνάλωσης.λεόνσμ κτνλωτή 3.Κόστος προμηθευτή 4.λεόνσμ προμηθευτή 3.Συνολικό πλεόνσμ. ργμτική ξί (Χρησιμότητ) της κτνάλωσης Η ντίστροφη συνάρτηση ζήτησης: = () έχει κτρχήν την γνωστή

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΔΙΑΓΩΝΙΜΑ ΕΚΠ. ΕΤΟΥ 2017-2018 ΑΠΑΝΤΗΕΙ ΔΙΑΓΩΝΙΜΑΤΟ ΑΟΘ Γ Λ-ΘΕΡΙΝΑ 28/12/2017 ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. ) ωστό β) ωστό γ) Λάθος δ)ωστό ε) Λάθος Α2. γ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. Το εισόδημ των κτνλωτών.

Διαβάστε περισσότερα

Micro-foundations of macroeconomics (or Το υπόδειγμα Άριστης Οικονομικής Μεγέθυνσης)

Micro-foundations of macroeconomics (or Το υπόδειγμα Άριστης Οικονομικής Μεγέθυνσης) Miro-foundaions of maroeonomis (or Το υπόδειγμ Άριστης Οικονομικής Μεγέθυνσης) Α. Αποκεντρωμένη Οικονομί Υποθέστε μί κλειστή οικονομί η οποί πρτίζετι πό πλήθος όμοιων νοικοκυριών κι πλήθος όμοιων επιχειρήσεων.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Το υπόδειγµα Άριστης Οικονοµικής Μεγέθυνσης µε Παραγωγικές Εξωτερικότητες Κεφαλαίου (Romer-type externalities)

Το υπόδειγµα Άριστης Οικονοµικής Μεγέθυνσης µε Παραγωγικές Εξωτερικότητες Κεφαλαίου (Romer-type externalities) Το υπόδειγµ Άριστης Οικονοµικής Μεγέθυνσης µε Πργωγικές Εξωτερικότητες Κεφλίου Romer-ype exernales Α. Αποκεντρωµένη Οικονοµί Υποθέστε µί κλειστή οικονοµί η οποί πρτίζετι πό πλήθος νοικοκυριών κι πλήθος

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon

Διαβάστε περισσότερα

ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ

ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ Κεφάλιο 9 ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ Εισγωγή Στην νζήτηση γι τους προσδιοριστικούς πράγοντες της οικονοµικής µεγέθυνσης, στ υποδείγµτ µε εξωτερικές οικονοµίες δόθηκε ιδιίτερο βάρος στις τέλειες

Διαβάστε περισσότερα

Εξωτερικές οικονοµίες

Εξωτερικές οικονοµίες Εξωτερικές οικονοµίες Συνθήκες Οι ενέργειες ενός οικονοµικού υποκειµένου Α προκλούν µετβολή της ευηµερίς ενός οικονοµικού υποκειµένου Β (θετικές ή ρνητικές). Ο Β δεν πληρώνει (ν επηρεάζετι θετικά) ή δεν

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. ) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονοµικής µεγέθυνσης θ ξεκινήσει εξετάζοντς το πιο πλό δυνµικό υπόδειγµ

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης 0 33 Η ΕΛΛΕΙΨΗ Ορισμός Έλλειψης Έστω E κι Ε δύο σημεί ενός επιπέδου Ονομάζετι έλλειψη με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ E κι

Διαβάστε περισσότερα

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής, Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙI ΥΠΟ ΕΙΓΜΑΤΑ ΕΝ ΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ ΙI ΥΠΟ ΕΙΓΜΑΤΑ ΕΝ ΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ ΙI ΥΠΟ ΕΙΓΜΑΤΑ ΕΝ ΟΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 7 ΑΝΘΡΩΠΙΝΟ ΚΕΦΑΛΑΙΟ Εισγωγή Στ επόµεν Κεφάλι η νάλυση θ επικεντρωθεί στην κτηγορί υποδειγµάτων που ποκλούντι υποδείγµτ ενδογενούς οικονοµικής

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

Εισαγωγή. Αποτελεσματικότητα κατά Pareto. 1. ΑΝΤΑΓΩΝΙΣΜΟΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ (επεξεργασία σημειώσεων Β. Ράπανου)

Εισαγωγή. Αποτελεσματικότητα κατά Pareto. 1. ΑΝΤΑΓΩΝΙΣΜΟΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ (επεξεργασία σημειώσεων Β. Ράπανου) 1. ΑΝΤΑΓΩΝΙΣΜΟΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ (επεξεργασία σημειώσεων Β. Ράπανου) Εισαγωγή Μια από τις πιο βασικές διακρίσεις στην οικονομική θεωρία είναι μεταξύ των εννοιών της οικονομικής αποτελεσματικότητας

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

1. Υποκατάσταση συντελεστών στην παραγωγή

1. Υποκατάσταση συντελεστών στην παραγωγή Ε9 ΕΛΑΣΤΙΚΟΤΗΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ.Υποκτάστση συντελεστών στην πργωγή 2.Ομογενείς συνρτήσεις πργωγής 3.Ελστικότητ υποκτάστσης συντελεστών 4.Στθερή ελστικότητ υποκτάστσης 5.Πργωγή στθερής ελστικότητς υποκτάστσης

Διαβάστε περισσότερα

δίνει την πυκνότητα νετρονίων ανά μονάδα ενέργειας. Αναφέρεται συνήθως στη βιβλιογραφία απλά ως «πυκνότητα νετρονίων» ενώ η

δίνει την πυκνότητα νετρονίων ανά μονάδα ενέργειας. Αναφέρεται συνήθως στη βιβλιογραφία απλά ως «πυκνότητα νετρονίων» ενώ η ΠΑΡΑΡΤΗΜΑ Π2.2 Γι ν δούμε με ποιο τρόπο ο τύπος των τεσσάρων συντελεστών προκύπτει πό την (2.2.1) χρειάζετι πρώτ τ γενικεύσουμε τις έννοιες της πυκνότητς κι της ροής νετρονίων. ε κάθε θέση r της κρδιάς

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν. ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεί εισγωγής γι τη Φυσική Α Λυκείου Οι πρκάτω σημειώσεις δινέμοντι υπό την άδει: Creative Commons Ανφορά Δημιουργού - Μη Εμπορική Χρήση - Πρόμοι Δινομή 4.0 Διεθνές. 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση

Διαβάστε περισσότερα

5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton

5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton Έχουμε δει ότι η χρήση ισοδύνμων κυκλωμάτων σε πολλές περιπτώσεις πλοποιεί την νάλυση ενός κυκλώμτος: Αντιστάσεις συνδεδεμένες με ειδικό τρόπο (σειρά, πράλληλ, σε στέρ ή τρίγωνο) μπορούν ν ντικτστθούν

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000 ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ερινό Εξάµηνο 1999-2000, 1 Ιουνίου 2000 Α Οδηγίες: Απντήστε όλες τις ερωτήσεις. Ν επιστρέψετε τ θέµτ. 1. (65 µόρι) ίνετι ο κόλουθος πίνκς πιτούµενων

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ ΚΕΦΑΑΙΟ 1: ΔΕΞΑΜΕΝΗ 30 Τ κπάκι των νθρωποθυρίδων μπορούν ν πρμένουν νοικτά: Κτά τη μετφορά με δεξμενή φορτωμένη 15% του συνολικού όκου. Κτά τις ερσίες κθρισμού της δεξμενής (gasfree). Κτά την εκφόρτωση

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

Αλγόριθµοι Άµεσης Απόκρισης

Αλγόριθµοι Άµεσης Απόκρισης Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης

Διαβάστε περισσότερα

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

EIII.7 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ Ι

EIII.7 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ Ι EIII.7 ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΚΕΡΔΟΥΣ Ι.Κέρδος ντγωνιστικής πργωγής.κερδοφορί 3.Προσφορά προιόντος.κέρδος μονοπωλίου 5.Κέρδος με συντελεστή πργωγής.ζήτηση γθών στην κτνάλωση 7.Μέγιστο κέρδος. Κέρδος ντγωνιστικής

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα)

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα) Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν 1 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 191 Η έννοι της συνάρτησης ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Η έννοι της συνάρτησης, ως έκφρση μις εξάρτησης νάμεσ σε δύο συγκεκριμένες ποσότητες, εμφνίζετι μ ένν υπονοούμενο τρόπο ήδη πό την

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Διάλεξη 4. Οικονομική της ευημερίας. 1 Ράπανος-Καπλάνογλου 2016/7

Διάλεξη 4. Οικονομική της ευημερίας. 1 Ράπανος-Καπλάνογλου 2016/7 Διάλεξη 4 Οικονομική της ευημερίας 1 Οικονομικά της ευημερίας: Γενική ισορροπία Οικονομικά της ευημερίας είναι ο κλάδος της οικονομικής θεωρίας που ασχολείται με το κατά πόσο είναι επιθυμητές από την κοινωνία

Διαβάστε περισσότερα

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε.

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε. Ερωτήσεις πολλπλής επιλογής 1. * Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = Β. = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. * Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α (1, -) κι Β (7, ), έχει συντετγµένες

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα