Πυθαγόρειο Θεώρημα Μία πρόταση διδασκαλίας για την Β! Γυμνασίου με την χρήση των Τ. Π. Ε.
|
|
- Ῥέα Φραγκούδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» Πυθαγόριο Θώρημα Μία πρόταση διδασκαλίας για την Β! Γυμνασίου μ την χρήση των Τ. Π. Ε. Μιχαήλ Αθανασίου Μπουζάλης Εκπαιδυτικός Δυτροβάθμιας Εκπαίδυσης Ν. Θσσαλονίκης Πρίληψη Για την πραγματοποίηση της παραπάνω διδασκαλίας χρησιμοποιίται σνάριο που απυθύνται στον κπαιδυτικό, φύλλο ργασίας για τους μαθητές και τις μαθήτρις και δυναμικά φύλλα ργασίας από τα λογισμικά Geogebra, G.S.P. 4.07_GR, Microsoft Excel. Το σνάριο διαπραγματύται τις Πυθαγόρις τριάδς, τις σχέσις που υπάρχουν μταξύ των πλυρών ορθογωνίου τριγώνου, τις ικανές και αναγκαίς συνθήκς για να ίναι ένα τρίγωνο ορθογώνιο. Η πραγματοποίηση του σναρίου κρίθηκ αναγκαία από την μγάλη σπουδαιότητα του Πυθαγορίου Θωρήματος και των φαρμογών του στα Μαθηματικά. Η διδασκαλία θα πρέπι να γίνι στην αίθουσα των υπολογιστών, στους υπολογιστές της οποίας θα πρέπι να βρίσκονται γκατστημένα τα προηγούμνα λογισμικά Λέξις κλιδιά : Πυθαγόρις τριάδς, Πυθαγόριο Θώρημα 1. Εισαγωγή Το Πυθαγόριο Θώρημα αποτλί ένα από τα ποιο κομψά, αλλά ταυτόχρονα και ποιο σημαντικά θωρήματα μ πολλές φαρμογές. Η ανακάλυψη του θωρήματος, αν και παραδοσιακά αποδίδται στον Πυθαγόρα τον Σάμιο ( π. Χ. ) δν ίναι βέβαιο ότι έγιν από αυτόν ή από κάποιον από τους μαθητές του στην Πυθαγόρια Σχολή που ο ίδιος ίδρυσ. Όμως ίναι βέβαιο πως ίτ ο ίδιος ίτ οι μαθητές του διατύπωσαν την πρώτη απόδιξη. Σύμφωνα μ την παράδοση οι Θοί ανακοίνωσαν στον Πυθαγόρα το ομώνυμο Θώρημα και όταν το απέδιξ, για να τους υχαριστήσι, έκαν θυσία κατό βόδια. Για τον λόγο αυτό, το Πυθαγόριο Θώρημα αναφέρται συχνά και ως «Θώρημα της κατόμβης». Επιπλέον, οι Πυθαγόριοι διατύπωσαν και απέδιξαν το αντίστροφο του θωρήματος. Πολλοί Μαθηματικοί, διάσημοι και μη, προσπάθησαν να αποδίξουν το Πυθαγόριο Θώρημα μ δική τους ανξάρτητη μέθοδο. Ανάμσα σ αυτούς υπάρχουν και προσωπικότητς όπως ο Leonardo da Vinci και ο πρόδρος των Η. Π. Α. Garfield. Το 1940 ο Elisha Scott Loomis πριέλαβ 365 διαφορτικές αποδίξις του Πυθαγορίου Θωρήματος σ ένα βιβλίο. Το θώρημα προέκυψ από την μλέτη του τριγώνου ως προς τις πλυρές και τις γωνίς του και έχι ακόμα φαρμογή στις ττραγωνικές ρίζς, στους άρρητους αριθμούς για την Β! Γυμνασίου ( σλίδς 42, φαρμογές 3, 4, 44 ασκήσις 5,7,8,9, 46 Άρρητοι αριθμοί, 47 τοποθέτηση Άρρητων αριθμών πάνω στον άξονα των πραγματικών αριθμών, φαρμογή 4, 49 έως 52, προβλήματα που λύνονται μ την βοήθια του Πυθαγορίου Θωρήματος ), του σχολικού βιβλίου, νώ χρησιμοποιίται στις μτρικές σχέσις στην Γωμτρία της Β! Λυκίου για ορθογώνιο, τυχαίο τρίγωνο ( σλίδς 183 έως 199 ), για τον υπολογισμό των μβαδών των πιπέδων σχημάτων ( φαρμογή 1 σλίδα 215 ), Ιδιότητς και στοιχία κανονικών πολυγώνων ( σλίδς 234 και 235 ), γγραφή βασικών κανονικών πολυγώνων σ κύκλο ( σλίδς 238 έως 242 ). 2η Ενότητα - Προηγούμνς γνώσις Οι μαθητές και οι μαθήτρις αντιμτωπίζουν για πρώτη φορά την έννοια των Πυθαγόριων τριάδων. Δν γνωρίζουν τίποτα για την σύνδση μγθών μέσα από μη γραμμικές σχέσις. Είναι γνικά γνωστό ότι οι σχέσις που συνδέουν ττράγωνα ακόμα και σαν μτρικές ίναι δύσκολο να κατανοηθούν από τους διδασκόμνους. Έτσι θωρίται πιββλημένο πριν από το Πυθαγόριο Θώρημα να ξηγηθί η έννοια των Πυθαγόριων τριάδων και να συνδθί μ το Πυθαγόριο Θώρημα 3 η Ενότητα Απαιτούμνα υλικά -1-
2 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» Για την διξαγωγή του σναρίου απαιτούνται φύλλα ργασίας για την τάξη, σύντομς οδηγίς για την χρήση του λογισμικού, ονόματα ιστοσλίδων φόσον θα χρησιμοποιηθούν. Πρόχιρο για την γγραφή των σπουδαιότρων συμπρασμάτων της ομάδας, τα οποία θα ανακοινωθούν στη τλική συζήτηση της τάξης. 4 η Ενότητα - Στόχοι του σναρίου. Διαπραγμάτυση Οι στόχοι του σναρίου ίναι να μάθουν οι μαθητές και οι μαθήτρις τις Πυθαγόρις Τριάδς. Να ανακαλύψουν την σχέση που συνδέι τα ττράγωνα των δύο πλυρών ορθογωνίου τριγώνου μ το ττράγωνο της υποτίνουσας και να το διατυπώνουν μ αλγβρική γλώσσα. Τέλος να αποδικνύουν το θώρημα γωμτρικά Η διαπραγμάτυση του σναρίου πριλαμβάνι νημέρωση των μαθητών και των μαθητριών για το σνάριο που θα τους απασχολήσι και τον τρόπο που θα δουλέψουν. Μοιράζονται σ όλους και όλς τα φύλλα ργασίας και η παρακάτω σ σημίωση πριγραφή των δραστηριοτήτων: Δραστηριότητα 1η : Από το αρχίο Geogebra, Pith.ggb φαίνται η σύνδση των αριθμών που αποτλούν Πυθαγόρις τριάδς μ τις πλυρές νός ορθογωνίου τριγώνου. Σ κάθ μτατόπιση των δύο συρτών σχηματίζονται ορθογώνια τρίγωνα στις πλυρές των οποίων φαίνονται οι αριθμοί που σχηματίζουν Πυθαγόρις τριάδς. Χρησιμοποιήθηκ δώ το λογισμικό Geogebra για την υκολία που μας προσφέρι για την δημιουργία της δραστηριότητας, την καλή απικόνιση των μταβολών και το ύχρηστο της όλης προσπάθιας Πυθαγόρις Τριάδς Ορθογώνιο τρίγωνο Δραστηριότητα 2 η : Συμπληρώνται ένα υπολογιστικό φύλλο μ δέκα γραμμές πάνω στην κατασκυή και στις σχέσις που συνδέουν τις Πυθαγόρις τριάδς και μ ποπτία φαίνται η πρώτη σύνδση των αριθμών που αποτλούν Πυθαγόρις τριάδς. Το Excel προτιμήθηκ στην δραστηριότητα αυτή πρισσότρο για τις υπολογιστικές δυνατότητές του και για οικονομία χρόνου καθόσον μ τις συναρτήσις του πολύ ύκολα συμπληρώνονται οι στήλς του φύλου και γίνται αντιληπτή η αλγβρική σχέση των Πυθαγόριων Τριάδων Οι Πυθαγόρις τριάδς λ μ x =λ^2-μ^2 y=2*λ*μ z=λ^2+μ^2 x^2 y^2 x^2+y^2 z^
3 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» Δραστηριότητα 3 η : Στο πριβάλλον του G S P 4.07_Gr στην σλίδα 1 κατασκυάζται ένα ορθογώνιο τρίγωνο μ μταβαλλόμνς τις κορυφές του. Δυναμικά διαπιστώνται ότι το άθροισμα των ττραγώνων των καθέτων πλυρών του ίναι ίσο μ το ττράγωνο της υποτίνουσας του μέσα από πίνακς και από γωμτρική παράσταση. Στην σλίδα 2 αποδικνύται το Πυθαγόριο Θώρημα γωμτρικά. Το λογισμικό του G S P 4.07_Gr προτιμήθηκ στην δραστηριότητα αυτή γιατί ίναι ένα κατξοχήν λογισμικό δυναμικής Γωμτρίας και μας προσφέρι όλς τις μταβολές που χριάζονται για να κατανοήσουν οι μαθητές και οι μαθήτρις Γωμτρικά το Πυθαγόριο Θώρημα Κίνηση στο Α Κίνηση στο Β ΑΒ ΑΓ ΒΓ ΑΒ 2 ΑΓ 2 ΑΒ 2 +ΑΓ 2 ΒΓ 2 3,07 κ. 1,85 κ. 3,58 κ. 9,42 κ. 2 3,41 κ. 2 12,83 κ. 2 12,83 κ. 2 Κίνηση στο Γ μέτροβαγ = 90,00 ΟΡΙΣΜΟΣ Εμβαδόν ΑΓΔΕ Εμβαδόν ΑΒΗΖ Εμβαδόν ΑΓΔΕ+ Εμβαδόν ΑΒΗΖ Εμβαδόν ΒΓΙΘ 3,41 κ. 2 9,42 κ. 2 12,83 κ. 2 12,83 κ. 2 Εμφάνιση ορισμού Ι Θ Δ Γ Ε Α Β Ζ Η E E 1 E 2 Η κκίνηση της τάξης μπορί, ανάλογα μ το πώς θα το κρίνι ο διδάσκων ή η διδάσκουσα, να βασιστί μταξύ άλλων νδικτικά και στα ξής : Ψάξτ στην μηχανή αναζήτησης το «θώρημα της κατόμβης» el.wikipedia.org/wiki/πυθαγόριο_θώρημα Αναζητήστ σ γραμματόσημα το Πυθαγόριο Θώρημα -3-
4 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» Γραμματόσημα μ θέμα τον Πυθαγόρα. Μέχρι τη μακρινή Νικαράγουα... Ελληνικά γραμματόσημα μ θέμα τον Πυθαγόρα. Βρίτ ιστορικά στοιχία για τον Πυθαγόρα τον Σάμιο και την σχολή του Βρίτ πόσς διαφορτικές αποδίξις υπάρχουν για το Πυθαγόριο Θώρημα Βρίτ μ κατάλληλη αναζήτηση ποιός πρόδρος των Η.Π.Α. έδωσ λύση για το Πυθαγόριο Θώρημα. Δίνονται οκτώ ίσα ορθογώνια τρίγωνα και τρία ττράγωνα που έχουν πλυρές τις τρις πλυρές του ορθογωνίου τριγώνου και τους ζητίται μ κατάλληλς μτατοπίσις των σχημάτων να δίξουν ότι το άθροισμα των μβαδών των ττραγώνων των καθέτων πλυρών ίναι ίσο μ το μβαδόν του ττραγώνου της υποτίνουσας ( από το σχολικό βιβλίο ) Να δοθούν Πυθαγόρις τριάδς στις οποίς να βρουν ότι το άθροισμα των ττραγώνων των δύο μικρότρων αριθμών ισούται μ το ττράγωνο της μγαλύτρης πλυράς. Δίνονται σ γωμτρικό σχήμα τρία ττράγωνα μ πλυρές οποισδήποτ πυθαγόρις τριάδς και ζητίται να βρθί η σχέση που υπάρχι μταξύ του μβαδού του αθροίσματος των δύο μικρότρων ττραγώνων μ το μβαδόν του μγαλύτρου ττραγώνου. Επίσκψη των σλίδων του You Tube και ύρση κί videos σχτικά μ το Πυθαγόριο Θώρημα, τραγούδια, πιράματα, δυναμικές παραστάσις, ταινίς κ.τ.λ. Ενδικτικά αναφέρται και άλλα τουλάχιστον δέκα Ανάλογα μ τον τρόπο κκίνησης της τάξης πρέπι ο διδάσκων η διδάσκουσα να διαμορφώσι το φύλλο ργασίας που θα μοιράσι στην τάξη και να χρησιμοποιήσι τα αρχία του πιλγμένου λογισμικού που θα έχι κατασκυάσι από πριν. Ένα νδικτικό φύλλο ργασίας ίναι και το παρακάτω : Πότ ένα τρίγωνο ονομάζται ορθογώνιο, αμβλυγώνιο, οξυγώνιο. Βρίτ τρις αριθμούς, τέτοιους ώστ το άθροισμα των ττραγώνων των δύο αριθμών να ισούται μ το ττράγωνο του τρίτου αριθμού. Αν δν μπορίτ να βρίτ, ανοίξτ το αρχίο Pith.ggb Παρατηρίστ τις πλυρές του τριγώνου ΑΒΓ. Ποια σχέση τις συνδέι -4-
5 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» Μτακινήστ από πάνω αριστρά τους δρομίς λ και μ. Τι παρατηρίται Πόσοι αριθμοί σαν τους παραπάνω ζητούμνους υπάρχουν; Μήπως ξέρτ πως ονομάζονται οι παραπάνω τριάδς; Αν θέλτ να μάθτ πως μπορούμ να βρούμ τις τριάδς αυτές ανοίξτ το αρχίο Microsoft Excel P_T και συμπληρώστ τις στήλς του. Ανοίξτ το αρχίο sxedio1 του Sketchpad. Παρατηρήστ τους δύο πίνακς και το σχήμα, βρίτ τι ίδους τρίγωνο έχτ και ποια στοιχία των πινάκων ίναι ίσα. Μτακινήστ πάνω στην πιφάνια ργασίας όποια από τις κορυφές του τριγώνου θέλτ, όπως θέλτ. Τι συμβαίνι στο τρίγωνο και στους πίνακς; Πατήστ τα κουμπιά μφάνιση κίνησης και κινήστ από κί καθένα από τα κουμπιά ή και όλα μαζί. Τι παρατηρίται; Μπορίτ να κφράστ μ μαθηματική γλώσσα τι ακριβώς συμβαίνι μ τις πλυρές του ορθογωνίου τριγώνου; Αποδίξτ μ την βοήθια της σλίδας 2 του αρχίου sxedio1, την παραπάνω πρόταση. Γνωρίζουμ ότι όλα τα τρίγωνα που υπάρχουν ίναι ίσα μταξύ τους. Στο τέλος της διαδικασίας προτίνται να γίνι ανταλλαγή των απόψων μέσα στην τάξη, να συζητηθί το όλο γχίρημα και να βγουν τα κατάλληλα συμπράσματα. Πιθανή απόδιξη του θωρήματος στον πίνακα από κάποια ομάδα πιδή κάποια άλλη δν μπόρσ να το κάνι. 5 η Ενότητα - Χρησιμότητα του Πυθαγορίου Θωρήματος Όλοι γνωρίζουν την μγάλη χρησιμότητα του Πυθαγορίου Θωρήματος και πόσο μγάλη ίναι η φαρμογή του. Ενδικτικά αναφέρονται : Η τοποθέτηση των Άρρητων αριθμών πάνω στον άξονα Ο υπολογισμός των ττραγωνικών ριζών μ τα σπιράλ Στις σχέσις των μβαδών των πιπέδων σχημάτων που μπορούμ να σχηματίσουμ μ βάσις τις πλυρές ορθογωνίου τριγώνου Στις μτρικές σχέσις σ ορθογώνιο τρίγωνο, τυχαίο τρίγωνο καθώς και στα θωρήματα των διαμέσων Στα κανονικά πολύγωνα γγγραμμένα και πριγγραμμένα Υπολογισμός των τριγωνομτρικών αριθμών 6 η Ενότητα - Δυσκολίς των μαθητών μαθητριών Δν προβλέπται να υπάρξι ιδιαίτρη δυσκολία. Όμως υπάρχι ο κίνδυνος να παρουσιαστί διδακτικός θόρυβος στην συμπλήρωση του φύλου Excel, από τις πολλές μτακινήσις των σημίων του σχήματος και τις αντίστοιχς πινακοποιήσις, από τα κινούμνα γραφικά τα οποία παρασύρουν τους μαθητές μαθήτρις σ κατάχρηση. Άλλς δυσκολίς προβλέπται να παρουσιαστούν από την καταστροφή των πρότυπων ικόνων. 7 η Ενότητα - Κέρδη και ζημίς από την χρήση των Τ. Π. Ε. Ο υπολογιστής προσφέρι όλα τα ργαλία για ακριβίς υπολογισμούς και κατασκυή σχήματος. Δυναμικές μταβολές των πλυρών και των γωνιών, αυτόματη μέτρηση των μγθών του σχήματος, πινακοποίηση των μτρηθέντων μγθών. Γραφική παράσταση των μταβολών. Τα κινούμνα γραφικά δίνουν στον μαθητή - μαθήτρια την δυνατότητα να «παίξουν», να διρυνήσουν το σχήμα βρίσκοντας οριακές θέσις δίνοντας υπόσταση στην έννοια του «τίνι» και του ορίου. Ανακαλύπτουν έτσι την γνώση. Αν όμως παραμίνουμ μόνο σ αυτό χωρίς να προχωρήσουμ στην απόδιξη τότ η Τ. Π. Ε. προκαλούν ζημία. -5-
6 1 ο Εκπαιδυτικό Συνέδριο «Ένταξη και Χρήση των ΤΠΕ στην Εκπαιδυτική Διαδικασία» 8 η Ενότητα - Αξιοποίηση του σναρίου Αυτή θα γίνι μ το φύλλο ργασίας. Οι διδασκόμνοι καλούνται να κατασκυάσουν, να παρατηρήσουν, να ικάσουν και στην συνέχια να αποδίξουν το Πυθαγόριο Θώρημα και το αντίστροφό του. Έτσι μαθαίνουν το να το χρησιμοποιούν στις μτέπιτα ανάγκς τους, όπως στους υπολογισμούς τριγωνομτρικών αριθμών στο κφάλαιο της Τριγωνομτρίας, και της ττραγωνικής ρίζα στην Άλγβρα. Βιβλιογραφία Brousseau. G. (1997). Theory of didactical situations in Mathematics, Kluwer Academic Publishers. Dagdilelis. V. & Papadopoulos, I. (2004). An Open Problem in the Use of Software for Educational Purposes, in E. McKay (Ed.), Proceedings of International Conference on Computers in Education '2004, , RMIT University, Australia. Papadopoulos, I. & Dagdilelis, V. (2006). The Theory of Transactional Distanceas a framework for the analysis of computer aided teaching of geometry, International Journal for Technology in Mathematics Education, 13 (4), Polya, G. (1973). How to solve it, Princeton: Princeton University Press. Κολέζα, Ε. (2000). Γνωσιολογική και Διδακτική Προσέγγιση των Στοιχιωδών Μαθηματικών Εννοιών, Εκδ. Ελληνικά Γράμματα. Κυνηγός, Χ. (2007) Το μάθημα της διρύνησης. Παιδαγωγική αξιοποίηση της Σύγχρονης Τχνολογίας για τη διδακτική των Μαθηματικών: Από την έρυνα στη σχολική τάξη. Εκδ. Ελληνικά Γράμματα. -6-
4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
Σχεδίαση µε τη χρήση Η/Υ
Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι
# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ
Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις
Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
( ) y ) άγνωστη συνάρτηση, f (, )
6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές
2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή
Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους
Συµπάγεια και οµοιόµορφη συνέχεια
35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Σιρά Προβλημάτων 2 Λύσις Άσκηση Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ
Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.
και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .
80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων
Σειρά Προβλημάτων 1 Λύσεις
Άσκηση Σιρά Προβλημάτων Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { m n m, n, m+n πριττός ακέραιος} (β) {w {,} * τα πρώτα δύο σύμβολα της w, αν υπάρχουν, δν ίναι τα ίδια
ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)
ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και
4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ
1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή
φ = ω Β=Γ Α= Β=Ε Γ=Ζ φ Ο
1 Η Π ΕΙΞΗ ΣΤΗΝ ΕΥΚΛΕΙ ΕΙ ΕΩΜΕΤΡΙ. ΩΝΙΕΣ ΙΣΕΣ ια να αποδίξουμ ότι δύο γωνίς ίναι ίσς πρέπι να αποδίξουμ: 1. Ότι ίναι άθροισμα ή διαφορά γωνιών αντίστοια ίσων. α = β α+ γ = β + δ ν τότ γ = δ α γ = β δ.
ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 6) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 6) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θτική Τχνολογική Κατύθυνση ασκήσις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ)
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν
6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β
1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι
Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός
Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός Βασίλειος Δαγδιλέλης 1 και Ιωάννης Παπαδόπουλος 2 1 Τμήμα Εκπαιδευτικής και Κοινωνικής Πολιτικής,, Πανεπιστήμιο Μακεδονίας 2 Τμήμα Μαθηματικών,
2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ211: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 1 Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { w {,} * η w δν πριέχι δύο συνχόμνα όμοια γράμματα }
Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.
Ο Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δίκτη διάθλασης. 1 Σκοπός Ο δίκτης διάθλασης νός διαφανούς οπτικού μέσου ίναι ένα ιδιαίτρο σημαντικό φυσικό μέγθος στην οπτική. Ο δίκτης διάθλασης όχι μόνο
Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις
Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση [5 μονάδς] Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς πί του αλφάβητου Α = {, }. (α) Όλς οι λέξις πί του αλφάβητου
Λύσεις σετ ασκήσεων #6
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του
ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS
246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:
Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα
ΥΠΟ ΕΙΓΜΑΤΑ TRANSFER
ΥΠΟ ΕΙΓΜΑΤΑ TRANSFER Tα υποδίγµατα Transfer αποτλούν µία καλύτρη προσέγγιση στην κτίµηση µονοµταβλητών υποδιγµάτων, στο κφάλαιο αυτό παρουσιάζονται πρισσότρο αναλυτικά. REGRESSION ANALYSIS OF TIME SERIES
ΠΡΟΓΡΑΜΜΑ Η/Υ ΚΑΜΠΤΙΚΗΣ ΕΝΙΣΧΥΣΗΣ ΔΟΚΟΥ ΜΕ ΣΥΓΚΟΛΛΗΣΗ ΟΠΛΙΣΜΟΥ Η ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ.
10 ο Φοιτητικό Συνέδριο «Επισκυές Κατασκυών-04», Μάρτιος 004 Εργασία Νο ΠΡΟΓΡΑΜΜΑ Η/Υ ΚΑΜΠΤΙΚΗΣ ΕΝΙΣΧΥΣΗΣ ΔΟΚΟΥ ΜΕ ΣΥΓΚΟΛΛΗΣΗ ΟΠΛΙΣΜΟΥ Η ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ. ΣΤΡΙΛΙΓΚΑΣ ΙΩΑΝΝΗΣ ΦΑΛΗΡΕΑ ΑΓΓΕΛΙΚΗ Πρίληψη
3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2
Επαναληπτικές ασκήσεις
Επαναληπτικές ασκήσις Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτλίται από mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δν αλληλπιδρούν μταξύ τους. Τα μόρια αυτά μπορούν να βρθούν ίτ σ
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α
Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)
Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Σχολικός Σύµβουλος ΠΕ03
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήµατος ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρηµα έχουν δοθεί
Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 0: Παιχνίδια μ λλιπή πληροφόρηση Ρφανίδης Ιωάννης Άδις Χρήσης Το παρόν κπαιδυτικό υλικό υπόκιται σ άδις χρήσης Creative Commons. ια κπαιδυτικό υλικό, όπως ικόνς, που υπόκιται σ άλλου τύπου άδιας
Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα
Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΟ Ν. ΠΕΡΑΜΟΥ ΣΧ. ΕΤ Επαναληπτικές ασκήσεις
Επαναληπτικές ασκήσις 1. Ο Γιάννης και η Μαρία μοιράστηκαν το ποσό των 3500. Ο Γιάννης πήρ 1300 πρισσότρα από τη Μαρία. ν η Μαρία πήρ x, να ράψτ μ τη οήθια της μταλητής x μια σχέση η οποία να κφράι τον
Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : 1 Η Διδακτική ώρα : Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θωρία Υπολογισμού Ενδιάμση Εξέταση Ημρομηνία : Πέμπτη, 14 Μαρτίου 2019 Διάρκια : 09.00 10.30 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΧΕΙΡΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 [35 μονάδς]
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδειγµα
Α.Τ.Ε.Ι ΠΑΤΡΩ & ΠΛΡΟΦΟΡΙΑΚΩ ΣΥΣΤΜΑΤΩ Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδιγµα Στο παρόν µάθηµα δίνται µ κάποια απλά παραδίγµατα-ασκήσις θέµατα πάνω στην κτίµηση νός πολλαπλού γραµµικού υποδίγµατος.
3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.
32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων
ΑΠΟΤΕΛΕΣΜΑΤΑ ΙΑΒΟΥΛΕΥΣΗΣ (Το έντυπο αποστέλλεται στην ΕΥ ΕΠ ΨΣ)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΙΑΒΟΥΛΕΥΣΗΣ (Το έντυπο αποστέλλται στην ΕΥ ΕΠ ΨΣ) Κωδ ΟΠΣ (MIS) 373862 Πράξη Ψηφιακές πριηγήσις στον κόσµο του θάτρου µέσα από τις παραστάσις του Η.ΠΕ.ΘΕ. Κοµοτηνής Υποέργο Ψηφιακές πριηγήσις
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Διπλωματική Εργασία Χώροι ημισωτρικού γινομένου και Birkhoff-James -ορθογωνιότητα ΧΑΣΑΠΗ Π. ΣΤΑΜΑΤΙΝΑ
Ανοικτά και κλειστά σύνολα
5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας
ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την
ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα μαθητή /τριας: Τμήμα: Αρ.
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: ώρες ΗΜΕΡΟΜΗΝΙΑ: 03 / 6 / 014 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή /τριας:
ΚΕΦΑΛΑΙΟ 1. Οι ϐασικές έννοιες. 1.1 Αόριστες έννοιες, αξιώµατα
ΚΕΦΛΙΟ 1 Οι ϐασικές έννοις 1.1 όριστς έννοις, αξιώµατα υτό ισχύι ακόµη και για το ίδιο µας το γώ : το αντιλαµβανόµαστ µόνον ως κδήλωση, όχι ως κάτι που µπορίνα υπάρχι καθ αυτό. Thomas Mann, Schopenhauer
Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών
Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα
ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση
Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ:.3 Εμβαδόν τριγώνου - Μέρος 3 ο 1) ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: Να υπολογίζουν την απόσταση σημείου από ευθεία και το εμβαδόν τριγώνου με
[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]
Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Κεφάλαιο 2: Μετάδοση θερμότητας με ΑΚΤΙΝΟΒΟΛΙΑ
Κφάλαιο : Μτάδοση θρμότητας μ ΑΚΤΙΝΟΒΟΛΙΑ Συντλστής όψως Στο προηγούμνο κφάλαιο μλτήσαμ κυρίως τις ιδιότητς ακτινοβολίας που κπέμπται, απορροφάται και αντανακλάται από μία πιφάνια Τώρα ξτάζουμ την ανταλλαγή
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ
184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία
Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.
Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Ζαφειρόπουλος Χρήστος Μαθηματικός Γυμνασίου & Λυκείου Καράτουλα zafeiropouloschristos@yahoo.gr ΠΕΡΙΛΗΨΗ Το Πυθαγόρειο Θεώρημα ξεκινώντας την ιστορική
T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ
T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΟΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ» ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΑΤΑΞΗΣ ΔΙΗΛΕΚΤΡΙΚΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΨΗΛΩΝ
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων Στόχος Εκμάθηση τεχνικών και μεθόδων για να χρησιμοποιείται το λογισμικό φύλλων εργασίας στη διδασκαλία. Διατυπωμένες Θέσεις 1 Δε χρησιμοποιείται
ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;
ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2017 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ : ΑΡΙΘΜΟΣ ΚΑΤΑΛΟΓΟΥ :
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 16-17 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 17 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΤΑΞΗ : Α ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 6.5.17 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
Αντλία νερού: Ο ρόλος της αντλίαςμελέτη συμπεράσματα σχόλια.
Αντλία νρού: Ο ρόλος της μλέτη συμπράσματα σχόλια.. Ο ρόλος της. Η αντλία χρησιμοποιίται ώστ να μταφέρι μια ποσότητα νρού κί που δν μπορί να μταφρθί μόνο μ τις πιέσις που δημιουργούνται από το υπόλοιπο
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Σημιώσις για το μάθημα ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ε. Ε. Νισταζάκης Τμήμα Στατιστικής και Αναλογιστικής Επιστήμης Πανπιστήμιο Αιγαίου ΠΕΡΙΕΧΟΜΕΝΑ Κφάλαιο ο : ΕΙΣΑΓΩΓΗ 5.. Μ τι ασχολίται η αριθμητική
ιάθλαση µέσω οπτικού πρίσµατος - Υπολογισµός δείκτη διάθλασης
Ο2 ιάθλαση µέσω οπτικού πρίσµατος - Υπολογισµός δίκτη διάθλασης 1. Σκοπός Ο δίκτης διάθλασης n νός διαφανούς οπτικού µέσου ίναι ένα ιδιαίτρο σηµαντικό µέγθος στην οπτική. Ο δίκτης διάθλασης όχι µόνο µταβάλλται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β
ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια
ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,
Διδάσκων: Καθηγητής Εμμανουήλ Μ. Παπαμιχαήλ
Τίτλος Μαθήματος: Ενζυμολογία Ενότητα: Παράρτημα Διδάσκων: Καθηγητής Εμμανουήλ Μ. Παπαμιχαήλ Τμήμα: Χημίας 142 ΠΑΡΑΡΤΗΜΑΤΑ 1. Βιβλιογραφικές αναφορές διαφόρων τύπων χρωματογραφιών: Janson J. C., & Rydén
ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
ΤΕΣΤ ❶ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΤΕΣΤ ❶ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Στο διπλανό σχήμα δίνονται οι γραφικές παραστάσεις των ευθειών α) Να δείξετε ότι οι ευθείες έχουν εξισώσεις : : y x και ( ): y x 5 β) Να βρεθεί η εξίσωση της
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ
(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3
0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
1.4. ε ε. E 1 ε E 2. ε ε γ. β ε. Λύση α) Έχουμε ότι: ε = β γ 2. γ E 1 γ. β γ. γ β ΔΡΑΣΤΗΡΙΟΤΗΤΑ
1.4. Πυθόριο θώρημ ΡΣΤΗΡΙΟΤΗΤ 1 ίνοντι οκτώ ίσ ορθοώνι τρίων μ κάθτς πλυρές, κι υποτίνουσ κι τρί ττράων μ πλυρές,, ντίστοιχ. ) Ν υπολοίστ τ μδά, Ε, Ε 1, Ε 2 των διπλνών τριώνων κι ττρώνων. ) Ν τοποθτήστ
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια
Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα
Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος
B ΓΥΜΝΑΣΙΟΥ Πέτρος Μάρκος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις σε όλα
ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου
ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,