φ = ω Β=Γ Α= Β=Ε Γ=Ζ φ Ο
|
|
- Θεοδοσία Γεννάδιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 Η Π ΕΙΞΗ ΣΤΗΝ ΕΥΚΛΕΙ ΕΙ ΕΩΜΕΤΡΙ. ΩΝΙΕΣ ΙΣΕΣ ια να αποδίξουμ ότι δύο γωνίς ίναι ίσς πρέπι να αποδίξουμ: 1. Ότι ίναι άθροισμα ή διαφορά γωνιών αντίστοια ίσων. α = β α+ γ = β + δ ν τότ γ = δ α γ = β δ. Ότι ίναι συμπληρωματικές ή παραπληρωματικές ίσων γωνιών. 0 θ+ α = 90 ν τότ θ = φ 0 φ+ α = 90 0 θ+ β = 180 ν τότ θ = φ 0 φ+ β = Ότι ίναι κατακορυφήν γωνίς. 1 ψ 1 φ ω ψ φ = ω ψ = ψ Ότι ίναι γωνίς που πρόσκινται στη βάση ισοσκλούς τριγώνου. = 5. Ότι ίναι ομόλογς γωνίς ίσων τριγώνων. Ε Ζ ν = ΕΖ τότ: = =Ε =Ζ
2 6. Ότι ίναι ντός ναλλάξ γωνίς, α = β κτός ναλλάξ γωνίς, γ = δ δ β ντός κτός και πί τα αυτά μέρη γωνίς, α = που σηματίζονται από δυο παράλληλς και μια α τέμνουσα. γ 7. Ότι ίναι γωνίς μ πλυρές παράλληλς που έουν την ίδια φορά ή αντίθτη φορά. ω β 1 O α φ O 1 Ίδια φορά ντίθτη φορά φ = ω α = β 8. Ότι ίναι οξίς ή αμβλίς γωνίς των οποίων οι πλυρές ίναι κάθτς Ότι ίναι συμμτρικές γωνίς ως προς κέντρο ή ως προς άξονα. ψ ' ' ψ 1 ψ ' ψ '
3 3 10. Ότι, κατά ένα γνικό τρόπο, ίναι τα άκρα μιας σιράς ίσων γωνιών. ν α = β β = γ γ = δ τότ: α δ = 11. Ότι ίναι γγγραμμένς γωνίς, οι οποίς βαίνουν στο ίδιο τόξο. = 1. Ότι η μία ίναι γωνία που σηματίζται από ορδή και φαπτομένη και η άλλη ίναι γγγραμμένη που βαίνι στο τόξο που πριέται μταξύ των πλυρών της πρώτης. = Χ 13. Ότι η μια ίναι γωνία νός ττραπλύρου γγγραμμένου σ κύκλο και η άλλη ίναι η ξωτρική γωνία της απέναντι κορυφής. =
4 4 14. Ότι η μια ίναι μια γωνία που σηματίζται από μια πλυρά και μια διαγώνιο νός γγγραμμένου ττραπλύρου και η άλλη ίναι η γωνία που σηματίζται από την απέναντι πλυρά και την άλλη διαγώνιο. = 15. Είναι οι ομόλογς γωνίς δύο ομοίων τριγώνων ή γνικά δύο ομοίων υθυγράμμων σημάτων. ΕΖ Ε Ζ = =Ε =Ζ
5 5. ΙΣ ΕΥΘΥΡΜΜ ΤΜΗΜΤ ια να αποδίξουμ, ότι δύο υθύγραμμα τμήματα ίναι ίσα, πρέπι να αποδίξουμ: 1. Ότι ίναι άθροισμα ή διαφορά υθυγράμμων τμημάτων αντίστοια ίσων.. Ότι ίναι δύο ομόλογς πλυρές δύο ίσων τριγώνων. 3. Ότι ίναι οι απέναντι πλυρές παραλληλογράμμου. 4. Ότι ίναι οι διαγώνις νός ορθογωνίου. = 5. Ότι ίναι τμήματα παραλλήλων που πριέονται μταξύ παραλλήλων υθιών. = 6. Ότι ίναι δύο υθύγραμμα τμήματα συμμτρικά ως προς άξονα ή ως προς κέντρο. ' ' = = ' ' 7. Ότι ίναι οι δυο πλυρές νός ισοσκλούς τριγώνου. 8. Ότι ίναι τα δύο τμήματα της βάσης νός ισοσκλούς τριγώνου στα οποία ωρίζται η βάση από το ύψος του ισοσκλούς τριγώνου ή από τη διοτόμο της γωνίας της κορυφής του. =
6 6 9. Ότι, κατά ένα γνικό τρόπο, ίναι τα άκρα μιας σιράς ίσων υθυγράμμων τμημάτων. = ν =ΕΖ τότ =ΚΛ. ΕΖ=ΚΛ 10. Ότι ίναι δύο ακτίνς ή δύο διάμτροι του αυτού κύκλου ή δύο ίσων κύκλων. 11. Ότι ίναι ορδές του αυτού κύκλου ή ίσων κύκλων, οι οποίς απέουν από το κέντρο ίσς αποστάσις. Μ Ν ν Μ = Ν τότ = 1. Ότι ίναι ορδές ίσων τόξων. ν = τότ = 13. Ότι ίναι φαπτόμνς του αυτού κύκλου που άγονται από το ίδιο σημίο. =
7 7. ΙΣΣΚΕΛΕΣ ΤΡΙΩΝ ια να αποδίξουμ ότι ένα τρίγωνο ίναι ισοσκλές πρέπι να αποδίξουμ: 1. Ότι έι δύο πλυρές ή δύο γωνίς ίσς.. Ότι έι ένα άξονα συμμτρίας. ' = 3. Ότι η διοτόμος μιας γωνίας του ίναι συγρόνως και ύψος του. 4. Η διοτόμος μιας γωνίας του ίναι και διάμσός του. 5. Η διοτόμος μιας γωνίας του ίναι και μσοκάθτη της απέναντι πλυράς. 6. Ένα ύψος του ίναι και διάμσός του. 7. Ένα ύψος του ίναι και μσοκάθτη της αντίστοιης πλυράς. 8. Μια διάμσος ίναι και μσοκάθτη της αντίστοιης πλυράς.
8 8. ΡΘΩΝΙ ΤΡΙΩΝ ια να αποδίξουμ ότι ένα τρίγωνο ίναι ορθογώνιο, πρέπι να αποδίξουμ: 1. Ότι έι μια γωνία ορθή.. Ότι δύο γωνίς του ίναι συμπληρωματικές. 3. Ότι η διάμσος που άγται από μια κορυφή του ίναι ίση μ το μισό της αντίστοιης πλυράς. Μ ν AM B = τότ 0 = Ότι ίναι γγγραμμένο σ ημικύκλιο. 5. Ότι έι μια γωνία 60 τέτοις ώστ η μία ίναι διπλάσια της άλλης. 0 και οι πλυρές που πριέουν τη γωνία αυτή ίναι ή ν 0 = 60 και ν 0 = 30 και = τότ 0 = 90 = τότ 0 = 90
9 9 6. Ότι το ττράγωνο μιας πλυράς του ίναι ίσο μ το άθροισμα των ττραγώνων των δύο άλλων πλυρών του. (Πυθαγόριο Θώρημα) 7. Ότι το ύψος που αντιστοιί σ μια πλυρά του ίναι μέσο ανάλογο των δύο τμημάτων τα οποία ορίζι στην πλυρά αυτή. ν δηλαδή = =. τότ 0 = Ότι μια πλυρά του ίναι μέση ανάλογος μταξύ μιας άλλης πλυράς και της προβολής της πρώτης πάνω στη δύτρη. ν = δηλ. =. ή = δηλ. =. τότ 0 = Το μβαδόν του ίναι ίσο μ το μισό του γινομένου δύο πλυρών του.
10 10 Ε. ΕΥΘΕΙΕΣ ΚΘΕΤΕΣ ια να αποδίξουμ ότι δύο υθίς ίναι κάθτς μταξύ τους, πρέπι να αποδίξουμ: 1. Ότι η μία από τις γωνίς που σηματίζουν ίναι ορθή (γι αυτό, αρκί να δίξουμ ότι ίναι 90 0 ή ότι ίναι ίση μ μία άλλη ορθή γωνία του σήματος ή ότι ίναι η τρίτη γωνία νός τριγώνου του οποίου οι δύο άλλς γωνίς ίναι συμπληρωματικές). Ότι ίναι διοτόμοι δύο φξής παραπληρωματικών γωνιών. ω φ ω φ 0 ω+ φ = Ότι η μια υθία ίναι η βάση ισοσκλούς τριγώνου και η άλλη ίναι η μσοκάθτη της βάσης ή η διοτόμος της γωνίας της κορυφής του. 4. Ότι η μια υθία ίναι παράλληλη προς μια κάθτη προς την άλλη υθία. ζ ' ζ ν ζ τότ 5. Ότι ίναι δύο πλυρές ίσων γωνιών, που έουν τις δύο άλλς πλυρές τους αντίστοια κάθτς και οι γωνίς έουν την ίδια φορά προς τις τλυταίς πλυρές. ψ ψ ' ' ψ ' ' ψ '
11 11 6. Ότι η μια υθία συνδέι δύο σημία συμμτρικά προς την άλλη υθία. ' 7. Ότι ίναι διαγώνιοι νός ρόμβου ή ττραγώνου. 8. Ότι η μία ίναι μια πλυρά νός τριγώνου, νώ η άλλη ίναι η υθία που συνδέι την απέναντι κορυφή μ το σημίο τομής των υψών που άγονται από τις άλλς κορυφές του τριγώνου. Η 9. Ότι η μια ίναι φαπτομένη νός κύκλου και η άλλη ίναι ακτίνα που καταλήγι στο σημίο παφής.
12 1 10. Ότι η μία ίναι μια ορδή νός κύκλου και η άλλη ίναι: Η διάμτρος που διέρται από το μέσον της ορδής. Η διάμτρος που διέρται από το μέσον του αντίστοιου τόξου., όπου = Η υθία που συνδέι τα μέσα των δύο τόξων, που αντιστοιούν στη ορδή αυτή., όπου = και = Η υθία που συνδέι το μέσον της ορδής μ το μέσον νός από τα δύο τόξα που αντιστοιούν στη ορδή αυτή. Μ Μ 11. Ότι η μία ίναι υθία που συνδέι ένα σημίο κτός κύκλου μ το κέντρο του κύκλου και η άλλη ίναι η υθία που συνδέι τα σημία παφής των φαπτομένων, που άγονται από το σημίο προς τον κύκλο.
13 13 1. Ότι η μία ίναι ένα υθύγραμμο τμήμα και η άλλη η υθία που συνδέι δύο σημία που ισαπέουν από τα άκρα του τμήματος. = = 13. Ότι η μία ίναι η διάκντρος δύο κύκλων και η άλλη ο ριζικός άξονας των κύκλων. Σ Ε κ1 κ Κ Λ Ζ Σ.Σ = Σ.Σ = ΣΕ.ΣΖ
14 14 ΣΤ. ΕΥΘΕΙΕΣ ΠΡΛΛΗΛΕΣ ια να αποδίξουμ ότι δυο υθίς ίναι παράλληλς πρέπι να αποδίξουμ: 1. Ότι ίναι παράλληλς προς την ίδια υθία ν 1 τότ 1. Ότι ίναι κάθτς στην ίδια υθία. ν 1 τότ 1 3. Ότι σηματίζουν μ μια τέμνουσα: ύο ντός ναλλάξ γωνίς ίσς ή ύο ντός κτός και πί τα αυτά μέρη γωνίς ίσς ή ύο ντός και πί τα αυτά μέρη γωνίς παραπληρωματικές ή ύο κτός και πί τα αυτά μέρη γωνίς παραπληρωματικές. 4. Ότι ίναι δύο πλυρές δύο ίσων γωνιών οι οποίς έουν τις πλυρές τους παράλληλς και οι γωνίς έουν την ίδια φορά ως προς τις τλυταίς πλυρές. ψ ψ ' ' ' 5. Ότι η μία ίναι η βάση νός τριγώνου και η άλλη ίναι η υθία που συνδέι τα μέσα των δύο άλλων πλυρών. Μ Ν ΜΝ
15 15 6. Ότι ίναι υθίς που συνδέουν αντίστοια δυο ζύγη σημίων συμμτρικών ως προς τον ίδιο άξονα. ' ' 1 7. Ότι δύο σημία της μιας ισαπέουν από την άλλη. = ν τότ 1 8. Ότι ορίζουν σ δύο τμνόμνς υθίς- μ το σημίο της τομής τουςτμήματα ανάλογα, κίμνα κατά τον αυτό τρόπο. 1 ' ' ψ ν = τότ 1
16 16 Ζ. ΠΡΛΛΗΛΡΜΜ ια να αποδίξουμ ότι ένα ττράπλυρο ίναι παραλληλόγραμμο πρέπι να αποδίξουμ ότι: 1. ι απέναντι πλυρές του ίναι ανά δύο παράλληλς. B ν και τότ παραλληλόγραμμο. ι απέναντι γωνίς του ίναι ανά δύο ίσς. ν = και = τότ παραλληλόγραμμο 3. ι απέναντι πλυρές του ίναι ίσς ανά δύο. ν = και = τότ παραλληλόγραμμο 4. ύο απέναντι πλυρές του ίναι ίσς και παράλληλς. ν = τότ παραλληλόγραμμο 5. ι διαγώνιοί του διοτομούνται. B ν = και = τότ παραλληλόγραμμο Η. ΡΘΩΝΙ ια να αποδίξουμ ότι ένα ττράπλυρο ίναι ορθογώνιο πρέπι να αποδίξουμ ότι ίναι παραλληλόγραμμο και: 1. Ότι έι μια γωνία ορθή.. Ότι έι ίσς διαγώνις. ν παραλληλόγραμμο και = τότ παραλληλόγραμμο
17 17 3. Ότι ίναι γγγραμμένο σ κύκλο. 4. Επίσης μπορούμ να δίξουμ ότι ίναι ένα ττράπλυρο που έι τρις ορθές γωνίς. Θ. ΡΜΣ ια να αποδίξουμ ότι ένα ττράπλυρο ίναι ρόμβος πρέπι να αποδίξουμ ότι ίναι παραλληλόγραμμο και: 1. Ότι έι δύο διαδοικές πλυρές ίσς.. Ότι έι κάθτς διαγώνις. 3. Ότι μια διαγώνιός του ίναι διοτόμος μιας των γωνιών του. ν παραλληλόγραμμο και = τότ ρόμβος 4. Επίσης μπορούμ να δίξουμ ότι ίναι ένα ττράπλυρο που έι και τις τέσσρις πλυρές του ίσς. Ι. ΤΕΤΡΩΝ 1. ια να δίξουμ ότι ένα ττράπλυρο ίναι ττράγωνο, πρέπι να αποδίξουμ ότι ίναι ορθογώνιο και ρόμβος.
18 18 Ι. ΙΧΤΜΣ ΩΝΙΣ. ια να δίξουμ ότι μια ημιυθία ίναι διοτόμος μιας γωνίας, πρέπι να αποδίξουμ ότι: 1. Σηματίζι δύο γωνίς ίσς μ τις πλυρές της γωνίας.. Ένα σημίο της ισαπέι από τις πλυρές της γωνίας. ψ z ν = τότ Oz ίναι διοτόμος της xôψ. ια να αποδίξουμ ότι μια ημιυθία ίναι διοτόμος μιας γωνίας νός τριγώνου πρέπι να αποδίξουμ: 1. Ότι συνδέι την κορυφή μιας γωνίας μ το σημίο τομής των σωτρικών διοτόμων των δύο άλλων γωνιών. Ε Ι. Ότι συνδέι την κορυφή μιας γωνίας μ το σημίο τομής των ξωτρικών διοτόμων των δύο άλλων γωνιών. Ι α
19 19 3. Ότι ωρίζι την απέναντι πλυρά σ δύο μέρη ανάλογα των πλυρών που πριέουν την ημιυθία αυτή. γ β ν γ = τότ διοτόμος της β Ι. ΣΗΜΕΙ ΚΕΙΜΕΝ ΕΠΙ ΕΥΘΕΙΣ ια να αποδίξουμ ότι τρία σημία,, κίνται π υθίας: 1. Συνδέουμ τα και μ το και δίνουμ ότι τα υθύγραμμα τμήματα και βρίσκονται στην ίδια υθία. ν τα και βρίσκονται κατέρωθν του αποδικνύουμ ότι 0 = 180 ή ότι αν xy μια υθία που διέρται από το, ότι x= y. y ν τα και βρίσκονται προς το ίδιο μέρος του θωρούμ ημιυθία x και αποδικνύουμ ότι x= x. B
20 0 Μπορούμ να δίξουμ ότι τα τμήματα και ίναι παράλληλα ή κάθτα στην ίδια υθία. ν τότ,, συνυθιακά ν τότ,, συνυθιακά. Μπορούμ να δίξουμ ότι και τα τρία σημία κίνται στον ίδιο γωμτρικό τόπο, όταν ο τόπος αυτός ίναι μια υθία. π.. αν Κ = Λ, Κ = Λ και Κ= Λ τότ τα,, βρίσκονται πάνω στη μσοκάθτη του υθυγράμμου τμήματος ΚΛ 3. ν το σημίο βρίσκται σ μια γραμμή (), φέρνουμ την. Η τέμνι την () σ ένα σημίο. ν τα και συμπίπτουν, τότ τα,, ίναι συνυθιακά. 4. Μπορούμ να αποδίξουμ ότι δύο απ τα σημία ίναι συμμτρικά μιας συμμτρίας, της οποίας το τρίτο σημίο ίναι κέντρο συμμτρίας. 5. Μπορούμ να αποδίξουμ ότι δύο απ τα σημία αυτά ίναι ομοιόθτα μιας ομοιοθσίας, της οποίας το τρίτο σημίο ίναι το κέντρο ομοιοθσίας. 6. ια να δίξουμ ότι δυο σημία νός κύκλου και το κέντρο του κύκλου ίναι σημία συνυθιακά, πρέπι να αποδίξουμ ότι τα δύο σημία ίναι τα μέσα δύο τόξων, που αντιστοιούν σ μια ορδή ή ότι οι ορδές που συνδέουν τα σημία αυτά μ τυόν σημίο του κύκλου σηματίζουν ορθή γωνία. ν = και =, τότ,, συνυθιακά Η 7. ια να αποδίξουμ ότι τέσσρα σημία,,, ίναι συνυθιακά πρέπι να αποδίξουμ ότι τα τρία από τα σημία αυτά ίναι συνυθιακά και έπιτα ότι το τέταρτο σημίο και δύο από τα τρία πρώτα ίναι συνυθιακά. π.. αν,, συνυθιακά και,, συνυθιακά τότ,,, συνυθιακά
21 1 Ι. ΜΚΥΚΛΙΚ ΣΗΜΕΙ. ια να αποδίξουμ ότι τέσσρα σημία,,, ίναι ομοκυκλικά, μπορούμ να αποδίξουμ: 1. Ότι οι απέναντι γωνίς του ττραπλύρου ίναι παραπληρωματικές.. Ότι μια γωνία του ττραπλύρου ίναι ίση μ την ξωτρική γωνία της απέναντι κορυφής. 3. Ότι μια γωνία που σηματίζται από μια πλυρά και μια διαγώνιο του ττραπλύρου ίναι ίση μ τη γωνία που σηματίζται από την απέναντι πλυρά και την άλλη διαγώνιο. 4. Ότι το σημίο τομής Σ δύο απέναντι πλυρών π.. των και ορίζι τμήματα τέτοια ώστ: Σ. Σ=Σ.Σ Σ 5. Ότι το σημίο Σ της τομής των διαγωνίων του και διαιρί τις διαγωνίους σ τμήματα τέτοια ώστ Σ.Σ=Σ.Σ Σ 6. Τα τέσσρα σημία ισαπέουν από ένα άλλο σημίο. π.. ν = = = τότ,,, ομοκυκλικά 7. Ότι τα τέσσρα σημία ανήκουν σ ένα γωμτρικό τόπο ο οποίος ίναι κύκλος.. ν,,, ομοκυκλικά και,,, Ε πίσης ομοκυκλικά σημία, τότ οι δύο κύκλοι συμπίπτουν γιατί έουν κοινά τρία σημία,,. πότ και τα πέντ σημία,,,, Ε ίναι ομοκυκλικά.
22 Ι. ΤΕΜΝΜΕΝΕΣ ΕΥΘΕΙΕΣ ια να αποδίξουμ ότι τρις υθίς τέμνονται στο ίδιο σημίο μπορούμ να αποδίξουμ: 1. Ότι δύο απ τις υθίς τέμνουν την τρίτη στο ίδιο σημίο.. Ότι δύο σημία της μιας και το σημίο τομής των δύο άλλων υθιών ίναι σημία συνυθιακά. 3. Ότι οι τρις αυτές υθίς ίναι: ι διάμσοι νός τριγώνου ή ι μσοκάθτς των πλυρών του ή ι διοτόμοι των γωνιών του ή Τα ύψη του. ΙΕ. ΕΦΠΤΜΕΝΙ ΚΥΚΛΙ ια να αποδίξουμ ότι δύο κύκλοι φάπτονται μπορούμ να αποδίξουμ: 1. Ότι η διάκντρός τους ίναι ίση μ το άθροισμα των ακτίνων τους. - ρ R = R+ρ. Ότι έουν ένα κοινό σημίο το οποίο βρίσκται στη διάκντρο. 3. Ότι έουν σ ένα σημίο κοινή φαπτομένη. ΙΣΤ. ΤΕΜΝΜΕΝΙ ΚΥΚΛΙ ια να αποδίξουμ ότι δύο κύκλοι τέμνονται μπορούμ να αποδίξουμ: 1. Ότι η διάκντρός τους ίναι μικρότρη από το άθροισμα των ακτίνων τους. R ρ Κ Λ R ρ< KΛ< R+ ρ
23 3. Ότι έουν ένα κοινό σημίο κτός της διακέντρου. ΙΖ. ΕΦΠΤΜΕΝΗ ΚΥΚΛΥ ια να αποδίξουμ ότι μια υθία ίναι φαπτομένη νός κύκλου μπορούμ να αποδίξουμ: 1. Ότι ίναι κάθτη στο άκρο μιας ακτίνας.. Ότι σηματίζι μ μια ορδή μια γωνία, η οποία έι μέτρο ίσο μ το μισό του μέτρου του τόξου που αντιστοιί στη ορδή. ( ) 1 ( x) = AB 3. Ότι ίναι μέση ανάλογος μταξύ μιας ολόκληρης τέμνουσας, η οποία άγται από ένα σημίο κτός του κύκλου και του κτός του κύκλου μέρους της τέμνουσας αυτής. Σ Κ ΣΚ =ΣΣ ή ΣΚ Σ = Σ ΣΚ.
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα
Διαβάστε περισσότεραΓωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.2.1. Συμμετρία ως προς άξονα
ΕΝΟΤΗΤΑ Β.2.1. Συμμτρία ως προς άξονα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Δραστηριότητα 1 Βρίτ το συμμτρικό του Α ως προς την υθία Βρίτ το συμμτρικό του Β ως προς την υθία 1 Α Β Βρίτ το συμμτρικό του Α ως προς
Διαβάστε περισσότεραΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΑΞΟΝΑ
1 1-2 ΣΥΜΜΕΤΡΙ ΩΣ ΠΡΣ ΞΝ ΞΝΣ ΣΥΜΜΕΤΡΙΣ ΘΕΩΡΙ Συµµτρικό σηµίου ως προς υθία Όταν το ν βρίσκται πάνω στην νοµάζουµ συµµτρικό του ως προς την υθία το σηµίο µ το οποίο συµπίπτι το όταν ιπλώσουµ το σχήµα κατά
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΘΕΩΡΙΑ. ΚΕΦΑΛΑΙΟ 1ο: ΒΑΣΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ
ΕΩΜΕΤΡΙ ΘΕΩΡΙ ΚΕΦΛΙ ο: ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι ορίζουν αυτά και πως κατασκυάζουμ ένα τμήμα; πάντηση Η άκρη του μολυβιού
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΘΕΩΡΙ ΜΕΡΣ ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι
Διαβάστε περισσότεραΣτοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
Διαβάστε περισσότερα2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.
Διαβάστε περισσότεραΣχεδίαση µε τη χρήση Η/Υ
Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι
Διαβάστε περισσότερα4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ
1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος
ΥΠΥΡΕΙ ΕΘΝΙΚΗΣ ΠΙ ΕΙΣ ΚΙ ΘΡΗΣΚΕΥΜΤΩΝ ΠΙ ΩΙΚ ΙΝΣΤΙΤΥΤ Ιωάννης ανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φρντίνος ΜΘΗΜΤΙΚ υμνασίου ΜΕΡΣ ωμτρία Τόμος 2ος Μαθηματικά ΥΜΝΣΙΥ ΜΕΡΣ ωμτρία Τόμος
Διαβάστε περισσότεραΟρισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
Διαβάστε περισσότεραΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11
ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο
Διαβάστε περισσότερα2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Σχδίαση μ τη χρήση Η/Υ ΚΕΦΛΙ 2 ΓΕΩΜΕΤΡΙΚΕΣ ΚΤΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΣ ΝΘΠΥΛΣ, ΕΠΙΚΥΡΣ ΚΘΗΓΗΤΗΣ ΤΜΗΜ ΔΙΙΚΗΣΗΣ ΚΙ ΔΙΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΡΙΣΣ Θέμα 16 ο : αρμονική σωτρική ρική διαίρση υθύγραμμου τμήματος σ λόγο
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότερα# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ
Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 6) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 6) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θτική Τχνολογική Κατύθυνση ασκήσις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ)
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότερα3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
Διαβάστε περισσότεραΒ ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x
ξισώσις ου θµού ωµτρική ϖίλυση ξισώσων ου θµού Οι ρχίοι Έλληνς µθηµτικοί κθιέρωσν την κτσκυή γωµτρικών σχηµάτων µ κνόν κι ιήτη. Τρις τέτοις κτσκυές θ µλτήσουµ στη συνέχι. Κάθ µι ϖό υτές τις κτσκυές ίνι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΕρωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται
Διαβάστε περισσότερα1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Διαβάστε περισσότεραΝόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:
Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss
Διαβάστε περισσότεραΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΘεώρηµα ( ) x x. f (x)
Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί
Διαβάστε περισσότεραΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
ΦΥΛΛΟ ΓΕΩΜΕΤΡΙΑ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 4 4.1, 4., 4.3, 4.4, 4.5 Παράλληλς υθίς ΤΕΜΝΟΥΣΑ ΔΥΟ ΕΥΘΕΙΩΝ Ο γίς α, δ, ζ, η λέγοα ός Ο γίς β, γ,, θ λέγοα κός Δύο γίς που βρίσκοα προς ο ίδο μέρος
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)
ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότερα5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
Διαβάστε περισσότερα6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β
1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι
Διαβάστε περισσότεραΣε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότερα6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013
1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;
Διαβάστε περισσότεραΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Διαβάστε περισσότεραΓεωμετρία Α Λυκείου. Λεξιλόγιο Γεωμετρίας. Φροντιςτιριο Μ.Ε. «ΑΙΧΜΗ» Επιμζλεια Κων/νοσ Παπαςταματίου Μακθματικόσ
Γωμτρία Λυκίου Λξιλόγιο Γωμτρίας Φροντιςτιριο Μ.Ε. «ΙΧΜΗ» Κ. Καρτάλθ 28 (μ Δθμθτριάδοσ) όλοσ τθλ. 2421302598 Επιμζλια Κων/νοσ Παπαςταματίου Μακθματικόσ Γωμτρία Λυκίου Λξιλόγιο Γωμτρίασ Λυκίου Ευκίσ Ευκφγραμμα
Διαβάστε περισσότερα8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179
8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς
Διαβάστε περισσότερα6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
Διαβάστε περισσότεραΌμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.
Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο
Διαβάστε περισσότερα(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ
ΘΤ ΥΛΙΙΣ ΩΤΡΙΣ Παραθέτ κάποια παλιά θέματα εισαγγικών εξετάσεν υκλείδειας εμετρίας. υστυώς σήμερα κάποιοι «σοφοί» έουν εξοστρακίσει το πανέμορφο αυτό μάθημα που προάγει την μαθηματική σκέψη από τις Πανελλήνιες
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
Διαβάστε περισσότεραΟµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότεραΕρωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Διαβάστε περισσότεραΑπέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότερα1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότερα2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή
Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους
Διαβάστε περισσότεραΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές
- 218 - Μέρος Kεφάλαιο 3 ο - Τρίγωνα - Παραλληλόγραμμα - Τραπέζια.3.1. Στοιχεία τριγώνου - Είδη τριγώνων Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου κορυφή Κάθε τρίγωνο έχει τρεις κορυφές,,, τρεις πλευρές,,
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΑΓ=ΑΔ(υπόθεση) ΒΔ = ΓΕ υποθεση
ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ Άσκηση 1.Συγκρίνουμε τα τρίγωνα και. 2 1 =(υπόθεση) = (υπόθεση) = 2 1 κατακορυφήν γωνίες πό το κριτήριο Π--Π τα τρίγωνα είναι ίσα άρα και = Άσκηση 2 Χαράζουμε τις και επειδή τα, είναι σημεία
Διαβάστε περισσότεραΓραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΟνοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1. Οι ϐασικές έννοιες. 1.1 Αόριστες έννοιες, αξιώµατα
ΚΕΦΛΙΟ 1 Οι ϐασικές έννοις 1.1 όριστς έννοις, αξιώµατα υτό ισχύι ακόµη και για το ίδιο µας το γώ : το αντιλαµβανόµαστ µόνον ως κδήλωση, όχι ως κάτι που µπορίνα υπάρχι καθ αυτό. Thomas Mann, Schopenhauer
Διαβάστε περισσότεραΜετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.
1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι
Διαβάστε περισσότεραΛ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότερα