max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
|
|
- Ανάργυρος Ζυγομαλάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,..., x ) 0 g ( x,..., x ) 0 k x 0, i =,...,. i Αντικειμενική συνάρτηση μεταβλητών ( ) Ανισοτικοί περιορισμοί πλήθους k Περιορισμοί μη αρνητικότητας πλήθους - Για να λύσουμε το πρόβλημα, ακολουθούμε την εξής μεθοδολογία:. Σχηματίζουμε τη συνάρτηση Lagrage: L = f( x) + λ g ( x) λ g ( x) [όπου x= ( x,..., x )]. k k
2 2. Γράφουμε και λύνουμε τις Αναγκαίες Συνθήκες μεγιστοποίησης ή Συνθήκες ης τάξης (FOCs) ήσυνθήκεςkuh-tucker (Κ-Τ), σύμφωνα με το παρακάτω θεώρημα: * * Θεώρημα (Κ-Τ): Αν x* = ( x,..., x ) είναι μια λύση του παραπάνω προβλήματος μεγιστοποίησης, τότε υπάρχουν * * πολλαπλασιαστές λ,..., τέτοιοι ώστε το διάνυσμα λ 0 k * * * * ( x,..., x, λ,..., λk) = ( x*, λ*) ικανοποιεί τις ακόλουθες συνθήκες: Lx (*, λ*) () 0, i =,..., xi Lx (*, λ*) * (2) xi = 0, i =,..., x FOCs (K-T) i Lx (*, λ*) (3) = g j ( x*) 0, j =,..., k λ j Lx (*, λ*) j k * (4) λ j = 0, =,..., λ j * (5) xi 0, i=,...,. * (6) λ j 0, j =,..., k. (Αναγκαίες Συνθήκες Μεγιστοποίησης) 2
3 Οι συνθήκες (2) και (4) ονομάζονται συνθήκες συμπληρωματικής χαλαρότητας: (2) * Lx (*, λ*) - Αν xi > 0 (χαλαρή ανισότητα) = 0 xi (4) * Lx (*, λ*) - Αν λ j > 0 (χαλαρή ανισότητα) = g j( x*) = 0 λ 3. Ελέγχουμε αν ισχύουν οι συνθήκες 2 ης τάξης (SOCs) ή Ικανές Συνθήκες Μεγιστοποίησης, οι οποίες διατυπώνονται ως εξής: Αν οι f, g,, g k είναι κοίλες συναρτήσεις, τότε κάθε λύση x* των αναγκαίων συνθηκών (FOCs) αποτελεί ολικό μέγιστο του προβλήματος. - Μια εναλλακτική (ασθενέστερη) συνθήκη 2 ης τάξης δίνεται από το ακόλουθο θεώρημα: Θεώρημα (Arrow-Ethove): Αν οι f, g,, g k είναι οιονεί κοίλες συναρτήσεις, τότε κάθε λύση x* των αναγκαίων συνθηκών (FOCs) αποτελεί ολικό μέγιστο του προβλήματος. j 3
4 Κριτήρια Ελέγχου Κοιλότητας Οιονεί Κοιλότητας (Κριτήρια 2 ης Παραγώγου) () Έλεγχος Κοιλότητας (α) Έλεγχος Κοιλότητας για συναρτήσειςμίαςμεταβλητής(=) - Μια συνάρτηση f(x) (όπου f : X R R) είναι: κοίλη, αν και μόνο αν αυστηρώς κοίλη, αν και μόνο αν κυρτή, αν και μόνο αν f ( x) 0 x X. f ( x) 0 x X. αυστηρώς κυρτή, αν και μόνο αν - Παραδείγματα κοίλων συναρτήσεων: f( x) = ax+ b, a, b R (γραμμική) α f( x) = x, 0 < a (εκθετική) f( x) = l x, x> 0 (λογαριθμική) f ( x) < 0 x X. f ( x) > 0 x X. 4
5 - Αν η συνάρτηση f είναι κοίλη, τότε και η g=αf, α>0 είναι μια κοίλη συνάρτηση. - Θεώρημα: Έστω f, f2,..., f κοίλες συναρτήσεις. Τότε, η g = af+ a2f af (όπου a, a2,..., a > 0) μια κοίλη συνάρτηση. είναι επίσης (δηλαδή: το άθροισμα κοίλων συναρτήσεων είναι επίσης μια κοίλη συνάρτηση) - Παράδειγμα: Ησυνάρτηση f( x, x2, x3) = 2x+ 3lx2 + x3 είναι κοίλη ως άθροισμα κοίλων συναρτήσεων. 5
6 (β) Έλεγχος Κοιλότητας για συναρτήσεις δύο μεταβλητών (=2) - Έστω μια συνάρτηση f(x, x 2 ). H Εσσιανή μήτρα (Η) της f είναι η μήτρα όλων των δεύτερων μερικών παραγώγων της f: 2 f f2 f ij 22 i H = όπου: f = = f ji, i, j =, 2 f f x xj - Ησυνάρτηση f(x, x 2 ) είναι: κοίλη, αν και μόνο αν η Η είναι αρνητικά ημιορισμένη, δηλαδή αν και μόνο αν: f 0, f 0 και Η 0. 2 αυστηρώς κοίλη, αν και μόνο αν η Η είναι αρνητικά ορισμένη, δηλαδή αν και μόνο αν: f < 0 και Η> 0. κυρτή, αν και μόνο αν η Η είναι θετικά ημιορισμένη, δηλαδή αν και μόνο αν: f 0, f 0 και Η 0. 2 αυστηρώς κυρτή, αν και μόνο αν η Η είναι θετικά ορισμένη, δηλαδή αν και μόνο αν: f > 0 και Η > 0. 6
7 Παράδειγμα. Έλεγχος κοιλότητας για τη συνάρτηση: k k f( x, x ) = x x, με x, x > 0, k > 0 -H Εσσιανή μήτρα της f είναι: H k 2 k 2 k k f f2 kk ( ) x x2 kx x 2 = =, με: 2 k k k k 2 f2 f22 kx x2 kk ( ) xx H = k ( 2 k) x x f κοίλη 2 2k 2 2k 2 f αυστηρώς κοίλη f κυρτή 2 f αυστηρώς κυρτή f 0, f 0 και Η 0 k /2 2 f < 0 και Η > 0 k < /2 f 0, f 0 και Η 0 Αδύνατο f > 0 και Η > 0 Αδύνατο 7
8 2. Έλεγχος Οιονεί Κοιλότητας για συναρτήσεις δύο μεταβλητών (=2) - Για να ελέγξουμε αν η συνάρτηση f ( x, x2) είναι οιονεί κοίλη, ακολουθούμε τα εξής βήματα: (i) Σχηματίζουμε την περιφραγμένη Εσσιανή μήτρα (Β) της f : 0 f f2 2 f B= f f f2 όπου: fij = = f ji, i, j =, 2 xi xj f2 f2 f 22 f fi = xi (ii) H f είναιοιονείκοίληαν Β 0. (Αντίθετα, η f είναι οιονεί κυρτή αν Β 0) 8
9 Παράδειγμα (συνέχεια). Έλεγχος οιονεί κοιλότητας για τη k k συνάρτηση: f( x, x2) = xx2, με x, x2 > 0, k > 0 k k k k 0 kx x2 kxx 2 k k k 2 k 2 k k (i) B= kx x2 k( k ) x x2 k x x2 k k k k k k 2 kxx 2 k x x2 k( k ) xx 2 (ii) B = 2k x x 0 k k 2 Άρα, η f είναι οιονεί κοίλη για όλες τις τιμές του k. Επομένως: Για k</2, η f είναι αυστηρώς κοίλη, κοίλη και οιονεί κοίλη. Για k=/2, η f είναι κοίλη και οιονεί κοίλη (αλλά όχι αυστηρώς κοίλη). Για k>/2, η f είναιοιονείκοίλη(αλλά όχι κοίλη ούτε αυστηρώς κοίλη). - Γενικά: Αν μια συνάρτηση f είναι κοίλη, τότε είναι και οιονεί κοίλη. Το αντίστροφο δεν ισχύει πάντα. 9
10 Μονοτονικός Μετασχηματισμός - Έστω f(x,,x ) συνάρτηση μεταβλητών και g(x) μια (μονομεταβλητή) γνησίως αύξουσα συνάρτηση. Τότε, ησυνάρτηση: g[f(x,,x )]= v(x,,x ) είναι ένας μονοτονικός μετασχηματισμός της f. - Παράδειγμα: f( x, x2) = xx2 () i Για g( x) = lx ( ) => H συνάρτηση g[ f( x, x2)] = l xx2 = lx+ l x2 = v( x, x2) 2 2 είναι ένας μονοτονικός μετασχηματισμός της f. 2 ( ii) Για g( x) = x, x > 0 ( ) => H συνάρτηση g[ f( x, x)] = xx = xx = v( x, x) 2 είναι επίσης ένας μονοτονικός μετασχηματισμός της f. Πρόταση: Αν η f είναι μια κοίλη συνάρτηση, τότε κάθε μονοτονικός μετασχηματισμός της f είναι μια οιονεί κοίλη (αλλά όχι σίγουρα κοίλη) συνάρτηση. 0
11 () Μεγιστοποίηση Κερδών Παραδείγματα Μεγιστοποίησης Έστω q= 2 L, όπου q: η παραγόμενη ποσότητα προϊόντος L: η χρησιμοποιούμενη ποσότητα εργασίας. Ο μισθός είναι w=0 και η τιμή του προϊόντος είναι p=50. -H επιχείρηση επιλέγει την ποσότητα εργασίας (L) που μεγιστοποιεί τα κέρδη της: max Π ( L) = p q( L) w L= 00 L 0L { L} st.. L 0 L =Π ( L) = 00 L 0L FOCs : dπ dl /2 dπ = 50L 0 0, L= 0 dl L L L /2 Υπόθεση: > = 0 * = 25
12 SOC : -3/ 2 Η συνάρτηση Π( L) είναι κοίλη, διότι: ( L) -25L 0. Άρα, η λύση L* = 25 αποτελεί ολικό μέγιστο. Η μέγιστη τιμή των κερδών είναι Π * = 250. (2) Άριστη Περίφραξη Π = < - Ένας αγρότης διαθέτει συρματόπλεγμα μήκους P=400 μέτρων, με το οποίο επιθυμεί να περιφράξει τη μεγαλύτερη δυνατή ορθογώνια επιφάνεια Ε. Ε x x 2 -To πρόβλημα του αγρότη μπορεί να γραφτεί ως εξής: max Ε ( x, x ) = x x { x, x } st.. 2x+ 2x2 P= 400 x, x 0 2
13 L= x x2 + λ(400 2x 2 x2) FOCs : L L = x2 2λ 0, x = 0 x x L L = x 2λ 0, x2 = 0 x2 x2 L L = 400 2x 2 x2 0, λ = 0 λ λ Υπόθεση: x, x > 0. Τότε: x > 0 x 2λ = 0 λ = x / 2 > x 2x = 0 () 2 x > 0 x 2λ = 0 λ = x /2 = x /2 x = x ( 2) 2 (2) () x = x = 00, οπότε: λ* = 50 * * SOC : H συνάρτηση E = xx2είναι οιονεί κοίλη, ενώ η συνάρτηση-περιορισμός gx (, x2) = 400 2x 2 x2 είναι κοίλη. Άρα, η λύση (x, x ) = (00,00) αποτελεί ολικό μέγιστο. * * 3
14 Η μέγιστη περιφρασσόμενη επιφάνεια είναι: Ε*=0000 τ.μ. Δυαδικότητα - Σε κάθε αρχικό (πρωτογενές) πρόβλημα μεγιστοποίησης υπό περιορισμούς αντιστοιχεί ένα δυαδικό πρόβλημα ελαχιστοποίησης υπό περιορισμούς τέτοιο ώστε: Η αντικειμενική συνάρτηση του πρωτογενούς προβλήματος είναι ο περιορισμός του δυαδικού προβλήματος. Ο περιορισμός του πρωτογενούς προβλήματος είναι η αντικειμενική συνάρτηση του δυαδικού προβλήματος. - Παράδειγμα (συνέχεια): Στο παραπάνω πρωτογενές πρόβλημα της άριστης περίφραξης αντιστοιχεί το εξής δυαδικό πρόβλημα: mi P( x, x ) = 2x + 2x max P( x, x ) = 2x 2x { x, x } st.. x x2 E= 0000 x, x 0 { x, x } 2 st.. x x2 E= 0000 x, x 0 4
15 LD = 2x 2 x2 + λd( x x2 0000) FOCs : LD LD = 2+ λdx2 0, x = 0 x x LD LD = 2+ λdx 0, x2 = 0 x2 x2 LD LD = x x , λd = 0 λ λ D Υπόθεση: x, x D 2 D 2 2 D > 0. Τότε: D x > λ x = 0 λ = 2 / x > 0 x x = 0000 () x > 0 2+ λ x = 0 λd = 2/ x = 2/ x2 x = x2 (2) (2) D D * () x = x2 = 00, οπότε: λd = /50 = / λ* Η άριστη (ελάχιστη) περίμετρος του φράχτη είναι P*=400 μ. 5
16 - Γενικό Συμπέρασμα: Η λύση του δυαδικού προβλήματος είναι * D ίδια με τη λύση του πρωτογενούς προβλήματος ( xi = xi ), ενώ η τιμή του πολλαπλασιαστή στο δυαδικό πρόβλημα είναι η αντίστροφη της τιμής του πολλαπλασιαστή στο πρωτογενές D * πρόβλημα ( λ = / λ ). Ομογενείς Συναρτήσεις - Ορισμός: Μια συνάρτηση f ( x,..., x ) ονομάζεται ομογενής βαθμού k αν: k f ( tx,..., tx) = t f ( x,..., x), t > 0 - Ειδικές Περιπτώσεις: Ομογενής συνάρτηση μηδενικού βαθμού (k=0): f( tx,..., tx ) = f( x,..., x ), t > 0 Ομογενής συνάρτηση πρώτου βαθμού (k=): f ( tx,..., tx ) = t f ( x,..., x ), t > 0 6
17 Ιδιότητες Ομογενών συναρτήσεων () Θεώρημα: Αν η συνάρτηση f ( x,..., x ) είναι ομογενής βαθμού k, τότε οι πρώτες μερικές παράγωγοι της f είναι ομογενείς βαθμού k-: f x i f ( tx,..., tx ) = t ( x,..., x ), t > 0 k xi (2) Θεώρημα (Euler): Αν η συνάρτηση f ( x,..., x ) είναι ομογενής βαθμού k, τότε: f f f x + x x = k f ( x) x x x 7
max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } 1 n 1 st. :
Διαβάστε περισσότεραΕλαχιστοποίηση του Κόστους
Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης των κερδών: () Επιτρέπει τη διατύπωση μιας θεωρίας
Διαβάστε περισσότεραΚεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι
Κεφάλαιο ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ Τα μαθηματικά της αριστοποίησης Πολλές οικονομικές θεωρίες ξεκινούν με την υπόθεση ότι ένα άτομο ή επιχείρηση επιδιώκουν να βρουν την άριστη τιμή μιας συνάρτησης
Διαβάστε περισσότεραΜεγιστοποίηση του Κέρδους
Μεγιστοποίηση του Κέρδους - Έστω η συνάρτηση παραγωγής: q = f ( x,..., x ). - Η τιμή του παραγόμενου προϊόντος είναι και οι τιμές των εισροών είναι w= ( w,..., w ). - Υπόθεση: Η επιχείρηση είναι αποδέκτης
Διαβάστε περισσότεραΜεγιστοποίηση της Χρησιμότητας
Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά
Διαβάστε περισσότεραΠανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
Διαβάστε περισσότερα1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
Διαβάστε περισσότεραz = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΘεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Χαρακτηριστικά αλγορίθμων τύπου simplex (5) Αν το βασικό σημείο ικανοποιεί ακριβώς n-m ανισότητες
Διαβάστε περισσότεραΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ
ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα
Διαβάστε περισσότεραΠροσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
Διαβάστε περισσότεραΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε
page 1 of 12 ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισμος Για καθε συναρτηση f : S R και καθε αριθμο α οριζουμε Την καμπυλη αδιαφοριας(idifferece curve, level set) της f I = { x Sfx, ( ) = α} α Το υπερτερο
Διαβάστε περισσότεραΕισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Διαβάστε περισσότεραΕλαχιστοποίηση του Κόστους
Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης του κέρδους: (1) Επιτρέπει τη διατύπωση μιας
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΣημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20
Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,
Διαβάστε περισσότεραΘεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1
Θεωρία παραγωγού Σκοπός: Μεγιστοποίηση κερδών (υπάρχουν κι άλλοι σκοποί, π.χ. ένας μάνατζερ επιδιώκει την μεγιστοποίηση εσόδων κτλ. Τελικά όμως σκοπεύει στην μεγιστοποίηση των κερδών για να μπορέσει να
Διαβάστε περισσότεραΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f
Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο
Διαβάστε περισσότεραFermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
Διαβάστε περισσότεραΤο δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους
Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους ΣΗΜΜΥ Ιανουάριος, 2013 Αρχικό πρόβλημα βελτιστοποίησης με περιορισμούς: Πρωτεύον min f(x)st x X, g j 0, j = 1 r Για να λύσουμε το πρόβλημα,
Διαβάστε περισσότεραΚοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι
Κοιλότητα Διαφορικός Λογισμός μιας μεταβλητής Ι Κυρτή & Κοίλη συνάρτηση Ορισμός: Έστω y=f(x): f (x), λέμε ότι : η f(x) στρέφει (1) τα κοίλα άνω στο (α, β) ανοικτό αν y = f (x) (γνησίως) αύξουσα στο (α,
Διαβάστε περισσότεραΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Διαβάστε περισσότεραΕπιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος
Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος - Τα προϊόντα που παράγουν οι επιχειρήσεις μπορούν να διαφοροποιούνται ως προς ένα πλήθος χαρακτηριστικών. Παράδειγμα: Τα αυτοκίνητα διαφοροποιούνται
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται
Διαβάστε περισσότεραΣυναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης
Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης - Στο εξής, συμβολίζουμε την ποσότητα του καταναλωτικού αγαθού με q. - Έστω ότι η συνάρτηση παραγωγής της επιχείρησης είναι: q=f(k,l),
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός
Διαβάστε περισσότεραΣυνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,
Διαβάστε περισσότεραείναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές
Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα
Διαβάστε περισσότεραΤμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Kοίλες και Οιονεί Kοίλες Συναρτήσεις Ονοματεπώνυμο Φοιτητή Πεσλή Στυλιανή Πατρώνυμο
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Θεώρημα ΚΚΤ - Γενικές συνθήκες (ΝEC) - Δυαδικά προβλήματα ΠΕΡΙΟΡΙΣΜΟΙ ΑΝΙΣΟΤΗΤΑΣ Πως χειριζόμαστε
Διαβάστε περισσότερα(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :
ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
Διαβάστε περισσότεραΒασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
Διαβάστε περισσότεραA = x x 1 + 2x 2 + 4
Επιχειρησιακή Ερευνα η Σειρά Ασκήσεων Ενδεικτικές Λύσεις 1. (α ) Η συνάρτηση f(x 1, x ) = x 1 + x x 1 x + x μπορεί να γραφεί ως f( x) = x A x + b x όπου x = x 1 A = 1 1 1 x b = 0 Θα χρειαστούμε το διάνυσμα
Διαβάστε περισσότεραIII.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ
III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.
Διαβάστε περισσότεραΜέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
Διαβάστε περισσότεραΘεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Διαβάστε περισσότεραΘεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΒασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Διαβάστε περισσότεραΤμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T
Διαβάστε περισσότεραΒασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Μέθοδοι ελαχίστων τετραγώνων Least square methos Αν οι κλάσεις είναι γραμμικώς διαχωρίσιμες το perceptron θα δώσει σαν έξοδο ± Αν οι κλάσεις ΔΕΝ είναι
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Διαβάστε περισσότεραΣυστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
Διαβάστε περισσότεραή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0
KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς. ΕΙΣΑΓΩΓΗ Το γενικό πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: Ζητούνται οι τιµές των µεταβλητών απόφασης u που ελαχιστοποιούν την αντικειµενική
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραAf(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
Διαβάστε περισσότεραCRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ
CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X
Διαβάστε περισσότεραΆριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας
Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό
Διαβάστε περισσότερακαι να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής
Διαβάστε περισσότεραΑκέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Διαβάστε περισσότεραΓενική Ανταγωνιστική Ισορροπία
Γενική Ανταγωνιστική Ισορροπία - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό Α. - Οι προτιμήσεις των καταναλωτών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Διαβάστε περισσότερα1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0
Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Διαβάστε περισσότερα(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Διαβάστε περισσότερα2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό
Διαβάστε περισσότερα(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)
1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό
Διαβάστε περισσότεραΔυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί
Διαβάστε περισσότεραΓραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα
Διαβάστε περισσότεραΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 4. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/2017
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ διαλ. 4 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/7 Χαρακτηριστικά του προβλήματος Μελέτη αντικειμενικών συναρτήσεων και συναρτήσεων περιορισμών: Απλούστευση προβλήματος
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ
ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΕΚΔΟΣΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΥΑΓΓΕΛΟΣ Φ. ΜΑΓΕΙΡΟΥ ΚΑΘΗΓΗΤΗΣ ΟΙΚΟΝΟΜΙΚΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ ΑΘΗΝΑ ΕΚΔΟΣΗ 2.4 ΜΑΪΟΣ 2012 1-1 Κεφάλαιο 1. Μαθηματικός Προγραμματισμός...1-3
Διαβάστε περισσότεραΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Διαβάστε περισσότεραΑτομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει
Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)
Διαβάστε περισσότεραΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Διαβάστε περισσότεραΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές
ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: μέθοδος simplex Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 4 η /2017 Η γεωμετρία των προβλημάτων γραμμικού
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
Διαβάστε περισσότεραΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι
Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης
Διαβάστε περισσότεραΑποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος
Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Διαβάστε περισσότερα1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός
Διαβάστε περισσότεραΙσορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
Διαβάστε περισσότεραΔιάλεξη 5- Σημειώσεις
Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό
Διαβάστε περισσότερα