ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.2. ΑΠΟΛΥΤΗ ΤΙΜΗ ΑΝΤΙΘΕΤΟΙ - ΣΥΓΚΡΙΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
|
|
- Τίτος Θεοδωρίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.2. ΑΠΟΛΥΤΗ ΤΙΜΗ ΑΝΤΙΘΕΤΟΙ - ΣΥΓΚΡΙΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Πόσες μονάδες απέχει από την αρχή Ο το σημείο Α; Πόσες μονάδες απέχει από την αρχή Ο το σημείο Β; Πόσες μονάδες απέχει από την αρχή Ο το σημείο Γ; Πόσες μονάδες απέχει από την αρχή Ο το σημείο Δ; Απόλυτη τιμή ενός ρητού αριθμού α είναι η απόσταση που έχει το σημείο με τετμημένη α από την αρχή Ο του άξονα. Την απόλυτη τιμή του αριθμού α την συμβολίζουμε με α. Άρα +4 = - 4 = + 3 = - 2,5 = - 3 = Αντίθετοι είναι οι αριθμοί που είναι ετερόσημοι και έχουν ίδια απόλυτη τιμή Ετσι αντίθετοι είναι οι +3 και - 3 αντίθετοι είναι οι και. αντίθετοι είναι οι και. Γενικά ο αντίθετος του x είναι ο x Έτσι ο αντίθετος του +2 είναι ο 2 ο αντίθετος του +6 είναι ο ο αντίθετος του 2 είναι ο ο αντίθετος του 9 είναι ο Γενικά : Α) Η απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός. Β) Η απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του αριθμός. Γ) Η απόλυτη τιμή του 0 είναι το 0 +7,4 = - 2,1 = = + 341,5 = = Βρες δυο αριθμούς που έχουν απόλυτη τιμή το 12.. Βρες δυο αριθμούς που έχουν απόλυτη τιμή το 4.. Σελίδα 28
2 Για να συγκρίνω δυο ρητούς αριθμούς : Μεγαλύτερος από δύο ρητούς αριθμούς είναι εκείνος που βρίσκεται δεξιότερα πάνω στον άξονα Κάθε θετικός ρητός είναι μεγαλύτερος από κάθε αρνητικό ρητό Το 0 είναι.. από κάθε θετικό αριθμό Το 0 είναι.. από κάθε αρνητικό αριθμό Να βάλετε το σύμβολο > ή < σε καθένα από τα παρακάτω: , Ακόμη : Αν έχω δύο θετικούς αριθμούς μεγαλύτερος είναι εκείνος που έχει την μεγαλύτερη απόλυτη τιμή Αν έχω δύο αρνητικούς αριθμούς μεγαλύτερος είναι εκείνος που έχει την μικρότερη απόλυτη τιμή Να βάλετε το σύμβολο > ή < σε καθένα από τα παρακάτω: +2 3 γιατί γιατί γιατί γιατί γιατί -1,5-1,6 γιατί -1-2 γιατί γιατί Σελίδα 29
3 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.3. ΠΡΟΣΘΕΣΗ ΡΗΤΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Το μήνα Φεβρουάριο στις 23 του μήνα σε κάποιες πόλεις παρατηρήθηκαν οι εξής αυξομειώσεις της θερμοκρασίας : ΑΘΗΝΑ: Στις 23 του μήνα η θερμοκρασία ήταν 7 βαθμοί Κελσίου και την επόμενη μέρα μειώθηκε κατά 2 βαθμούς. ΘΕΣΣΑΛΟΝΙΚΗ: Στις 23 του μήνα η θερμοκρασία ήταν - 3 βαθμοί Κελσίου και την επόμενη μέρα αυξήθηκε κατά 5 βαθμούς. ΜΟΝΕΜΒΑΣΙΑ : Στις 23 του μήνα η θερμοκρασία ήταν 8 βαθμοί Κελσίου και την επόμενη μέρα αυξήθηκε κατά 2 βαθμούς. ΦΛΩΡΙΝΑ : Στις 23 του μήνα η θερμοκρασία ήταν - 6 βαθμοί Κελσίου και την επόμενη μέρα μειώθηκε κατά 3 βαθμούς. Να συμπληρώσετε,με βάση τα παραπάνω δεδομένα,τον πίνακα: ΠΟΛΗ ΘΕΡΜΟΚΡΑΣΙΑ 23 ΦΕΡΒΡΟΥΑΡΙΟΥ ΜΕΤΑΒΟΛΗ ΠΡΑΞΗ ΘΕΡΜΟΚΡΑΣΙΑ 24 ΦΕΡΒΡΟΥΑΡΙΟΥ ΑΘΗΝΑ ΘΕΣΣΑΛΟΝΙΚΗ ΜΟΝΕΜΒΑΣΙΑ ΦΛΩΡΙΝΑ Τι παρατηρείτε ; Για να προσθέσουμε δυο ομόσημους ρητούς Για να προσθέσουμε δυο ετερόσημους ρητούς Σελίδα 30
4 Παραδείγματα 1 (-3 ) +(-7) =. ( +2)+(-5) =. (+7)+(-4) = (+8)+(+1) =. (-5)+(+4) = Παραδείγματα 2 (-3)+(+1) =.. (+1) +(-3) = ( -2) +( -3) + (+7) =(.. )+(+7) =.. ( -2) +( -3) + (+7) =( -2 )+(... ) =.. (-8,4) +0=.. (7,9) + 0 = (-7) +(+7) =.. (+5,6) +(-5,6) = (+ 8 3 ) + ( 8 3 ) =. (-31 ) +(-17) =. ( +12,1 )+(3,5) =. (+2,5 )+(-8,1 ) = (+18)+(+21) =. (- 1 2 )+(+5 2 ) = α + β = β+α Αντιμεταθετική ιδιότητα α + (β +γ) = (α +β) + γ Προσεταιριστική ιδιότητα α + 0 = 0+ α Το άθροισμα ενός ρητου με το 0 είναι ο ίδιος ο ρητός α + (-α) = (-α) + α = 0 Το άθροισμα δυο αντιθέτων είναι 0 Παραδείγματα 2 (-7 ) +( +6) + (+7 )+ ( -8 ) =. = (-8 ) + ( -3) + (+5 )+ (+9 ) =.. = (-8 ) + ( +7) + (-5 )+ (+6 ) =.. = (-5 ) + (+ 3) + (+6 )+ (+9 )+(-11)+(+14) +( -9) + (+31) = =.. = Nα υπολογίσετε τα αθροίσματα: α) (+20)+(-12)+(-35)+(+50) = β) (-7)+(+2) +(-13)+(+25)+(-2)+(-31) = γ) (+16,3)+(-10,7)+(+5,4)+(-2,7) = (+1)= Σελίδα 31
5 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.7.4. ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Στο σχήμα βλέπουμε τη μέση θερμοκρασία μιας περιοχής για τους 12 μήνες του χρόνου σε συγκεκριμένη ώρα της ημέρας Να συμπληρώσετε,με βάση τα παραπάνω δεδομένα,τον πίνακα: ΜΗΝΕΣ ΠΡΑΞΗ ΠΡΑΞΗ 2 ΔΙΑΦΟΡΑ ΘΕΡΜΟΚΡΑΣΙΑΣ ΑΥΓΟΥΣΤΟΣ - ΣΕΠΤΕΜΒΡΙΟΣ = (-18) 11 ΙΟΥΝΙΟΣ - ΜΑΙΟΣ ΜΑΡΤΙΟΣ - ΦΕΒΡΟΥΑΡΙΟΣ ΙΟΥΛΙΟΣ - ΙΑΝΟΥΑΡΙΟΣ Για να αφαιρέσουμε από τον αριθμό α τον αριθμό β, προσθέτουμε στον α τον αντίθετο του β. ΔΗΛΑΔΗ α β = α+(-β) Σελίδα 32
6 Παραδείγματα Να υπολογίσετε τα εξαγόμενα: α) (+2)-(+3)= +.= β) (+5)-(+8)= = +.=. γ) (+6)-(+10)= = +.= δ) (-5)-(-3)= +.=. ε) (-9)-(-7)= +.=. στ) (-4)-( -1)= = +.=. 1 ζ) -12- = +.= η) -13,2-(+6,2)= +.=. 2 θ) 0-(-8) = +.= ι) 0-(+4)= +.=. ια) Ένας Ρωμαίος γεννήθηκε το 30 π.χ και πέθανε το 50 μ.χ.πόσα χρόνια έζησε;. Απλούστερη μορφή αθροίσματος : Ένα άθροισμα μπορεί να γραφεί σε απλούστερη μορφή εάν παραλείψουμε το σύμβολο της πρόσθεσης και τις παρενθέσεις και γράψουμε τον ένα δίπλα στον άλλο με το πρόσημό τους (+3)+(- 4)+( -6) +(+8) = = 11-10=1 (-3) +(+2) (-7) (+8) = (-3) +(+2) +(-7)+(-8) = = = (+7)+(-9)-(-10) = -(-9)+(-5)-(+6)+(-9)-(+9)-(-15) = 20-(-30)-(+10)+(-25)+(-20)= Απαλοιφή παρενθέσεων Όταν μια παρένθεση έχει μπροστά της το + (ή δεν έχει πρόσημο), μπορούμε να την απαλείψουμε μαζί με το + (αν έχει) και να γράψουμε τους όρους που περιέχει με τα πρόσημά τους. Όταν μια παρένθεση έχει μπροστά της το -, μπορούμε να την απαλείψουμε μαζί με το και να γράψουμε τους όρους που περιέχει με αλλαγμένα πρόσημα. - ( ) = = = -1 +( ) = =2 14 = -12 -( ) = 3+ (4-5 -8) =.. (1+3-7 ) (4-6-11) ) = - ( ) + (-2+5) ( ) = =. Σελίδα 33
Δοκιμασίες πολλαπλών επιλογών
Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Πράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )
ΜΑΘΗΜΑΤΙΚΑ α x +β
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών
κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.
ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ
ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο
1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ
1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Τεύχος 5. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα
Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 5 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί Δουκάκης Σπυρίδων
Ασκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
ÊåöÜëáéï 8 ï. -Áöáßñåóç ñçôþí áñéèìþí
ÊåöÜëáéï 8 ï Ïé ñçôïß áñéèìïß âéâëéïììüèçìá 24: -Ïé èåôéêïß êáé ïé áñíçôéêïß áñéèìïß -ÐáñÜóôáóç ôùí ñçôþí ìå óçìåßá ìéáò åõèåßáò -ÓõíôåôáãìÝíåò óçìåßïõ -Áðüëõôç ôéìþ ñçôïý áñéèìïý -áíôßèåôïé áñéèìïß -Óýãêñéóç
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι
7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ
1 7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ ΘΕΩΡΙΑ 1. Κανόνας πολλαπλασιασµού : Το γινόµενο δύο οµοσήµων αριθµών είναι θετικός ενώ το γινόµενο δύο ετεροσήµων είναι αρνητικός ηλαδή (+) (+) = + και ( ) ( ) = + Ενώ (+) (
7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
1 7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ 1. Τα πρόσηµα : Τα µαθηµατικά σύµβολα + και τα ονοµάζουµε πρόσηµα. 2. Θετικοί αρνητικοί αριθµοί : Όλοι οι αριθµοί που µπροστά τους έχουν το πρόσηµο + ονοµάζονται
Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
R={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
Ερωτήσεις επί των ρητών αριθµών
Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα
7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.
ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΜΕΡΟΣ Α ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ Τόμος
Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ. Β Γυμνασίου
Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,
Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ
ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι
ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»
ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους
Προσπαθήστε να συμπληρώσετε τον παρακάτω πίνακα. Ρώμη Φλωρεντία Λονδίνο Κωνσταντινούπολη
1o ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ Αρ. 8. ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ Δραστηριότητα 1. Να μελετήσετε την πιο κάτω γραμμή του χρόνου, η οποία δείχνει το έτος ίδρυσης μερικών πόλεων της Ευρώπης. Πώς συνδέεται η γραμμή
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Ιωάννης Βανδουλάκης Χαράλαμπος Καλλιγάς Νικηφόρος Μαρκάκης Σπύρος Φερεντίνος ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΜΕΡΟΣ Α ΑΡΙΘΜΗΤΙΚΗ ΑΛΓΕΒΡΑ Τόμος 3ος
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί
ÊåöÜëáéï 1 ï. Ïé ñçôïß áñéèìïß
ÊåöÜëáéï 1 ï Ïé ñçôïß áñéèìïß ÂéâëéïìÜèçìá 1 ï ÅðáíÜëçøç âáóéêþí åííïéþí Ðñüóèåóç ñçôþí áñéèìþí èñïéóìá ðïëëþí ðñïóèåôýùí ÁðáëïéöÞ ðáñåíèýóåùí ÂéâëéïìÜèçìá ï Ðïëëáðëáóéáóìüò ñçôþí áñéèìþí Ãéíüìåíï ðïëëþí
2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο
Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.
Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΛΤΙΟ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ
ΕΔΡΑ: Πανεπιστημίου 44 & Χαρ. Τρικούπη, 10679 Αθήνα Τηλ: (+30) 210 3380200 - Fax:(+30) 210 3380219 ΠΑΡΑΡΤΗΜΑ: Γούναρη 227, 16674 Άνω Γλυφάδα Τηλ.: (+30) 210 9609961 - Fax: (+30) 210 9609964 ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ
Ορισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ο κεφάλαιο: Πραγματικοί αριθμοί ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ 4-5 Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της? Απάντηση: Mια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της όταν
Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2
Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα
ΠΕΡΙΟΔΟΙ ΥΠΟΒΟΛΗΣ ΜΗΝΙΑΙΩΝ ΑΠΔ ΟΙΚΟΔΟΜΟΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΜΙΣΘΟΛΟΓΙΚΩΝ ΠΕΡΙΟΔΩΝ 01/2015 12/2015
ΠΕΡΙΟΔΟΙ ΥΠΟΒΟΛΗΣ ΜΗΝΙΑΙΩΝ ΑΠΔ ΟΙΚΟΔΟΜΟΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΜΙΣΘΟΛΟΓΙΚΩΝ ΠΕΡΙΟΔΩΝ 01/2015 12/2015 ΜΗΝΑΣ ΑΠΑΣΧΟΛΗΣΗΣ ΥΠΟΒΟΛΗ Α.Π.Δ. ΣΕ ΥΠΟΚ/ΜΑ ή ΠΑΡΑΡΤΗΜΑ Ι.Κ.Α. Ε.Τ.Α.Μ. ΜΗΝΑΣ ΑΠΑΣΧΟΛΗΣΗΣ ΥΠΟΒΟΛΗ Α.Π.Δ. ΜΕΣΩ
3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις
24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις
1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΛΤΙΟ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ
ΕΔΡΑ: Πανεπιστημίου 44 & Χαρ. Τρικούπη, 10679 Αθήνα Τηλ: (+30) 210 3380200 - Fax:(+30) 210 3380219 ΠΑΡΑΡΤΗΜΑ: Γούναρη 227, 16674 Άνω Γλυφάδα Τηλ.: (+30) 210 9609961 - Fax: (+30) 210 9609964 ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ
Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου
Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά B Γυμνασίου Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
ΑΔΑ: ΒΙΨΨ4691ΩΓ-Ε30. ΠΕΡΙΟΔΟΣ ΥΠΟΒΟΛΗΣ ΜΗΝΙΑΙΑΣ Α.Π.Δ. ΚΟΙΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΙΑΝΟΥΑΡΙΟΣ 2014 (δεν αφορά το Δημόσιο,τα Ν.Π.Δ.Δ και τους Ο.Τ.
ΙΑΝΟΥΑΡΙΟΣ 2014 03/02/2014-28/02/2014 01/02/2014-28/02/2014 ΦΕΒΡΟΥΑΡΙΟΣ 2014 04/03/2014-31/03/2014 01/03/2014-31/03/2014 ΜΑΡΤΙΟΣ 2014 01/04/2014-30/04/2014 01/04/2014-30/04/2014 ΑΠΡΙΛΙΟΣ 2014 02/05/2014-02/06/2014
Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defned. Σκοποί Μαθήματος (Επικεφαλίδα
ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
Αφιερώνεται στην κόρη μου Καλυψώ-Σοφία
Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Αφιερώνεται στην κόρη μου Καλυψώ-Σοφία «Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται
4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
ΙΑΝΟΥΆΡΙΟΣ 31 ΤΡΊΤΗ 1 ΚΥΡΙΑΚΉ 30 ΔΕΥΤΈΡΑ 20 ΠΑΡΑΣΚΕΥΉ 25 ΤΕΤΆΡΤΗ 26 ΠΈΜΠΤΗ 28 ΣΆΒΒΑΤΟ 22 ΚΥΡΙΑΚΉ 6 ΠΑΡΑΣΚΕΥΉ 7 ΣΆΒΒΑΤΟ 8 ΚΥΡΙΑΚΉ 9 ΔΕΥΤΈΡΑ
ΙΑΝΟΥΆΡΙΟΣ Δεκέμβριος 2016 1 ΚΥΡΙΑΚΉ Πρωτοχρονιά 17 ΤΡΊΤΗ Φεβρουάριος 1 Πέμπτη 2 Παρασκευή 3 Σάββατο 4 Κυριακή 5 Δευτέρα 6 Τρίτη 7 Τετάρτη 8 Πέμπτη 9 Παρασκευή 10 Σάββατο 11 Κυριακή 12 Δευτέρα 13 Τρίτη
Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 6.3 Ασκήσεις: όλες Άσκηση 1 Δίνεται η συνάρτηση f, με x 5x+ 6 f ( x) =. x 3 α) Να βρείτε
ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΛΤΙΟ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ
ΕΔΡΑ: Πανεπιστημίου 44 & Χαρ. Τρικούπη, 10679 Αθήνα Τηλ: (+30) 210 3380200 - Fax:(+30) 210 3380219 ΠΑΡΑΡΤΗΜΑ: Γούναρη 227, 16674 Άνω Γλυφάδα Τηλ.: (+30) 210 9609961 - Fax: (+30) 210 9609964 ΜΗΝΙΑΙΟ ΕΝΗΜΕΡΩΤΙΚΟ
Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
ΠΕΡΙΟΔΟΣ ΥΠΟΒΟΛΗΣ ΜΗΝΙΑΙΑΣ Α.Π.Δ. ΚΟΙΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΙΑΝΟΥΑΡΙΟΣ (δεν αφορά το Δημόσιο, τα Ν.Π.Δ.Δ και τους Ο.Τ.Α )
ΙΑΝΟΥΑΡΙΟΣ 2013 (δεν αφορά το Δημόσιο, τα Ν.Π.Δ.Δ και τους Ο.Τ.Α ) 08/03/2013-19/03/2013 08/03/2013-19/03/2013 ΦΕΒΡΟΥΑΡΙΟΣ 2013 (δεν αφορά το Δημόσιο, Ν.Π.Δ.Δ και τους Ο.Τ.Α ) 20/03/2013-01/04/2013 20/03/2013-01/04/2013
Δύο λόγια από τη συγγραφέα
Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου
Δυνάμεις Φυσικών Αριθμών
Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο
Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ
Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:
Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η
5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ
5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 9-3 A Oμάδας.i) Να βρείτε το ν-οστό όρο της αριθμητικής προόδου 7, 0, 3,... = + (ν ) ω = 7 + (ν ) 3 = 7 + 3ν 3 = 3ν + 4.ii) Να βρείτε το ν-οστό όρο
Ασκήσεις στις συναρτήσεις, όρια και παράγωγο
Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Σπύρος Γλένης, Μαθηματικός Εάν α) 0,, β) να βρείτε τα παρακάτω: t,,, Να βρείτε το ( h) ( ) για τις παρακάτω συναρτήσεις: h i) ii) iii), ρητός 0, άρρητος Δίνονται
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται