1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.
|
|
- Ευμελια Τομαραίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 . ίνονται τα διανύσµατα: x=(a+µ,), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.. ίνονται τα διανύσµατα (x,0), (0,y), (z,0). Είναι γραµµικά εξηρτηµένα ή ανεξάρτητα; Τι διάσταση έχει ο χώρος στον οποίο ανήκουν;. ίνονται τα διανύσµατα x=(a,,), y=(,b,), z=(,,c). Να εξεταστεί αν είναι γραµµικά εξαρτηµένα ή ανεξάρτητα και να υπολογιστούν τα εσωτερικά γινόµενα xy, xz, yz. 4. ίνονται τα διανύσµατα (x,0,0), (0,y,0), (0,0,z). Είναι γραµµικά εξηρτηµένα ή ανεξάρτητα; Τι διάσταση έχει ο χώρος στον οποίο ανήκουν; 5. Να υπολογιστούν οι πρώτες παράγωγοι των ακολούθων συναρτήσεων: y = + x x x y = x y = ax ax + + +, y = x ax ax 4, y = ln, y = a ( x + 4) ( x ), y = ( x ) ( x + ), y = ln( x + ) x, y = x ln x [ ], y = ln[ ( x + )( x + ) ], y = x, y = x x x x + 6. Να υπολογιστεί ο ρυθµός µεταβολής του κατά κεφαλή εισοδήµατος Y (t)/p(t) στις ακόλουθες περιπτώσεις: (i) Y(t) = Y 0 at P(t) = P 0 bt (ii) Y(t) = Y 0 a t P(t) = P 0 a lnt (iii) Y(t) = Y 0 a t / P(t) = P 0 a t 7. (α) Να υπολογιστούν τα διαφορικά dy των συναρτήσεων: y = (α - x) n, y = x, y = (ηµx )/x τις: (β) Να υπολογιστούν οι παράγωγοι dy/dx µε την µέθοδο του διαφορικού για xy +x y =, xy-ηµ(x-y), x lny 4y lnx = 8. (α) Να προσδιοριστούν τα τοπικά ακρότατα και τα σηµεία καµπής της συναρτήσεως: y = /x + /x - 6x + 8 (β) Να εξεταστεί η κυρτότητα και να προσδιοριστούν τα σηµεία καµπής της συνάρτησης: y = x 4-0x - x + x - 7
2 9. Να υπολογιστούν οι ελαστικότητες των συναρτήσεων: y = a( b x) n ax, y = b a,b,n σταθερές 0. ίνεται η συνάρτηση ζήτησης P = Q και η συνάρτηση συνολικού κόστους TC = 8+0.0Q+0.50Q. Να προσδιοριστούν οι συναρτήσεις εσόδου και οριακού εσόδου. Να προσδιοριστούν τα επίπεδα προϊόντος στα οποία µεγιστοποιούνται τα συνολικά έσοδα και το κέρδος.. Η συνάρτηση συνολικού κόστους είναι: ΤC = + 4Q - 5.5Q + /Q Nα προσδιοριστούν οι συναρτήσεις οριακού και µέσου κόστους. Να προσδιοριστεί το επίπεδο προϊόντος στο οποίο ελαχιστοποιείται το οριακό κόστος. ίνονται οι συναρτήσεις ζήτησης Q = 6 -P και συνολικού κόστους ΤC = Q + 0.5Q. Nα προσδιοριστούν οι συναρτήσεις: εσόδου, οριακού εσόδου, κέρδους και οριακού κέρδους. Να προσδιοριστούν τα επίπεδα προϊόντος στο οποίο µεγιστοποιούνται τα συνολικά έσοδα και το κέρδος.. ίνεται η συνάρτηση µέσου κόστους ΑC = 60/Q Q + Q. Nα προσδιοριστούν οι συναρτήσεις οριακού και συνολικού κόστους 4. Η συνάρτηση ζήτησης για το προϊόν µίας επιχείρησης είναι: Q= 90 - p ενώ η συνάρτηση µέσου κόστους είναι: AC = Q - 8Q /Q. Να προσδιοριστεί το επίπεδο προϊόντος για το οποίο. (i) µεγιστοποιούνται τα συνολικά έσοδα, (ii) µεγιστοποιείται το κέρδος, (iii) ελαχιστοποιείται το οριακό κόστος. 5. ίνεται η συνάρτηση ζήτησης p=f(q), f <0, f >0, και η συνάρτηση κόστους c=g(q), g >0, g >0. Ικανοποιούνται οι συνθήκες δεύτερης τάξης στο πρόβληµα της µεγιστοποίησης του κέρδους max q π=qf(q)-g(q); 6. Η συνάρτηση ζήτησης για το προϊόν µιας επιχείρησης είναι, p=aq -b, ενώ η συνάρτηση κόστους είναι,c= vq a, µε v>0, 0<b<. Να προσδιοριστεί η ποσότητα προϊόντος στην οποία µεγιστοποιούνται τα κέρδη της επιχείρησης. Πώς θα µεταβληθεί η ποσότητα αυτή όταν µεταβληθεί το a το b ή το v ; 7. Η συνάρτηση ζήτησης (αντίστροφη) για το προϊόν µίας επιχείρησης είναι: p = α - βq (α,β > 0). Η συνάρτηση συνολικού κόστους είναι ΤC = δq + εq (δ,ε >0, δ<α). Κατά την παραγωγή προϊόντος εκπέµπονται ρύποι σύµφωνα µε την συνάρτηση Ε = γq (γ>0). Η επιχείρηση πληρώνει φόρο, τ, ανά µονάδα εκπεµπόµενων ρύπων.
3 Να προσδιοριστεί το επίπεδο προϊόντος στο οποίο µεγιστοποιούνται τα κέρδη της επιχείρησης καθώς και η τιµή πώλησης. Να συγκριθεί η λύση µε την περίπτωση όπου τ=0. 8. Να προσδιοριστούν και να χαρακτηριστούν τα ακρότατα σηµεία των ακόλουθων συναρτήσεων. Να υπολογιστεί επίσης η τιµή της συνάρτησης στα σηµεία αυτά. (α) y = 60x + 4x + 4x x - 6x - x + 5 (β) y = 5x + 0x - 4x x - x - 7x (γ) y = x + x - x x - 4x - 7x + 9. Να προσδιοριστούν τα σηµεία στα οποία µεγιστοποιούνται ή ελαχιστοποιούνται οι ακόλουθες συναρτήσεις. (α) y = x + x - 9x x (β) y = 4x + 6x x - x + x + 0. α) Να προσδιοριστούν οι µερικές παράγωγοι πρώτης τάξης και η Hssian µήτρα της συνάρτησης: y = x + ln( xx) β) Να εξεταστεί ως προς την κυρτότητα / κοιλότητα η συνάρτηση y = ax + bx + cx, a, b, c 0. >. ίνεται το σύστηµα: f y, y, x, x = x + x y y (,,, ) f y y x x = x x + y y Να υπολογιστούν τα y / x, y / x. y = f z, z = z + z, z = x x, z = x x Να υπολογιστούν µε τον γενικευµένο αλυσωτό κανόνα τα y/ x, y/ x.. ίνονται οι συναρτήσεις:. Να εξεταστεί αν η συνάρτηση y = x + x 4x +., έχει ελάχιστο στο σηµείο (0,). 4. Η συνάρτηση κέρδους µιας επιχείρησης που παράγει δύο προϊόντα είναι π ( q, q) = ( a a) q + ( a a) q bq bq Να προσδιοριστούν οι ποσότητες q, q οι οποίες µεγιστοποιούν το κέρδος της επιχείρησης. 5. Να προσδιοριστούν οι µερικές παράγωγοι πρώτης τάξης και η Hssian µήτρα a b της συνάρτησης: y = Ax x, Α,a,b σταθερές. Να εξεταστούν συνθήκες κάτω από τις οποίες η παραπάνω συνάρτηση είναι αυστηρά κοίλη.
4 0. t 6. ίνονται: Y KL K L, K. t + 5, L = 5, K, L> 0. Να υπολογιστεί µε τον γενικευµένο αλυσωτό κανόνα η παράγωγος dy/dt και να υπολογιστεί η τιµή της για t. F y, x = x + x y y 0y. Να υπολογιστεί η παράγωγος dy/dx και η τιµή της παραγώγου στο σηµείο (y,x) = (,). 7. ίνεται η σχέση 8. Να προσδιοριστεί το µέγιστο ή ελάχιστο της συνάρτησης f x, y = x xy y + 6x+ 4y 58. =. Οι συναρτήσεις F και f είναι συνεχώς παραγωγίσιµες και F >0. Να δειχτεί ότι αν το σηµείο (x o,y o ) είναι σηµείο στασιµότητας (µέγιστο ή ελάχιστο) για την g τότε είναι και σηµείο στασιµότητας για την f. 9. Εστω gxy (, ) F f ( xy, ) 0. (α) Να προσδιοριστεί ο βαθµός οµογένειας της συνάρτησης: β β β y= γ [ δx + ( δ ) x ] (β) ίνεται η συνάρτηση y=αx, Α>0, x R. Να εξεταστεί αν είναι κυρτή ή κοίλη. Να εξεταστεί αν το σύνολο X={x:y b}, b >0, είναι κυρτό ή µη κυρτό.. Μία επιχείρηση παράγει δύο προϊόντα µε συναρτήσεις ζήτησης Q = P Q = P Η συνάρτηση κόστους της επιχείρησης είναι TG = Q + 5Q Q +Q Να γραφεί η συνάρτηση κέρδους της επιχείρησης και να υπολογιστούν τα επίπεδα παραγωγής Q, Q στα οποία µεγιστοποιείται το κέρδος της επιχείρησης καθώς και οι τιµές στις οποίες θα πωλούνται τα δύο προϊόντα. Να εξεταστεί αν ικανοποιούνται οι συνθήκες δεύτερης τάξης.. Να προσδιοριστούν οι µερικές ελαστικότητες ζήτησης (ως προς την τιµή, σταυροειδής και εισοδηµατικές) για τις συναρτήσεις (α) Q 0 - P P - 0.5P Υ όταν P, P, P = 40 Y 000, Q = 40 (β) Q = 50-4P - P + P Y όταν P = 5, P = 7, P = Y 00, Q = 6 4
5 Πως χαρακτηρίζονται τα δύο αυτά προϊόντα µε βάση τις παραπάνω ελαστικότητες ζήτησης;. Οι συναρτήσεις ζήτησης, προσφοράς και η συνθήκη ισορροπίας για ένα προϊόν είναι Q D = D(P, Y 0, P 0, P 0 ), D/ p<0, D/ Υ 0 >0, D/ p 0 >0, D/ p 0 <0 Q S = S(P, W 0, T 0 ), S/ P>0, S/ W 0 <0, S/ T 0 >0 Q D = Qs = Q όπου P: τιµή προϊόντος, Υ 0 εισόδηµα, P 0, τιµή αγαθού, P 0 τιµή αγαθού, W 0 κόστος εισροής; ο δείκτης κλιµατολογικών συνθηκών. Να προσδιοριστεί η επίπτωση στην τιµή και ποσότητα ισορροπίας P, Q, από µεταβολή κάθε µίας από τις εξωγενείς µεταβλητές Υ 0, P 0, P 0, W 0, T 0. Nα προσδιοριστούν οι ίδιες επιπτώσεις όταν οι συναρτήσεις εξειδικεύονται ως: Q D = α - βp + γυ 0 + δp 0 - εp 0 α, β, γ, δ, ε > 0 Q S = - α + β p + JW 0 + η Τ 0 α, β, J, η > 0 β) Η συνάρτηση µέσου κόστους για το προϊόν, q, µιας επιχείρησης είναι: f AC( q) = + g+ hq, f, g, h> 0, ενώ η συνάρτηση ζήτησης είναι: p= a bq, a, b> 0. q Να προσδιοριστούν οι συναρτήσεις οριακού και συνολικού κόστους, καθώς και το επίπεδο προϊόντος στο οποίο µεγιστοποιούνται τα κέρδη της επιχείρησης. 4. (α) ίνεται το σύστηµα: F( y, y, x, x) = yy + xx F( y, y, x, x) = y + y xx Να υπολογιστούν οι παράγωγοι: y / x y / x y / x y / x. (β) ίνονται οι συναρτήσεις: y= z z + x z = x z = x a γ, δ Να υπολογιστεί η παράγωγος: dy/dx µε την µέθοδο του ολικού διαφορικού. 5. Να προσδιοριστούν οι µερικές παράγωγοι πρώτης τάξης και η Hssian µήτρα y = ln a x + a x + a x, a x + a x + a x > της συνάρτησης: Να εξεταστεί αν η συνάρτηση y ( x a b ln x ), ( x, x, a, b) κυρτή ή αυστηρά κοίλη. 7. ίνεται η σχέση = > 0, είναι αυστηρά F y, x x y = x 4y. Να υπολογιστεί η παράγωγος dy/dx και η τιµή της παραγώγου στο σηµείο (y,x) = (,0). 5
6 9. ίνεται η συνάρτηση δ a b c u= U, U= Ax + Ax + Ax, Aj, abc,,, δ, x j > 0, j=,, Να υπολογιστούν οι µερικές παράγωγοι u/ x j, j =,,. 40. ίνεται η συνάρτηση y=ax a x b, A,a,b,x,x >0. Να υπολογιστεί ο βαθµός οµογένειας της συνάρτησης. Για µια ισοϋψή καµπύλη (καµπύλη ίσου προϊόντος) Ax a x b =yo να προσδιοριστεί ο οριακός λόγος τεχνικής υποκατάστασης dx /dx και να δειχθεί ότι εξαρτάται από τον λόγο x /x και όχι από τα απόλυτα µεγέθη των x /x. 4. Να προσδιοριστούν τα σηµεία στασιµότητας (µεγίστου, ελαχίστου ή σαγµατικού σηµείου) της συνάρτησης f x, y = x + xy+ y + x 4. Η συνάρτηση κέρδους µιας επιχείρησης ορίζεται ως π ( xy, ) = pf ( xy, ) wx ry, όπου f(x,y) είναι µια συνάρτηση παραγωγής, (x,y) είναι εισροές, w,r είναι οι τιµές των εισροών και p είναι η τιµή του προϊόντος. Να γραφούν και ερµηνευθούν οι συνθήκες πρώτης τάξης για µεγιστοποίηση του κέρδους. Να δειχτεί ότι οι συνθήκες δεύτερης τάξης ικανοποιούνται όταν η συνάρτηση παραγωγής είναι αυστηρά κοίλη. 4. Το παρακάτω σύστηµα πεπλεγµένων συναρτήσεων προκύπτει κατά την λύση του προβλήµατος µεγιστοποίησης κέρδους της επιχείρησης pf( x, x) - w =0 pf( x, x) - w =0 όπου p,w,w >0 είναι οι τιµές προϊόντος και συντελεστών παραγωγής, f(x,x ) είναι µια αυστηρά κοίλη συνάρτηση παραγωγής µε f = f/ x, f = f/ x, f,f <0, f >0. Θεωρώντας τις x,x ως ενδογενείς µεταβλητές και τις p,w,w ως εξωγενείς να προσδιοριστούν τα πρόσηµα των παραγώγων x / w, x / w. f ( x, y) 44. ίνονται οι συναρτήσεις y = f ( x, y), z =. Αν ( x y) ( x y) σηµεία µεγίστου για την f και g αντίστοιχα. Να δειχτεί ότι ( x, y ) = ( x, y ). 45. Η συνάρτηση κέρδους µίας επιχείρησης είναι π = pal α Κ β - wl - rk,,, είναι τα όπου Q = AL α Κ β είναι η συνάρτηση παραγωγής της επιχείρησης. Οι τιµές του προϊόντος p και των εκροών w και r είναι δεδοµένες παράµετροι. (α) Να γραφούν οι συνθήκες πρώτης τάξης για την επιλογή των L* και Κ* που µεγιστοποιούν το κέρδος της επιχείρησης (β) Κάτω από ποιες προϋποθέσεις σχετικά µε τις τιµές που µπορούν να πάρουν τα α, β, ικανοποιούνται οι συνθήκες δεύτερης τάξης; 6
7 (γ) Τι διασφαλίζει την ύπαρξη λύσης στο σύστηµα των εξισώσεων που προσδιορίζονται από τις συνθήκες πρώτης τάξης για τα L, K; (δ) Πως θα µπορούσατε να εξετάσετε τις επιπτώσεις στις άριστες ποσότητες Q* = A(L*) α (Κ*) β, L* και Κ* από µεταβολές των παραµέτρων p, w, r. 46. Μια επιχείρηση παράγει προϊόντα µε συναρτήσεις ζήτησης p= a- bq - dq p= a - bq - dq και συνάρτηση κόστους c=vq q, (a,a,b,b,d,v)>0. Να προσδιοριστούν οι ποσότητες στις οποίες µεγιστοποιείται το κέρδος της επιχείρησης. Να τεθούν συνθήκες στις τιµές των παραµέτρων ώστε: (ι) να ικανοποιούνται οι συνθήκες δεύτερης τάξης και (ιι) να παράγονται στο µέγιστο θετικές ποσότητες και από τα δύο προϊόντα. 7
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Ακρότατα συναρτήσεων δύο μεταβλητών Συνάρτηση παραγωγής Ελαστικότητα Μακροοικονομικό μοντέλο Μεγιστοποίηση κερδών ακρότατα Για να βρούμε τα ακρότατα μίας συνάρτησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα
ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)
ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ Ποια η ποσότητα που μεγιστοποιεί τα κέρδη μιας επιχείρησης
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το
ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να
g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα
ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1
Θεωρία παραγωγού Σκοπός: Μεγιστοποίηση κερδών (υπάρχουν κι άλλοι σκοποί, π.χ. ένας μάνατζερ επιδιώκει την μεγιστοποίηση εσόδων κτλ. Τελικά όμως σκοπεύει στην μεγιστοποίηση των κερδών για να μπορέσει να
ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ Facebook: Didaskaleio Foititiko
Άσκηση. «Σε ορισμένες περιπτώσεις παρατηρείται στον κλάδο της γεωργίας της Ευρωπαϊκής Ένωσης το φαινομενικά παράδοξο να ευημερούν οι αγρότες περισσότερο όταν οι σοδειές τους δεν είναι καλές, και να πλήττονται
Af(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4
που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα;
ΔΙΑΓΩΝΙΣΜΑ 9 Μέρος Α. (3.6 μονάδες) (α). Να γίνει το γράφημα της συνάρτησης f() = ln(+ ), και να βρεθεί γραφικά το σημείο ισοελαστικότητας. (β). Δίνεται η συνάρτηση f() = ln. Να διαπιστωθεί ότι είναι κυρτή
ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή:
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 6 1. (3.9 μονάδες) (α). Η συνάρτηση f(x) έχει το γράφημα του παραπλεύρως σχήματος. Να βρεθεί γραφικά το σημείο ισοελαστικότητας: Ef(x) =± 1. Να γίνει το γράφημα της συνάρτησης Af(x)
Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost
Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης
Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης - Στο εξής, συμβολίζουμε την ποσότητα του καταναλωτικού αγαθού με q. - Έστω ότι η συνάρτηση παραγωγής της επιχείρησης είναι: q=f(k,l),
ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι
ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει
Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του
ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q
Πολυμεταβλητές συναρτήσεις, μερικές παράγωγοι και εφαρμογές τους
Πολυμεταβλητές συναρτήσεις, μερικές παράγωγοι και εφαρμογές τους 9-1-2017 Μερικές παράγωγοι δεύτερης τάξης (1) Έστω z = f x, y x y z x z y = 2 x x2 (διαδοχική μερική παράγωγος) = 2 y y2 (διαδοχική μερική
Επιχειρησιακά Μαθηματικά
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
Η επιστήμη της επιλογής υπό περιορισμούς
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΓΡΗΓΟΡΗ ΕΠΑΝΑΛΗΨΗ 26/2/2010 1 ΟΙΚΟΝΟΜΙΚΗ Η επιστήμη της επιλογής υπό περιορισμούς 26/2/2010 2 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η μελέτη των επιλογών τις οποίες κάνουν οι μικρο-μονάδες μιας οικονομίας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 013-014 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά
ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα
Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις
Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ - Α Εξαμήνου Διδάσκων : ΦΛΩΡΟΥ ΓΙΑΝΝΟΥΛΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ A ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ 31 / 01/ 2014 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2,0 ώρες ΟΔΗΓΙΕΣ Η εξέταση γίνεται με κλειστά βιβλία
Ελαχιστοποίηση του Κόστους
Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης του κέρδους: (1) Επιτρέπει τη διατύπωση μιας
3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή
Εισαγωγή στην Οικονομική Ανάλυση. Εξετάσεις περιόδου Ιανουαρίου Ιανουαρίου Νίκος Θεοχαράκης Θανάσης Μανιάτης
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιανουαρίου 010 1 Ιανουαρίου 010 Νίκος Θεοχαράκης Θανάσης Μανιάτης Απαντήστε 6
Επιχειρησιακά Μαθηματικά
Τηλ:10.9.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 1 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.9.4.450 ΚΕΦΑΛΑΙΟ Ο Μελέτη μονοτονίας (αύξουσα φθίνουσα) συνάρτησης f i) Βρίσκουμε την παράγωγο f ii)
Δεύτερο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 7 Δεκεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
Μεγιστοποίηση του Κέρδους
Μεγιστοποίηση του Κέρδους - Έστω η συνάρτηση παραγωγής: q = f ( x,..., x ). - Η τιμή του παραγόμενου προϊόντος είναι και οι τιμές των εισροών είναι w= ( w,..., w ). - Υπόθεση: Η επιχείρηση είναι αποδέκτης
25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης δύο μεταβλητών Ισουψείς καμπύλες Παραγώγιση Μερικές παράγωγοι πρώτου και δευτέρου βαθμού Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα
ΑΝΤΑΛΛΑΓΗ. Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα. και. και το αρχικό απόθεμα και.
ΑΝΤΑΛΛΑΓΗ Άσκηση 5 Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα u ( x, x ) = x + x 1 2 1 2 και u ( x, x ) = x + x 1 2 1 2 Ω = (2,0) Ω = (0,1) και το αρχικό απόθεμα και. Να προσδιοριστεί
ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου
Κ.Ε. Χ Ψ. A A (σταθερό) = Ρ. Q D = Σ.Δ. P Συνολικές δαπάνες καταναλωτών : Σ.Δ. = Ρ. Q D
ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΣΦΟΡΑ Κ.Ε. Χ Ψ = Μονάδες του Ψ που θυσιάζονται = ΔΨ Μονάδες του Χ που παράγονται ΔΧ Κ.Ε. Ψ Χ = Μονάδες του Χ που θυσιάζονται = ΔΧ Μονάδες του Ψ που παράγονται
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):
2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.
Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που
Εισαγωγή στην Οικονομική Ι Συνοπτικές Σημειώσεις Διαλέξεων Χειμερινό Εξάμηνο
Εισαγωγή στην Οικονομική Ι Συνοπτικές Σημειώσεις Διαλέξεων Χειμερινό Εξάμηνο 2014-2015 1 Βασικές Παραδοχές - Η οικονοµική είναι η µελέτη των τρόπων µε τους οποίους οι κοινωνίες διαχειρίζονται τους σπάνιους
Ελαχιστοποίηση του Κόστους
Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης των κερδών: () Επιτρέπει τη διατύπωση μιας θεωρίας
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Τσελεκούνης Μάρκος Επίκουρος Καθηγητής Τμήμα Οικονομικής Επιστήμης mtselek@unipi.gr http://www.unipi.gr/unipi/en/mtselek.html Γραφείο 516 Ώρες Γραφείου: Τετάρτη 12:00-14:00 ΚΕΦΑΛΑΙΟ
ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0
KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς. ΕΙΣΑΓΩΓΗ Το γενικό πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: Ζητούνται οι τιµές των µεταβλητών απόφασης u που ελαχιστοποιούν την αντικειµενική
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Διάκριση Μαθηματικών Οικονομικές συναρτήσεις Ορισμοί Μαθηματικά στα οικονομικά φαινόμενα Βελτιστοποίηση κερδών Μέτρηση χρησιμότητας Οριακά μεγέθη Ελαστικότητα Πολλαπλασιαστής
Γενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Δεύτερο πακέτο ασκήσεων και λύσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες
5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΕΝΟΤΗΤΑ ΔΕΟ 13 ΕΡΓΑΣΙΑ 2 Η
ΕΝΟΤΗΤΑ ΔΕΟ 1 ΕΡΓΑΣΙΑ Η 8 9 Η λύση της εργασίας είναι ενδεικτική και ο υποψήφιος θα πρέπει να βασιστεί σε αυτή και να επιφέρει τις δικές του αλλαγές. Ενημερωθείτε για τις προσφορές πακέτου για όλες τις
Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις = 1 3 Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης) = ( ) =
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Ελαστικότητα Ελαστικότητα Γενικά η ελαστικότητα μας δείχνει πως αντιδρά μια εξαρτημένη
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( )
ΘΕΜΑ Α Α1. α. Σωστό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ (14.06.2017) ΟΜΑΔΑ ΠΡΩΤΗ β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό Α2. Σωστή επιλογή (γ) Α3. Σωστή επιλογή (δ) ΘΕΜΑ Β Β1. Σχολικό Βιβλίο (σελ. 16-17)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές
Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου
ΤΥΠΟΛΟΓΙΟ ΑΟΘ
ΤΥΠΟΛΟΓΙΟ 1 ου ΚΕΦΑΛΑΙΟΥ Κόστος ευκαιρίας ή εναλλακτικό κόστος Για μια οικονομία που παράγει δύο αγαθά, Χ και Ψ, το κόστος ευκαιρίας των αγαθών Χ και Ψ δίνεται από τους ακόλουθους τύπους: Χ σε όρους ή
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας. Ημ/νία: 14 Ιουνίου Απαντήσεις Θεμάτων
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας Ημ/νία: 14 Ιουνίου 2017 Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό β) Λάθος γ) Λάθος δ) Λάθος ε) Σωστό
Βελτιστοποίηση συναρτήσεων
Βελτιστοποίηση συναρτήσεων Παράγωγοι εκθετικών λογαριθμικών συναρτήσεων Ποσοστιαίος ρυθμός μεταβολής Παράγωγοι ανώτερης τάξης Εύρεση μεγίστων-ελαχίστων Οικονομικές συναρτήσεις Παράγωγοι εκθετικών λογαριθμικών
(iii) Να βρεθεί το δεσμευμένο στάσιμο της συνάρτησης f(x, y) = x + y με τον περιορισμό:
ΔΙΑΓΩΝΙΣΜΑ 1 (3 μονάδες) (i) Δίνονται οι παραμετρικές εξισώσεις: = ln(t+ 1), y= t + t. Να υπολογιστεί η παράγωγος του ως προς y, όταν t= 0. (ii) Δίνεται η συνάρτηση: f() = p+. Να διερευνηθεί αν είναι κυρτή
ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.
(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Ακαδημαϊκό έτος 2017-2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΛΥΣΕΙΣ ΤΡΙΤΟΥ ΠΑΚΕΤΟΥ ΑΣΚΗΣΕΩΝ Άσκηση 1. α) Για την συνάρτηση
Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική
Αγοραία καμπύλη ζήτησης
Αγοραία καμπύλη ζήτησης Αγοραία καμπύλη ζήτησης: είναι το οριζόντιο άθροισμα των ατομικών καμπυλών ζήτησης. Μικροοικονομική Θεωρία Ι / Διάλεξη 9 / Φ. Κουραντή 1 Παράδειγμα 1: Αγοραία καμπύλη ζήτησης Determnng
E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ
E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των
Μαθηματική Ανάλυση ΙI
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 7: Ακρότατα, τύπος Taylor Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ομάδα Α Α1. Αύξηση της ζήτησης και μείωση της προσφοράς, είναι δυνατό να μη μεταβάλλει την τιμή ισορροπίας. Α2. Η αβεβαιότητα
ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.
ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες
Άσκηση1: Να λυθεί και να διερευνηθεί για τις διάφορες τιμές των παραμέτρων ab, το σύστημα: a 4 4a. το σύστημα έχει άπειρες λύσεις:
Άσκηση: Να λυθεί και να διερευνηθεί για τις διάφορες τιμές των παραμέτρων ab, το σύστημα: a z 4 b z 3 b z 4 Λύση a 4 b 4 b 4 b0 3 33 /( b) b 3 b 3 0 b 0 b 4 a 4 0 ab a 4 4a b 4 b 4 33 ( ab) 0 0 / b 0 0
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς. Τεχνικές αριστοποίησης και σύγχρονα εργαλεία
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς Τεχνικές αριστοποίησης και σύγχρονα εργαλεία µάνατζµεντ 1 Ο Νόµος της Ζήτησης Μια µείωση στην τιµή ενός αγαθού, ενώ όλα τα άλλα µεγέθη παραµένουν
Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Θεωρία Παραγωγής και Κόστους
Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται βασικά στοιχεία
Α1. ΘΕΜΑ Α. 1. Λ 2. Σ 3. Λ 4. Σ 5. Λ Α2.1. Β Α2.2. Δ
ΛΥΣΗ Α1. 1. Λ 2. Σ 3. Λ 4. Σ 5. Λ Α2.1. Β Α2.2. Δ ΘΕΜΑ Α. ΘΕΜΑ Β. Β1. Ο νόμος της φθίνουσας ή μη ανάλογης απόδοσης δηλώνει ότι στη βραχυχρόνια περίοδο παραγωγής, δηλαδή στην περίοδο που υπάρχει ίνας τουλάχιστον
Σύνολο ασκήσεων 5. = = ( ) = = ( ) = p ln ( ) Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης)
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή,, (συμβολισμός ή,, ) για τις παρακάτω συναρτήσεις = 1 3 = ( 1 3 4 )= 1 1 3+5 3 +8ln( 1 )+ 4 = ( ) = +3 + +3 = ( ) = p ln ()+ +
ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,
Αγοραία ζήτηση. Ατοµική και αγοραία συνάρτηση. Διάλεξη 9. συνάρτηση. συνάρτηση
Ατοµική και αγοραία συνάρτηση Διάλεξη 9 Αγοραία ζήτηση Υποθέστε µιαν οικονοµία που έχει n καταναλωτές, και συµβολίζονται µε =,,n. Η συνάρτηση της κανονικής καµπύλης ζήτησης του καταναλωτή για το αγαθό
ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΝΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Βάλτε σε κύκλο το σωστό γράμμα: 1 ο ΔΙΑΓΩΝΙΣΜΑ Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Σ Λ Α. 2. Έστω δύο αγαθά
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Πραγματικοί Αριθμοί 2
Διαφορικός Λογισμός Συναρτήσεις μίας μεταβλητής Όριο και συνέχεια Συνάρτησης Παράγωγος Συνάρτησης o Ιδιότητες παραγώγων o Κανόνες παραγώγισης o Διαφορικό συνάρτησης o Συναρτήσεις με παραμετρική μορφή Βασικά
Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ
Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ Έστω συνάρτηση y=f(x) Όριο L (limit) της συνάρτησης y=f(x) είναι ο αριθμός
Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Οικονοµολόγων της Ώθησης
ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Οικονοµολόγων της Ώθησης 1 Παρασκευή ευή, 31 Μα ου 2013 ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ
ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ Βάλτε σε κύκλο το σωστό γράμμα: Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Α. 2. Έστω
ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
ΑΣΚΗΣΕΙΣ. 1η οµάδα. 2. Έστω ο επόµενος πίνακας παραγωγικών δυνατοτήτων: Χ Υ Κόστος. Κόστος ευκαιρίας Ψ Α /3
ΑΣΚΗΣΕΙΣ 1η οµάδα 1. Έστω επιχείρηση που διαθέτει 5 εργάτες. Κάθε εργάτης µπορεί να παράγει 12 µονάδες από το αγαθό Υ. Επιπλέον γνωρίζουµε ότι η ΚΠ είναι γραµµική µε το συνδυασµό X = 45, Y = 24 να είναι
ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής