Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος."

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως σχήµατος. f () β) Θεωρούµε τη συνάρτηση f() = ln(+ ) α στο διάστηµα:. Να διαπιστωθεί ότι είναι κοίλη, και να βρεθούν οι τιµές του α για τις οποίες το µέγιστό της βρίσκεται στο αριστερό σύνορο: =. γ) Οι µεταβλητές {,} συνδέονται µε την εξίσωση: =. Να βρεθεί η ελαστικότητα του ως προς. δ) Να γίνει το γράφηµα και να υπολογιστεί το εµβαδό της περιοχής που βρίσκεται µεταξύ της καµπύλης (+ ) = και των θετικών ηµιαξόνων. (4 µονάδες) α) Να διαπιστωθεί ότι η συνάρτηση f(, ) = + ικανοποιεί την εξίσωση: f + f = f / β) Θεωρούµε ότι το σύστηµα εξισώσεων: {+ = u, = } ορίζει πλεγµένα τα {,} ως συναρτήσεις των {u,}. Να βρεθεί η µερική παράγωγος του ως προς. 3 3 γ) Θεωρούµε τη συνάρτηση f(, ) = + +. Να διαπιστωθεί ότι το σηµείο (=, = ) είναι στάσιµο, και να χαρακτηριστεί. δ) Το περιορισµένο στάσιµο της συνάρτησης f = µε τον περιορισµό g= + = 6, είναι (=, = ). Να υπολογιστεί ο πολλαπλασιαστής Lagrange και να χαρακτηριστεί το στάσιµο ως ακρότατο γραφικά. Εφαρµογές 3.( µονάδες) Σε µια οικονοµία µε εθνικό εισόδηµα Y, ο πληθυσµός L αυξάνει συνεχώς µε ετήσιο ρυθµό %. Να βρεθούν: α) Ο ρυθµός αύξησης του κατά κεφαλή εισοδήµατος = Y / L αν το εθνικό εισόδηµα Y αυξάνει µε ρυθµό 3% β) Ο ελάχιστος ρυθµός αύξησης του εθνικού εισοδήµατος Y που θα επιτρέψει το κατά κεφαλή εισόδηµα = Y / L να διπλασιαστεί σε χρόνια. 4.( µονάδες) Μια παραγωγική µονάδα χρησιµοποιεί συντελεστή παραγωγής K µε µοναδιαίο κόστος και παράγει ποσότητα Q= K ενός προϊόντος το οποίο διατίθεται µε µοναδιαία τιµή. Να βρεθεί το µέγιστο κέρδος π ως συνάρτηση των παραµέτρων {,} και να διερευνηθούν οι ιδιότητες µονοτονίας, οµογένειας κυρτότητας και οιονεί κυρτότητας αυτής της συνάρτησης. Να ερµηνευτούν οι παραπάνω ιδιότητες, και να σκιαγραφηθούν οι ισοσταθµικές της συνάρτησης µέγιστου κέρδους: π(,). ΤΕΛΟΣ

2 ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως σχήµατος. Λύση. Η συνάρτηση f() θα είναι:. Αύξουσα κυρτή µέχρι την γωνία, διότι η παράγωγος είναι θετική αύξουσα. Ειδικότερα θα είναι παραβολική, διότι η παράγωγος είναι γραµµική. Επίσης θα αρχίζει µε µηδενική κλίση, διότι η παράγωγος αρχίζει µε µηδενική τιµή.. Αύξουσα γραµµική µετά την γωνία, διότι η παράγωγος είναι σταθερή ιαγώνισµα 6. ΛΥΣΕΙΣ 3. εν θα κάνει γωνία (στην γωνία της παραγώγου) διότι η παράγωγος είναι συνεχής. β) Θεωρούµε τη συνάρτηση f() = ln(+ ) α στο διάστηµα:. Να διαπιστωθεί ότι είναι κοίλη, και να βρεθούν οι τιµές του α για τις οποίες το µέγιστό της βρίσκεται στο αριστερό σύνορο: =. Λύση. α,α> Είναι κοίλη (γνήσια), διότι η δεύτερη παράγωγος είναι γνήσια αρνητική: f () = α = (+ ) α f () = (+ ) = < ln(+ ) + (+ ) Έχουµε πρόβληµα κυρτού προγραµµατισµού και το µέγιστο θα βρίσκεται στο αριστερό σύνορο αν ικανοποιείται η συνθήκη: f () α α Παρατήρηση. Για α η συνάρτηση α είναι µεγαλύτερη από την ln(+ ), όπως φαίνεται στο γράφηµα, οπότε η f() έχει παντού f() αρνητικές τιµές µε µέγιστη µηδενική στο =. γ) Οι µεταβλητές {,} συνδέονται µε την εξίσωση: =. Να βρεθεί η ελαστικότητα του ως προς. Λύση. Λύνοντας ως προς βρίσκουµε συνάρτηση δύναµης: / / / = Εποµένως η ζητούµενη ελαστικότητα είναι: E= /. ηλαδή, αν το αυξηθεί κατά %, τότε (οριακά) το θα πρέπει να µειωθεί κατά (/ )%, ώστε να διατηρηθεί σταθερό το µέγεθος: = δ) Να γίνει το γράφηµα και να υπολογιστεί το εµβαδό της περιοχής που βρίσκεται µεταξύ της καµπύλης (+ ) = και των θετικών ηµιαξόνων. Λύση. (+ ) = = Το γράφηµα είναι η υπερβολική καµπύλη =, µετατοπισµένη κατακόρυφα κατά, οπότε έχει κατακόρυφη ασύµπτωτο στο =, και οριζόντια ασύµπτωτο στο =. Το ζητούµενο εµβαδό είναι άπειρο διότι δίνεται από το ολοκλήρωµα: + + = E= d= ln(+ ) = ln( + ) ln=+ + + Εναλλακτικά δίνεται από το ολοκλήρωµα: = E ( )d ln (ln ) (ln ) = = = =+ f() f ()

3 (4 µονάδες) α) Να διαπιστωθεί ότι η συνάρτηση f(, ) = + ικανοποιεί την εξίσωση: f + f = f / Λύση. Η συνάρτηση είναι προφανώς οµογενής βαθµού / : / / f(t, t) = (t) + (t) = t + = t f(, ) και εποµένως ικανοποιεί την παραπάνω εξίσωση Euler βαθµού /. Λύση. Υπολογίζουµε τις µερικές παραγώγους: / / / f ( ) {f (/ )( ) = + = +, f = (/ )(+ ) } και αντικαθιστούµε στο αριστερό µέρος, οπότε βρίσκουµε το ζητούµενο: / / f + f = (/ )(+ ) + (/ )(+ ) = + + = + = / / ( )( ) / ( ) / f / β) Θεωρούµε ότι το σύστηµα εξισώσεων: {+ = u, = } ορίζει πλεγµένα τα {,} ως συναρτήσεις των {u,}. Να βρεθεί η µερική παράγωγος του ως προς. Λύση. Γράφουµε τις εξισώσεις στην κανονική µορφή, και χρησιµοποιώντας τους τύπους πλεγµένης παραγώγισης µε Ιακωβιανές ορίζουσες, βρίσκουµε: f f (f,g) f(,,u,) = + u= (,) g g = = = = = g(,,u, ) = = (f,g) f f + (, ) g g Λύση. Παραγωγίζουµε πλεγµένα ως προς για σταθερό u, και λύνουµε αλγεβρικά ως προς : + = u + = + = = = = + (Προσθέσαµε τις δύο εξισώσεις κατά µέρη για να απαλλαγούµε από το ) 3 3 γ) Θεωρούµε τη συνάρτηση f(, ) = + +. Να διαπιστωθεί ότι το σηµείο (=, = ) είναι στάσιµο, και να χαρακτηριστεί. Λύση. Είναι στάσιµο διότι µηδενίζει τις παραγώγους ης τάξης: 3 3 f(, ) = + + {f = 3 + =, f = 3 + = } Για τις παραγώγους ης τάξης στο ίδιο σηµείο βρίσκουµε: f = 6 f = H f = {f =, f =, f = Hf = 36 = < } f = f = 6 Έχει αρνητική ορίζουσα και εποµένως ο Εσσιανός πίνακας είναι αόριστος και το στάσιµο είναι σαγµατικό. Ειδικά δεν είναι ακρότατο, ούτε τοπικό. δ) Το περιορισµένο στάσιµο της συνάρτησης f = µε τον περιορισµό g= + = 6, είναι (=, = ). Να υπολογιστεί ο πολλαπλασιαστής Lagrange και να χαρακτηριστεί το στάσιµο ως ακρότατο γραφικά. Λύση. Υπολογίζουµε τον πολλαπλασιαστή στο σηµείο (,)από τη σχέση: f f g g 4 λ= = λ= = = Τα δύο κλάσµατα είναι ίσα διότι το σηµείο είναι περιορισµένο στάσιµο. Όπως φαίνεται στο γράφηµα, το σηµείο δίνει γνήσιο περιορισµένο ολικό µέγιστο διότι ο περιορισµός βρίσκεται γνήσια στην κάτω σταθµική της αντικειµενικής συνάρτησης. g= 6 ma f = (4, 4) f = 4

4 Εφαρµογές 3.( µονάδες) Σε µια οικονοµία µε εθνικό εισόδηµα Y, ο πληθυσµός L αυξάνει συνεχώς µε ετήσιο ρυθµό %. Να βρεθούν: α) Ο ρυθµός αύξησης του κατά κεφαλή εισοδήµατος = Y / L αν το εθνικό εισόδηµα Y αυξάνει µε ρυθµό 3% β) Ο ελάχιστος ρυθµός αύξησης του εθνικού εισοδήµατος Y που θα επιτρέψει στο κατά κεφαλή εισόδηµα = Y / L να διπλασιαστεί σε χρόνια. Λύση. Ο ποσοστιαίος ρυθµός µεταβολής του λόγου δίνεται από την διαφορά των ποσοστιαίων ρυθµών µεταβολής των δύο όρων. Εποµένως: α) Το κατά κεφαλή εισόδηµα θα µεταβάλλεται µε ρυθµό 3% % = %, δηλαδή θα αυξάνει µε ετήσιο ρυθµό %. β) Γενικότερα, αν το εθνικό εισόδηµα αυξάνει µε ρυθµό %, τότε το κατά κεφαλή εισόδηµα θα αυξάνει µε ρυθµό ( )%, δηλαδή µε συντελεστή: r = ( ) / Αν είναι το αρχικό κατά κεφαλή εισόδηµα, τότε µετά από χρόνια θα είναι: r = e οπότε θα είναι διπλάσιο του αρχικού αν ικανοποιείται η συνθήκη: r = e = r = (ln) / Αντικαθιστώντας βρίσκουµε για το : ( ) / = (ln) / = + 5ln ηλαδή το εθνικό εισόδηµα πρέπει να αυξάνει µε ρυθµό τουλάχιστον 5 ln 3.5% µεγαλύτερο από τον ρυθµό αύξησης του πληθυσµού.

5 4.( µονάδες) Μια παραγωγική µονάδα χρησιµοποιεί συντελεστή παραγωγής K µε µοναδιαίο κόστος και παράγει ποσότητα Q= K ενός προϊόντος το οποίο διατίθεται µε µοναδιαία τιµή. Να βρεθεί το µέγιστο κέρδος π ως συνάρτηση των παραµέτρων {,} και να διερευνηθούν οι ιδιότητες µονοτονίας, οµογένειας, κυρτότητας και οιονεί κυρτότητας αυτής της συνάρτησης. Να ερµηνευτούν οι παραπάνω ιδιότητες ιδιότητες, και να σκιαγραφηθούν οι ισοσταθµικές της συνάρτησης µέγιστου κέρδους: π(,). Λύση. Η συνάρτηση κέρδους: Π(K) = R(K) C(K) = Q(K) K= K K είναι κοίλη µε µέγιστο στο στάσιµο σηµείο: Π (K) = / K = K = / 4 Το µέγιστο κέρδος είναι: Π(K ) = K K = = = / Ως συνάρτηση των παραµέτρων είναι:. αύξουσα, φθίνουσα. Το µέγιστο κέρδος αυξάνει όταν αυξάνει η τιµή του προιόντος ή όταν µικραίνει το κόστος του συντελεστή. Οµογενής βαθµού. Αν η τιµή του προιόντος και το κόστος του συντελεστή αυξηθούν κατά το ίδιο ποσοστό, τότε το µέγιστο κέρδος θα αυξηθεί κατά το ίδιο αυτό ποσοστό. 3. κυρτή, κυρτή, (,) κυρτή, διότι ο Εσσιανός πίνακας H π είναι θετικά ηµιορισµένος: 3 {π = /,π = / 4}, {π = /,π = / 4,π = / } = = = 4 4 ππ (π ) {π >,π >, = } Hπ. Καθώς η τιµή του προιόντος αυξάνει ή/και το κόστος του συντελεστή µικραίνει, το µέγιστο κέρδος αυξάνει µε αύξοντα ρυθµό 4. (,) οιονεί κυρτή, διότι είναι (,) κυρτή. Εξάλλου οι κάτω σταθµικές περιοχές είναι κυρτές, όπως φαίνεται στο γράφηµα, διότι δίνονται από το εσωτερικό παραβολών. π c 3 c c κάτω σταθµική: c / 4c 4 Ακραίοι συνδυασµοί τιµής του προιόντος και κόστους του συντελεστή: {A,B}, είναι περισσότερο κερδοφόροι από ενδιάµεσους συνδυασµούς C. Έχουµε: π(a) = π(b) = c, αλλά π(c) < c Επίσης καθώς το αυξάνει τότε για να διατηρηθεί σταθερή η κερδοφορία: c, θα πρέπει βέβαια και το να αυξάνει αλλά µε φθίνοντα ρυθµό, διότι: = c = c 4 είναι αύξουσα κοίλη A C B π c / 4c c ΤΕΛΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος Α Μέρος ΔΙΑΓΩΝΙΣΜΑ 1 1. (3.6 μονάδες) (α). Δίνεται η εξίσωση: = 8. Αν το ελαττωθεί από την τιμή = κατά 1%, να εκτιμηθεί η αντίστοιχη ποσοστιαία μεταβολή στην τιμή του. (β). Να διαπιστωθεί ότι η συνάρτηση

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2. ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται

Διαβάστε περισσότερα

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα;

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα; ΔΙΑΓΩΝΙΣΜΑ 9 Μέρος Α. (3.6 μονάδες) (α). Να γίνει το γράφημα της συνάρτησης f() = ln(+ ), και να βρεθεί γραφικά το σημείο ισοελαστικότητας. (β). Δίνεται η συνάρτηση f() = ln. Να διαπιστωθεί ότι είναι κυρτή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0, Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

(iii) Να βρεθεί το δεσμευμένο στάσιμο της συνάρτησης f(x, y) = x + y με τον περιορισμό:

(iii) Να βρεθεί το δεσμευμένο στάσιμο της συνάρτησης f(x, y) = x + y με τον περιορισμό: ΔΙΑΓΩΝΙΣΜΑ 1 (3 μονάδες) (i) Δίνονται οι παραμετρικές εξισώσεις: = ln(t+ 1), y= t + t. Να υπολογιστεί η παράγωγος του ως προς y, όταν t= 0. (ii) Δίνεται η συνάρτηση: f() = p+. Να διερευνηθεί αν είναι κυρτή

Διαβάστε περισσότερα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή:

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή: Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 6 1. (3.9 μονάδες) (α). Η συνάρτηση f(x) έχει το γράφημα του παραπλεύρως σχήματος. Να βρεθεί γραφικά το σημείο ισοελαστικότητας: Ef(x) =± 1. Να γίνει το γράφημα της συνάρτησης Af(x)

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ 1.Περιορισμένη τετραγωνική μορφή. Χαρακτηρισμός πλαισιωμένων συμμετρικών πινάκων 3.Συνθήκες για περιορισμένα τοπικά ακρότατα 4.Περισσότερες μεταβλητές και περιορισμοί 5.Περιορισμένα

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου C-D 5.Χρησιμότητα τύπου Leontief-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

και γνησίως αύξουσα στο 0,

και γνησίως αύξουσα στο 0, ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη

Διαβάστε περισσότερα

1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W

1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W Θέµα ο (α) Μια κατανοµή στο εσωτερικό του κουτιού Edgeworth είναι άριστη κατά areto αν MRS MRS Έχουµε τα ακόλουθα MRS 3 3 4 4 4 3 3 4 4 4, MRS 3 3 3 3 3 3 Στην αρχική κατανοµή βρίσκουµε 00 MRS(50, 00)

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p EI.. ΜΕΣΟ ΚΟΣΤΟΣ.Μέσο κόστος(α).ελάχιστο μέσο κόστος 3.Μέσο προιόν(a).μέγιστο μέσο προιόν 5.Κερδοφορία. Μέσο κόστος Θεωρούμε το κόστος παραγωγής ενός προιόντος ως συνάρτηση της ποσότητας παραγωγής, και

Διαβάστε περισσότερα

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου -D 5.Χρησιμότητα τύπου Lontif-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι

Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι Κεφάλαιο ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ Τα μαθηματικά της αριστοποίησης Πολλές οικονομικές θεωρίες ξεκινούν με την υπόθεση ότι ένα άτομο ή επιχείρηση επιδιώκουν να βρουν την άριστη τιμή μιας συνάρτησης

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ. Α1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. Α2. α. Α3. γ

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ. Α1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. Α2. α. Α3. γ ΠΝΤΗΣΕΙΣ ΟΜ ΠΡΩΤΗ 1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. α 3. γ ΟΜ ΕΥΤΕΡΗ Β1. πό το 4 ο κεφάλαιο του σχολικού βιβλίου σελίδες 83-84 ή η ενότητα 5. «Προσδιοριστικοί παράγοντες της προσφοράς» Η

Διαβάστε περισσότερα

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Σε μια παραγωγική διαδικασία διακρίνουμε τις εισροές (inpts) που αφορούν τους συντελεστές παραγωγής (factors of prodction), και τις εκροές (otpts) που αφορούν

Διαβάστε περισσότερα

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισµός ελαστικότητας 3.Ελαστικότητα αντίστροφης 4. ιαφορικά 5.Οµογενείς συναρτήσεις 6.Λογισµός ρυθµών και διαφορικών 7.Λογαριθµική κλίµακα. 8.Σχετικός

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα KΕΦΑΛΑΙΟ 3 Πλεγµένες συναρτήσεις- Ανάπτυγµα Talor-Aκρότατα 3 Πλεγµένες συναρτήσεις Σε πολλές περιπτώσεις συναντούµε µία (ή και περισσότερες) εξισώσεις µεταξύ διαφόρων µεταβλητών πχ της µορφής e + συν (

Διαβάστε περισσότερα

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c} I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των

Διαβάστε περισσότερα

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ Κοινό κριτήριο επιλογής µεταξύ εναλλακτικών τρόπων παραγωγής είναι η µεγιστοποίηση (κέρδος ήηελαχιστοποίηση (κόστος κάποιου µεγέθους. Αυτά τα προβλήµατα µεγιστοποίησης

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

Ε7 Βελτιστοποίηση στην Κατανάλωση

Ε7 Βελτιστοποίηση στην Κατανάλωση 217 Ε7 Βελτιστοποίηση στην Κατανάλωση Θεωρούµε ότι η χρησιµότητα που αποφέρει η κατανάλωση αγαθών είναι κάποια συνάρτηση των ποσοτήτων κατανάλωσης. Θα αναφερθούµε σε ορισµένες απλές συναρτήσεις χρησιµότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας.

3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας. 1. Μια επιχείρηση έχει συνάρτηση παραγωγής την f(k,l), όπου Κ είναι οι µονάδες κεφαλαίου και L είναι οι µονάδες εργασίας που χρησιµοποιεί. Αν ξέρουµε ότι το οριακό προϊόν της εργασίας είναι θετικό, αλλά

Διαβάστε περισσότερα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x. Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2017

Πανελλαδικές εξετάσεις 2017 Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση Οικονοµικό κέρδος Διάλεξη Μεγιστοποίηση Μια επιχείρηση χρησιµοποιεί εισροές j,m για να παραγάγει n προϊόντα i, n. Τα επίπεδα του προϊόντος είναι,, n. Τα επίπεδα των εισροών είναι,, m. Οι τιµές των προϊόντων

Διαβάστε περισσότερα

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος σχολικό έτος 03-04) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών

Διαβάστε περισσότερα