Ευαισθησία πειράµατος (Signal to noise ratio = S/N) ιάρκεια πειράµατος (signal averaging)) ιάρκεια 1,38 1,11 0,28 5,55. (h) πειράµατος.
|
|
- Μέλισσα Γιαννόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Γιατί NMR µε παλµούς; Ευαισθησία πειράµατος (Signal to noise ratio = S/N) ιάρκεια πειράµατος (signal averaging)) Πυρήνας Φυσική αφθονία (%) ν (Hz) Ταχύτητα σάρωσης (Hz/s) Αριθµός σαρώσεων 1 Η 99, C 1, Η 99, C 1, ιάρκεια πειράµατος (h) 0,28 1,38 1,11 5,55
2 Λόγος σήµατος προς θόρυβο (S/N) ( Καθορίζει την ευαισθησία του πειράµατος NMR S N = n n n = S 4 = 4 = N 2 n = αριθµός σαρώσεων Τετραπλασιασµός των αριθµών των σαρώσεων διπλασιάζει την ευαισθησία του πειράµατος. Προτεινόµενη λύση. Σε µια περιοχή, π.χ Hz εφαρµόζουµε 1000 ποµπούς και 1000 δέκτες, τον ένα δίπλα στον άλλο και σε απόσταση 1 Hz (τεχνικά αδύνατον). S Αποδεκτή λύση. Η εφαρµογή παλµών, οι οποίοι καλύπτουν µια περιοχή συχνοτήτων. N
3 Παλµοί-Παλµικό Παλµικό NMR Ο παλµός εκπέµπεται από τον ποµπό ραδιοσυχνοτήτων (πεδίο Β 1 ) και είναι ένας συνδυασµός κύµατος συχνότητας ω ο και µιας βηµατικής συνάρτησης. FT - ω + ω t p ω ο Για να υπολογίσουµε τη συχνότητα του παλµού και την περιοχή συχνοτήτων που αυτή καλύπτει στο φάσµα, θα πρέπει να αναλύσουµε τον παλµό µε Μετασχηµατισµό Φουριέ (Fourier Transformation). Ο παλµός καλύπτει µια ευρεία περιοχή συχνοτήτων ± ω µε κέντρο τη συχνότητα ω ο. Η περιοχή εξαρτάται από το εύρος t p του παλµού. t p 1/ ω ο
4 Εύρος παλµών και γωνία απόκλισης Εύρος παλµών και γωνία απόκλισης Το εύρος του παλµού δεν συνδέεται µόνο µε την περιοχή συχνοτήτων που καλύπτει, αλλά και µε τη διάρκεια λειτουργίας του πεδίου B 1, δηλαδή από τον χρονική διάρκεια εφαρµογής του παλµού. Με την εφαρµογή του πεδίου B 1 εξασκείται µια ροπή στρέψης στη µαγνήτιση M o. x M o Β 1 z φ z t = γ * t p * B 1 y x φ M xy y Ηγωνίααπόκλισης ήπεριστροφήςφ της µαγνήτισης εξαρτάται από την ένταση του πεδίου B 1 και από τη διάρκεια του παλµού t p. Μεταβάλλοντας την ένταση ή τη διάρκεια του παλµού µπορούµενα επιτύχουµεγωνίεςαπόκλισηςπ/4, π/2 και π. Οι παλµοί ονοµάζονται παλµοί π/4, π/2 και π, ή 45 ο, 90 ο και 180 ο, αντίστοιχα.
5 Μερικοί χρήσιµοι παλµοί Μερικοί χρήσιµοι παλµοί x x z M o π / 2 y y z z x z M xy M o π y y x -M 0 Από τους πιο κοινούς παλµούς είναι ο π/2, ο οποίος τοποθετεί τη µαγνήτιση στο επίπεδο xy. Χρήσιµος, επίσης, είναι ο παλµός π, ο οποίος προκαλεί αναστροφή της µαγνήτισης και των πληθυσµών των πυρήνων στις ενεργειακές στάθµες. Οι παλµοί διακρίνονται σε µη επιλεκτικούς και επιλεκτικούς παλµούς. Οι µη επιλεκτικοί παλµοί είναι µικρής διάρκειας και διεγείρουν µια µεγάλη περιοχή συχνοτήτων. Αντίθετα οι επιλεκτικοί παλµοί είναι µικρής διάρκειας και διεγείρουν µια µικρή περιοχή συχνοτήτων (π.χ. µια µόνο συνιστώσα µιας πολλαπλής κορυφής).
6 Ελεύθερη Επαγωγική Απόσβεση (FID) Μετά την εφαρµογή παλµού π/2, η µαγνήτιση βρίσκεται στο επίπεδο xy του περιστρεφόµενου συστήµατος αναφοράς (Π.Σ.Α.). ιακρίνουµε δύο περιπτώσεις: 1. Η µαγνήτιση Μ xy παραµένει ακίνητη στον άξονα y (ω = ω o ), όπου ω o η συχνότητα του Π.Σ.Α. Η επαναφορά της µαγνήτισης στην κατάσταση ισορροπίας (αποδιέγερση) είναι εκθετική. Το λαµβανόµενο σήµα στον δέκτη έχει την ίδια µορφή. Μ xy M xy (t) = M xy (0) * e -t/t 2 ω = ω o Χρόνος
7 Ελεύθερη Επαγωγική Απόσβεση (FID) ( ) ( 2. Η µαγνήτιση Μ xy περιστρέφεται στο επίπεδο xy µε συχνότητα ω - ω o > 0 (ω ω o ). Η επαναφορά της µαγνήτισης στην κατάσταση ισορροπίας είναι φθίνουσα συνηµιτονοειδής ή ηµιτονοειδής. Το λαµβανόµενο σήµα στον δέκτη έχει την ίδια µορφή. M xy (t) = M xy (0) * cos (ω - ω o ) * e -t/t2 Μ xy Χρόνος φ ω - ω o Μ xy M xy (t) = M xy (0) * sin (ω - ω o ) * e -t/t2 Χρόνος
8 Ελεύθερη Επαγωγική Απόσβεση (FID) ( ) ( Στο προηγούµενο πείραµα, από το σήµα στο χώρο του χρόνου µπορούµε να προσδιορίσουµε µε σχετική ευκολία τη συχνότητα (χηµική µετατόπιση) και τη σταθερά σύζευξη (εάν υπάρχει). Οµως ένα πραγµατικό δείγµα περιέχει εκατοντάδες πυρήνες µε διαφορετικές συχνότητες συντονισµού. Σε αυτήν την περίπτωση, η ελεύθερη επαγωγική απόσβεση (FID) είναι σύνθετη και αποτελείται από τις FID όλων των µεµονωµένων πυρήνων t1 sec
9 Ελεύθερη Επαγωγική Απόσβεση (FID) ( ) ( Μετασχηµατισµός Φουριέ (FT ( FT) S(t) t1 sec S(ω)
10 Ελεύθερη Επαγωγική Απόσβεση και σήµα NMR Η κορυφή ή το σήµα NMR είναι µια Λορεντσιανή καµπύλη (δεν έχει ουρές) και χαρακτηρίζεται από τρεις παραµέτρους: Ένταση (εµβαδόν ή ολοκλήρωµα) Συχνότητα ω (θέση στο φάσµα) Εύρος στο µέσο ύψος ( ω ½ ) αρχική ένταση ταχύτητα απόσβεσης FT εµβαδόν εύρος στο µέσο ύψος ύψος χρόνος ταλάντωσης ω θέση κορυφής 1/ω
11 Μετασχηµατισµός Φουριέ και σήµα NMR Είναι µια µαθηµατική πράξη, η οποία µετασχηµατίζει µια συνάρτηση από την περιοχή του χρόνου στην περιοχή των συχνοτήτων. S(t) S(ω) Στο NMR αυτή η διεργασία έχει σκοπό να µετατρέψει την FID (συνάρτηση στο χώρο του πραγµατικού χρόνου) σε ένα φάσµα στην περιοχή των συχνοτήτων, ώστε αυτό να είναι αναγνώσιµο. Στην πραγµατικότητα ο µετασχηµατισµός Φουριέ οδηγεί σε ένα ζεύγος φασµάτων. Ένα πραγµατικό (φάσµα απορρόφησης) και ένα φανταστικό φάσµα (φάσµα διασποράς)! S( ω ) = + S( ω ) = S(t)*cos ω + S(t) *e iωt dt t dt e i ω t = cos ω t ω ο i sin ω t Σήµα απορρόφησης + S( ω ) = i S(t)*sin ω t dt ω ο Σήµα διασποράς
12 Φάση σήµατος NMR Μπορεί ο δέκτης να ανιχνεύσει είτε το σήµα απορρόφησης, είτε το σήµα διασποράς. Τα δύο σήµατα παρουσιάζουν διαφορά φάσης 90 ο. Έτσι, στην πρώτη περίπτωση ο δέκτης τοποθετείται κατά µήκος του άξονα y, ενώ στη δεύτερη κατά µήκος του άξονα x. Στην πραγµατικότητα τα δύο σήµατα αναµιγνύονται λόγω µικρών ατελειών στην ανίχνευση (σφάλµατα φάσης) και το σήµα εµφανίζεται παραµορφωµένο. Αυτό οφείλεται στο ότι η ανίχνευση δεν αρχίζει πάντα ακριβώς από την κορυφή του συνιµητονοειδούς κύµατος. Έτσι, ο όρος cosωt αντικαθίσταται από cos(ωt + θ), όπου θ είναι η διαφορά φάσης των δύο σηµάτων. Όταν θ = -90 ο τότε cos(ωt - 90 ο ) = sinωt Κατά τον µετασχηµατισµό Φουριέ η πραγµατική και φανταστική συνιστώσα αναµιγνύονται. Καθαρό σήµα απορρόφησης λαµβάνεται µε τη διόρθωση της φάσης πρώτης και δεύτερης τάξης.
Φασµατοσκοπία NMR. Απόστολος Σπύρος Γ-207, ισόγειο κτιρίου Χηµείας. Τηλ
Φασµατοσκοπία NMR Απόστολος Σπύρος Γ-207, ισόγειο κτιρίου Χηµείας Τηλ.. 2810 545085 aspyros@chemistry.uoc.gr http://www.chemistry.uoc.gr/aspyros F. Bloch, W. W. Hansen, Martin Packard. Nuclear Induction.
Διαβάστε περισσότεραΑκολουθίες παλµών 1D. υποδηλώνει τη. µαγνήτιση Μ 0 FID. φάση τους, δηλαδή τη θέση του ποµπού (Β 1. ) ως προς τη. παλµούς (x, y, ή φ) Ο δείκτης στους
Ακολουθίες παλµών 1D Η απλούστερη ακολουθία παλµών είναι αυτή µε την οποία λαµβάνουµε φάσµατα µιας διάστασης (1D). M o 90 παλµός M FID Περίοδος προετοιµασίας 90 Οι επαναλήψεις του πειράµατος (n) οδηγούν
Διαβάστε περισσότεραΦασµατογράφος NMR. Μαγνήτης. ΑποσυζευκτÞò Β 2 Β 3. ÄÝκτηò S N. ΚανÜλι κλειδþìατοò. Β 1 Ποìπüò ADC. (data points) (data points) Επεξεργασßα.
INPUT ΠεριφερειακÜ (σκληρüò δßσκοò) ΠαλìογρÜφοò ΚαταγραφÝαò Φασµατογράφος NMR Η/Υ Κονσüλα Επεξεργασßα δεδοìýνων (daa poins) Β 1 Ποìπüò Β 2 ΑποσυζευκτÞò Β 3 ΚανÜλι κλειδþìατοò ΑποθÞκευση δεδοìýνων (daa
Διαβάστε περισσότεραιέγερση πυρήνων να εφαρµόζεται κάθετα προς το Β 0 B 1 = C * cos (ω o
ιέγερση πυρήνων Όταν η µαγνήτιση βρίσκεται στον άξονα, τότε λέµε ότι το σύστηµα των σπιν βρίσκεται στην κατάσταση θερµικής ισορροπίας Για να διεγερθούν οι πυρήνες πρέπει να απορροφήσουν ενέργεια από κάποια
Διαβάστε περισσότεραΜεταφορά µαγνήτισης. ιαφορά πληθυσµών 1,2 3,4 1,3 2,4. αντανακλά την αναλογία 1 προς 4. πυρήνων 13 C και 1 H. των ενεργειακών σταθµών
Μεταφορά µαγνήτισης Μεταφορά µαγνήτισης Ένας άλλος τρόπος αύξησης της ευαισθησίας ενός πειράµατος NMR είναι η λεγόµενη µεταφορά µαγνήτισης από έναν ευαίσθητο πυρήνα ( 1 Η) προς λιγότερο ευαίσθητους πυρήνες
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
Διαβάστε περισσότεραΑποσύζευξη πυρήνων. Πριν την αποσύζευξη. και ν Χ. Ακτινοβολούµε επιλεκτικά τον πυρήνα Χ µε ένα µαγνητικό πεδίο Β 2
Αποσύζευξη πυρήνων Σε προηγούµενες διαλέξεις συζητήσαµε τη σύζευξη σπιν-σπιν και διαπιστώσαµε πως αυτή εκδηλώνεται στα φάσµατα NMR. Η σύζευξη σπιν-σπιν παρέχει σηµαντικές πληροφορίες για τη δοµή ενός µορίου,
Διαβάστε περισσότεραΒασικές αρχές της Φασµατοσκοπίας NMR
Βασικές αρχές της Φασµατοσκοπίας NMR Φώτης Νταής Καθηγητής Πανεπιστηµίου Κρήτης, Τµήµα Χηµείας Φασµατοσκοπία NMR Ο Πυρηνικός µαγνητικός Συντονισµός (NMR) είναι ένα φαινόµενο που συµβαίνει όταν πυρήνες
Διαβάστε περισσότεραΤο Ηλεκτρομαγνητικό Φάσμα
Το Ηλεκτρομαγνητικό Φάσμα Ακτίνες Χ Ορατό Μικροκύματα Ακτίνες γ Ραδιοκύματα Μέτρα (m) Φασματοσκοπία IR Η περιοχή υπερύθρoυ (IR) του ηλεκτρομαγνητικού φάσματος βρίσκεται μεταξύ της περιοχής ορατού (λ =
Διαβάστε περισσότερα2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier
2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή
Διαβάστε περισσότεραΕνόργανη Ανάλυση Εργαστήριο. Φασματοσκοπία πυρηνικού μαγνητικού συντονισμού Nuclear Magnetic Resonance spectroscopy, NMR. Πέτρος Α.
Ενόργανη Ανάλυση Εργαστήριο Φασματοσκοπία πυρηνικού μαγνητικού συντονισμού Πέτρος Α. Ταραντίλης 1 Βασικές αρχές Που βασίζεται; Στη μέτρηση της απορρόφησης της ακτινοβολίας στην περιοχή των ραδιοσυχνοτήτων
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
Διαβάστε περισσότεραΟ μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Διαβάστε περισσότεραΑνάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των
Διαβάστε περισσότεραΚεφάλαιο 13. Περιοδική Κίνηση
Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase
Διαβάστε περισσότεραΔυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης
Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
Διαβάστε περισσότεραm e j ω t } ja m sinωt A m cosωt
ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Διαβάστε περισσότεραΔυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας
Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Διάλεξη 6 5 Σεπτεμβρίου, 0 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματά μας σήμερα Χρονικά
Διαβάστε περισσότεραΕναλλασσόμενο και μιγαδικοί
(olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας
Διαβάστε περισσότεραΕπεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:
Διαβάστε περισσότεραΓιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος
Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Διαβάστε περισσότεραΤμήμα Ηλεκτρολόγων Μηχανικών ΕΛΕΓΧΟΣ ΤΑΧΥΤΗΤΑΣ ΣΤΟΥΣ ΕΠΑΓΩΓΙΚΟΥΣ ΚΙΝΗΤΗΡΕΣ
Το κανονικό εύρος λειτουργίας ενός τυπικού επαγωγικού κινητήρα (κλάσης Α, Β και C) περιορίζεται κάτω από 5% για την ολίσθηση ενώ η μεταβολή της ταχύτητας πέρα από αυτό το εύρος είναι σχεδόν ανάλογη του
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ. Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΔυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα
ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ, Πειράματα ΜΒΣ σε Σεισμική Τράπεζα Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ Δυναμική
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω
Διαβάστε περισσότεραΣύνθεση ή σύζευξη ταλαντώσεων;
Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Διαβάστε περισσότεραΤι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
Διαβάστε περισσότεραΑσκήσεις Φασµατοσκοπίας
Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.
Διαβάστε περισσότεραΣεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΜετροτεχνικός προσδιορισµός των δυναµικών ταλαντωτικών χαρακτηριστικών της εργαλειοµηχανής και του κοπτικού εργαλείου στη θέση κοπής
Μετροτεχνικός προσδιορισµός των δυναµικών ταλαντωτικών χαρακτηριστικών της εργαλειοµηχανής και του κοπτικού εργαλείου στη θέση κοπής Στα πλαίσια του παρόντος ερευνητικού έργου έγινε προσδιορισµός της συνάρτησης
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
Διαβάστε περισσότεραΔx
Ποια είναι η ελάχιστη αβεβαιότητα της ταχύτητας ενός φορτηγού μάζας 2 τόνων που περιμένει σε ένα κόκκινο φανάρι (η η μέγιστη δυνατή ταχύτητά του) όταν η θέση του μετράται με αβεβαιότητα 1 x 10-10 m. Δx
Διαβάστε περισσότεραX(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω
Διαβάστε περισσότεραΕξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»
Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα
Διαβάστε περισσότερα( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)
Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.
Διαβάστε περισσότεραΚεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω
Διαβάστε περισσότεραΔομικά Υλικά Μάθημα ΙΙΙ. Ηχος & Ηχητικά Φαινόμενα
Δομικά Υλικά Μάθημα ΙΙΙ Ηχος & Ηχητικά Φαινόμενα Ηχος: Μια μηχανική διαταραχή η οποία προκαλείται από μια πηγή και διαδίδεται με ορισμένη ταχύτητα σε ένα ελαστικό μέσο. Μια περιοδική ταλάντωση των μορίων
Διαβάστε περισσότεραΔυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων Τι είναι Σήµα; Ένα πρότυπο µεταβολών µιας ποσότητας που µπορεί να: επεξεργαστεί αποθηκευθεί
Διαβάστε περισσότερα«Επικοινωνίες δεδομένων»
Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 29 Μαρτίου 2017 1 Συναρτήσεις μεταφοράς σε
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαβάστε περισσότεραΕλληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά
Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις
Διαβάστε περισσότεραΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
Διαβάστε περισσότεραΕπειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s
1. Μία χορδή κιθάρας µήκους 636 cm ρυθµίζεται ώστε να παράγει νότα συχνότητας 245 Hz, όταν ταλαντώνεται µε την θεµελιώδη συχνότητα. (a) Βρείτε την ταχύτητα των εγκαρσίων κυµάτων στην χορδή. (b) Αν η τάση
Διαβάστε περισσότεραΕξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση (...)
Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση (...) Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Αρμονική Ταλάντωση με Απόσβεση (...) π / ω π / ω D E = f du = ( cu ) udt = cu dt D Δ9- Απώλεια ενέργειας Η απώλεια
Διαβάστε περισσότεραΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Ταλαντώσεις Χρόνος Εξέτασης: 3 ώρες Θέμα 1ο Στις παρακάτω ερωτήσεις 1-5 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΕνδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34
Σχετικότητα ΦΥΕ4 /7/1 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 KYMATIKH ιάρκεια: 1 λεπτά Ονοµατεπώνυµο: Τµήµα: Θέµα 1 ο (Μονάδες:.) Α) Θεωρούµε µετατόπιση
Διαβάστε περισσότεραΦάσµατα άνθρακα-13 ( 13 C NMR)
Φάσµατα άνθρακα-3 ( 3 NMR) I = ½ Φυσική αφθονία.% γ και µ Ευαισθησία Τ Χηµική µετατόπιση Ενταση κορυφών Φάσµατα ~ 4 φορές µικρότερα του πρωτονίου ~ 64 µικρότερη του πρωτονίου µεγαλύτερος από εκείνον του
Διαβάστε περισσότεραDoppler Radar. Μεταφορά σήµατος µε την βοήθεια των µικροκυµάτων.
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 101 10. Άσκηση 10 Doppler Radar. Μεταφορά σήµατος µε την βοήθεια των µικροκυµάτων. 10.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕρωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος
Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι
Διαβάστε περισσότεραΜάθηµα 12 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access)
Μάθηµα 2 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access) Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Τa λειτουργικά χαρακτηριστικά της τεχνικής πολλαπλής
Διαβάστε περισσότερα( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h
Μη αδρανειακά συστήματα αναφοράς ΦΥΣ 211 - Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή:
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Διαβάστε περισσότερα«Επικοινωνίες δεδομένων»
Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των
Διαβάστε περισσότεραΦθίνουσες ταλαντώσεις
ΦΥΣ 111 - Διαλ.39 1 Φθίνουσες ταλαντώσεις q Οι περισσότερες ταλαντώσεις στη φύση εξασθενούν (φθίνουν) γιατί χάνεται ενέργεια. q Φανταστείτε ένα σύστημα κάτω από μια δύναμη αντίστασης της μορφής F = bυ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki
ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα
Διαβάστε περισσότεραΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ
Διαβάστε περισσότεραΣυναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
Διαβάστε περισσότεραΟ μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Διαβάστε περισσότεραΕξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση
Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Διαβάστε περισσότεραυναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια
υναµική ισορροπία Η φασµατοσκοπία MR µπορεί να µελετήσει φυσικές και χηµικές διεργασίες, οι οποίες µεταβάλλονται µε το χρόνο. Μπορεί, για παράδειγµα, να µελετήσει την αλληλοµετατροπή δύο ή περισσότερων
Διαβάστε περισσότερα= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότερα( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r
ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t
Διαβάστε περισσότεραΟ Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα
Εθνκό & Καποδιστριακό Πανεπιστήμιο Αθηνών Ο Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα Βασικές Έννοιες Θάνος Μπίμπας Επ. Καθηγητής ΕΚΠΑ Hon. Reader UCL Ear InsUtute Διαταραχές Φωνής & Ακοής στις Ερμηνευτικές
Διαβάστε περισσότεραΘεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Διαβάστε περισσότερα) = 0 όπου: ω = κ µε m-εκφυλισµό
Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα
Διαβάστε περισσότεραΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Διαβάστε περισσότεραΚεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΚΑΘΗΓΗΤΗ κ. ΚΟΥΠΠΑΡΗ
ΣΗΜΕΙΩΣΕΙΣ ΚΑΘΗΓΗΤΗ κ. ΚΟΥΠΠΑΡΗ 1 2 3 4 5 6 7 8 9 10 11 Σημειώσεις από τα μαθήματα Φαρμακευτικής Ανάλυσης του καθηγητή κ. Ιωάννη Κουντουρέλλη ΑΝΙΣΟΤΡΟΠΙΚΑ ΦΑΙΝΟΜΕΝΑ 12 13 Nuclear Magnetic Resonance Spectroscopy
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το
Διαβάστε περισσότεραΜεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
Διαβάστε περισσότεραΚλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΤο ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
Διαβάστε περισσότεραΚεφάλαιο T3. Ηχητικά κύµατα
Κεφάλαιο T3 Ηχητικά κύµατα Εισαγωγή στα ηχητικά κύµατα Τα κύµατα µπορούν να διαδίδονται σε µέσα τριών διαστάσεων. Τα ηχητικά κύµατα είναι διαµήκη κύµατα. Διαδίδονται σε οποιοδήποτε υλικό. Είναι µηχανικά
Διαβάστε περισσότεραΧηµική ισοδυναµία πυρήνων και µοριακή συµµετρία
Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία Οι χηµικά µη ισοδύναµοι πυρήνες βρίσκονται σε διαφορετικό χηµικό περιβάλλον και όπως ήδη γνωρίζουµε, συντονίζονται σε διαφορετική συχνότητα (παρουσιάζουν
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
Διαβάστε περισσότερα11.1. Γενική περιγραφή ενός πειράματος φασματοσκοπίας
ένταση φωτός Ι ένταση φωτός Ι 11. Φασματοσκοπία Ελένη Καλδούδη Φασματοσκοπία είναι η καταγραφή των ενεργειακών μεταβολών που αντιστοιχούν σε μεταβάσεις μεταξύ επιτρεπτών ενεργειακών καταστάσεων κβαντικών
Διαβάστε περισσότερα