HMY 799 1: Αναγνώριση Συστημάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 799 1: Αναγνώριση Συστημάτων"

Transcript

1 HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις Γραμμική παλινδρόμηση (Linear regression) Συνέχεια

2 Γραμμική παλινδρόμηση (Linear regression) g = θϕ + θϕ + + θ ϕ = φ θ ( φ)... d d ϕ ϕ φ=, θ= [ θ θ... θd ]... ϕ d y = Φθ Ν>d: overdetermined Ελάχιστα τετράγωνα V( θ) = yk k = ( ) ( ) φ θ y Φθ y Φθ k = ( ) ˆ θ = Φ Φ Φ y Ν θ ˆ Ν = φ φ k= φ k= y k k k k Σταθμισμένα ελάχιστα τετράγωνα V ( θ ) = α k yk k Ν φ θ α 0 0 k = Q = θ ˆ Φ Q Φ Φ Q y 0 0 α Ν Ν = ( )

3 Ποσοστικοποίηση σφάλματος πρόβλεψης: εˆ = y yˆ = y Φθˆ Ν R yˆ ˆ k ε k k= k= y =, MSE = yk yk k= k= Γραμμική παλινδρόμηση Στοχαστικό υπόβαθρο: Αν τα δεδομένα δημιουργούνται από σύστημα της μορφής y() t = φ () t θ + e() t 0 Eet {()} = 0, Eetes {()()} = rls Ιδιότητες εκτίμησης ελάχιστων τετραγώνων: E { θˆ } = θ LS 0 { ˆ ˆ E θ θ } = λ LS LS 0 ˆ λ Ν d t= ( Φ Φ ) = yt () () t ˆ Ν φ θ (για E{ ee } = λ Ι ) Βέλτιστη γραμμική αμερόληπτη εκτίμηση (BLUE) Q = R ( ) ˆ θ = Φ Q Φ Φ Q y = θˆ WLS BLUE 0 αμερόληπτη εκτίμηση διακύμανσης θορύβου Για e λευκό: ( ) ( ) Cov { θˆ } = Φ Q Φ Φ Q R Q ΦΦQ Φ WLS E{ ee } = diag( λ, λ,..., λ ) α = ( ) ˆ θ = Φ Φ Φ y = θˆ BLUE k k λk LS

4 Κατανομή των εκτιμήσεων Οι εκτιμήσεις είναι τυχαίες μεταβλητές! Γκαουσιανός λευκός θόρυβος με Ν(0,λ ) Έξοδος: yˆ ( φ ( t) θ 0, λ I) Συντελεστές: ˆ θ ( ) LS ( θ0, λ Φ Φ ) Γενική περίπτωση (θόρυβος με πίνακα συνδιακύμανσης R ) yˆ ( φ ( t) θ, R ) 0 ˆ θls ( θ0, Φ Φ Φ R ΦΦΦ ) ( ) ( ) Ακόμη και αν οι παρατηρήσεις δεν είναι κανονικά κατανεμημένες, συχνά η κατανομή των παραμέτρων θ πλησιάζει την κατανομή για μεγάλο Ν (κεντρικό οριακό θεώρημα)

5 Κατανομή των εκτιμήσεων Η εκτίμηση της διακύμανσης του θορύβου ακολουθεί κατανομή χ Κατανομή χ (χ k με k βαθμούς ελευθερίας) Η κατανομή που ακολουθεί το άθροισμα όπου Χi τυχαίες ανεξάρτητες Γκαουσιανές μεταβλητές Ν(0,) Συγκεκριμένα: Ν d λ λ χ ˆ ( ) Ν d 0

6 Κατανομή των εκτιμήσεων Στατιστικός έλεγχος Μπορούμε να χρησιμοποιήσουμε αυτές τις κατανομές για να κάνουμε έλεγχο στατιστικών υποθέσεων (hypothesis testing) Π.χ. είναι η τιμή ενός συντελεστή διαφορετική από το μηδέν? Βασική ιδέα: x Αν γνωρίζουμε την δειγματική κατανομή (sampling distribution) της εκτίμησης μιας τυχαίας μεταβλητής μπορούμε να τη χρησιμοποιήσουμε για στατιστικό έλεγχο x υποθέσεων π.χ. έστω ότι γνωρίζουμε ότι η πραγματική τιμή της τ.μ. φ είναι φ 0 και η δειγματική κατανομή της εκτίμησης ˆϕ είναι όπως στο σχήμα και θέλουμε να αποφανθούμε εάν η τιμή ενός οποιουδήποτε δείγματος της τ.μ. ˆϕ είναι διαφορετική του φ 0. Αν η πιθανότητα παρατήρησης της τιμής της διαφοράς ˆϕ ϕ 0 είναι μεγάλη: αποδοχή της υπόθεσης ˆϕ = ϕ 0, αλλιώς απόρριψη Πιο συγκεκριμένα, για να απορρίψουμε/αποδεχθούμε μια υπόθεση με πιθανότητα α πρέπει να υπολογίσουμε τις εξής πιθανότητες Η πιθανότητα ένα δείγμα της να βρίσκεται εκτός των δύο αυτών τιμών είναι α ˆϕ

7 Κατανομή των εκτιμήσεων Στατιστικός έλεγχος Η τιμή του α ονομάζεται επίπεδο σημαντικότητας (level of significance) Συνήθως επιλέγουμε μια μικρή τιμή για το α (π.χ. α=0.05) Όσο πιο μικρή η τιμή του α: τόσο πιο μικρή η πιθανότητα το δείγμα ϕˆϕ να είναι εκτός της ϕ ϕ α / περιοχής από α / μέχρι Αμφίπλευρος έλεγχος (two sided test): έλεγχος και στις κατευθύνσεις Μονόπλευρος έλεγχος: π.χ. ˆϕ ϕ 0 Δύο τύποι σφαλμάτων: Απόρριψη της υπόθεσης ενώ είναι αληθινή (Σφάλμα τύπου Ι πιθανότητα = α) Αποδοχή της υπόθεσης ενώ είναι λανθασμένη (Σφάλμαύπου ΙΙ) ˆϕ

8 Κατανομή των εκτιμήσεων Στατιστικός έλεγχος Στην περίπτωση της γραμμικής παλινδρόμησης είδαμε ότι: ˆ θls ( θ, λ Φ Φ ) 0 ( ) Για να εξετάσουμε εάν η εκτίμηση ενός συντελεστή θ είναι διαφορετική του μηδενός (λευκός θόρυβος): j Υποθέτουμε με άλλα λόγια ότι η «αληθινή» τιμή του θ j είναι μηδέν, άρα: ˆθ j (0, λ rj ) ˆθ Σχηματίζουμε τη μεταβλητή j z r j : διαγώνιο στοιχείο του πίνακα (Φ Φ) j = λ rj Αν θεωρήσουμε τη μεταβλητή λ γνωστή (ντετερμινιστική), η μεταβλητή z j ακολουθεί κατανομή Ν(0,) Αν θεωρήσουμε τη μεταβλητή λ τυχαία (πιο ρεαλιστικό), η μεταβλητή z j είναι λόγος μιας τ.μ. με κανονική κατανομή προς τη ρίζα μιας τ.μ. που ακολουθεί κατανομή χ. Η τ.μ. αυτή ακολουθεί κατανομή t (Student s t distribution αποτέλεσμα από στατιστική) με Ν d βαθμούς ελευθερίας Άρα για να αποφανθούμε αν η μεταβλητή z j είναι διαφορετική του μηδενός, μπορούμε να συγκρίνουμε την τιμή t ( ) d z j με την τιμή t d, α / (πιθανότητα ουράς tail probability) Οι τιμές αυτές μπορεί να υπολογιστούν κατευθείαν από πίνακες ή προγράμματα, π.χ. Matlab tcdf(x,v) tpdf(x,v) tinv(p,v) ˆ j

9 Κατανομή των εκτιμήσεων Στατιστικός έλεγχος Μάλιστα για μεγάλες τιμές του Ν, κατανομή t προσεγγίζει την τυπική κανονική κατανομή (standard normal distribution (0,)) και μπορούμε να συγκρίνουμε τα δείγματα της θˆ j με την πιθανότητα ουράς της Ν(0,) Matlab: P = ORMCDF(X,MU,SIGMA) Y = ORMPDF(X,MU,SIGMA) X = ORMIV(P,MU,SIGMA) (MU=0, SIGMA=)

10 Κατανομή των εκτιμήσεων Στατιστικός έλεγχος Θα μπορούσαμε να συγκρίνουμε παρόμοια εάν η εκτίμηση ενός συντελεστή ˆθ j είναι διαφορετική μιας τιμής θ σχηματίζοντας τη μεταβλητή ˆθ j θ 0, j 0, j z j = λ rj η οποία ακολουθεί κατανομή t ή Ν όπως και πριν. Μπορούμε να ποσοτικοποιήσουμε την «αβεβαιότητα για την εκτίμηση κάθε συντελεστή υπολογίζοντας το διάστημα εμπιστοσύνης του (confidence interval) (θ ˆ t ˆ λ r,θ ˆ + t ˆ λ r ) j d, α/ j j d, α/ j το οποίο π.χ. για α=0.05 μας δίνει το διάστημα τιμών για την εκτίμηση του συντελεστή ˆθ j για το οποίο είμαστε σίγουροι κατά 95% ότι οι τιμές του συντελεστή βρίσκονται εντός αυτού του διαστήματος Μπορούμε επίσης να ελέγξουμε τη σημαντικότητα μιας ομάδας συντελεστών ταυτόχρονα (π.χ. μια ομάδα μπορεί να σχετίζονται με μια συγκεκριμένη ανεξάρτητη μεταβλητή), υπολογίζοντας την τιμή της στατιστικής ποσότητας F (F statistic) ( MSE MSE)/( d d) F = MSE /( d ) Για Γκαουσιανό θόρυβο, αυτή η ποσότητα ακολουθεί την κατανομή Fd d, d Σημ. από στατιστική: Ο λόγος δύο τ.μ. που ακολουθούν κατανομή χ με βαθμούς ελευθερίας d και d ακολουθεί κατανομή F d,d Για μεγάλο Ν η ανωτέρω κατανομή προσεγγίζει την χd d

11 Στατιστικός έλεγχος Επιλογή τάξης Πως μπορούμε να χρησιμοποιήσουμε αυτά τα αποτελέσματα για την επιλογή της τάξης του μοντέλου γραμμικής παλινδρόμησης? Στην ιδανική περίπτωση (όχι θόρυβος σύστημα ίδιου τύπου) όταν αυξήσουμε το d όσο πρέπει το σφάλμα μηδενίζεται Ρεαλιστικά: σταδιακή μείωση του σφάλματος για αυξανόμενο d Ερώτηση: Πότε πρέπει να σταματήσουμε να προσθέτουμε όρους? ο πρόβλημα λοιπόν είναι να αποφασίσουμε εάν η μείωση του κριτηρίου ΔV=V V για δύο μοντέλα M και M (όπου το M περιέχει περισσότερους όρους) είναι «μικρή» ή όχι Μπορούμε να ελέγξουμε την «κανονικοποιημένη» ποσότητα V V V Επιπλέον όταν το Ν τείνει στο άπειρο και το αληθινό μας σύστημά μπορεί να περιγραφεί από το μοντέλο V τέλεια, τότε η διαφορά ΔV θα πρέπει να τείνει στο μηδέν Ελεγχος της ποσότητας V ( V) V

12 Έχουμε λοιπόν y() t = φ () t θ + e() t 0 ε λ {()} e t iid, (0, ) Στατιστικός έλεγχος Επιλογή τάξης Από τα προηγούμενα έχουμε ότι η ποσότητα ( V V)/( d d) F = V /( d ) ακολουθεί κατανομή η οποία προσεγγίζει την για μεγάλο Ν Fd d, d χd d >Άρα για να συγκρίνουμε την απόδοση δύο μοντέλων Μ και Μ Υπολογίζουμε τα μέσα τεραγωνικά σφάλματα και την ποσότητα F Καθορίζουμε το επίπεδο σημαντικότητας α Συγκρίνουμε την ποσότητα αυτή είτε με την ή την χ d d, d d Αν F < χ : αποδοχή μοντέλου Μ d d, α Αν F > χd d, α : αποδοχή μοντέλου Μ F α d, α Matlab: Y = CHIPDF(X,V),P = CHICDF(X,V), X = CHIIV(P,V) Περισσότερα για επιλογή τάξης στα επόμενα

13 Υπολογιστικά ζητήματα Ανάλυση ιδιοτιμών (eigenvalue decomposition) του πίνακα Φ Φ (Hessian) ΦΦ= UΛU Μπορούμε να πάρουμε μια ιδέα για το πόσο κινδυνεύουμε από αριθμητικά σφάλματα υπολογίζοντας το λόγο μεγαλύτερης προς μικρότερης ιδιοτιμής, ο οποίος ονομάζεται αριθμός κατάστασης (condition number) του πίνακα (Matlab: εντολές cond, rcond) Όσο μεγαλύτερος αυτός ο αριθμός, τόσο πιο κοντά είναι η ορίζουσα του πίνακα Φ Φ στο μηδέν: μεγαλύτερη ευαισθησία Εξάρτηση από το σχεδιασμό της εισόδου, π.χ. (αντίστροφος για μέθοδο συσχέτισης) ˆ g = ( Φ uu ) Φ yu Μπορούμε να κάνουμε το ίδιο υπολογίζοντας την ανάλυση ιδιαζουσώντιμών (Singular value decomposition) του πίνακα Φ και υπολογίζοντας τις ιδιάζουσες τιμές (singular values)

14 Η εκτίμηση των συντελεστών θ ˆ Φ Φ Φ y Ν = ( ) Υπολογιστικά ζητήματα απαιτεί την αντιστροφή του πίνακα Φ Φ. Αρκετές φορές όμως η αντιστροφή αυτού του πίνακα μπορεί να είναι ευαίσθητη σε αριθμητικά σφάλματα, ιδιαίτερα για μεγάλους πίνακες των οποίων η ορίζουσα μπορεί να είναι κοντά στο μηδέν (γραμμές/στήλες περίπου ανεξάρτητες) ή πίνακες που περιέχουν λίγα μη μηδενικά στοιχεία (αραιοί πίνακες sparse matrices). Στην περίπτωση αυτή μπορεί τα αποτελέσματα να μην είναι αξιόπιστα αν αλλάξει λίγο η είσοδος και η έξοδος, μπορεί να αλλάξουν πολύ και οι εκτιμώμενες τιμές των συντελεστών! Για να αποφύγουμε τέτοιου είδους σφάλματα: Αποδόμηση QR (QR decomposition): Μπορούμε να βρούμε ορθογώνιο πίνακα Q (Q Q=I) ώστε για τον μη τετραγωνικό πίνακα Φ (Ν>d) να ισχύει: Φ = QR όπου R άνω τριγωνικός πίνακας Πολλαπλασιάζοντας το σύστημα Φθ=y με τον πίνακα Q μας δίνει: Qy= QΦ = Rθ Είναι ισοδύναμο λοιπόν να λύσουμε το σύστημα: Rθ = Qy ο σύστημα αυτό λύνεται εύκολα (R τριγωνικός) Περισσότερες πράξεις, λιγότερη ευαισθησία σε σφάλματα (ο αριθμός κατάστασης είναι η ρίζα του αριθμού κατάστασης του αρχικού πίνακα) Matlab: έντολή qr

15 Υπολογιστικά ζητήματα Singular value decomposition Φ = UΣV Φ: Νxd, U,V ορθογώνιοι πίνακες (U: x, V: dxd), Σ διαγώνιος Μπορούμε να «κρατήσουμε» μόνο τις μεγαλύτερες ιδιάζουσες τιμές του πίνακα Φ δηλ. Σ 0 0 V Φ = UΣV = U U 0 Σ 0 V και να υπολογίσουμε τον ψευδοαντίστροφο μειωμένης τάξης: Φ + + = V Σ U με άλλα λόγια, απορρίπτουμε τους συντελεστές εκείνους που συνδέονται με πολύ μικρές ιδιάζουσες τιμές και λύνουμε ένα πρόβλημα μικρότερης τάξης Matlab: εντολή [U,S,V] = SVD(X)

16 Υπολογιστικά ζητήματα Ομαλοποίηση (regularization): Παρομοίως όταν το πρόβλημά μας είναι ασθενώς ορισμένο (illconditioned) δηλ κινδυνεύουμε από αριθμητικά σφάλματα, μπορούμε να χρησιμοποιήσουμε ένα κριτήριο της μορφής: * * W ( θ ) = V ( θ ) + δ θ- θ = ( y Φθ ) ( y Φθ ) + δ θ - θ όπου το θ* είναι ένα σταθερό σημείο στο χώρο των συντελεστών (συνήθως επιλέγουμε θ*=0). Ισοδύναμο με το να προσθέσουμε έναν όρο δι στον πίνακα Φ Φ: βελτίωση του αριθμού κατάστασης του πίνακα Ουσιαστικά «φέρνουμε» πιο κοντά στο θ* τις εκτιμήσεις των παραμέτρων μας (εισάγουμε δηλ. απόκλιση bias) αλλά σταθεροποιούμε το αριθμητικό πρόβλημα Οι παράμετροι που επηρεάζουν λιγότερο το y είναι αυτές που έρχονται πιο κοντά στο θ* Όσο μεγαλύτερη η τιμή του δ, τόσο περισσότερες παράμετροι θα έρθουν κοντά στο θ*

17 Γραμμική παλινδρόμηση και δυναμικά γραμμικά συστήματα Είδαμε στα προηγούμενα (μη παραμετρική αναγνώριση) ότι η διακριτή συνέλιξη μπορεί ουσιαστικά να αντιμετωπιστεί ως γραμμική παλινδρόμηση: y() () u() () gˆ (0) u() () y() u() u()... 0 gˆ () u() u()... 0 = Φ = y ( ) u ( ) u ( )... u( M + ) gˆ ( Μ ) u ( ) u ( )... u ( M+ ) Επίσης, έχουμε δει στα προηγούμενα τα μοντέλα ARX, μορφής: yt ( ) + ayt ( ) ayt ( n) = but ( ) but ( m) yt () = φ () t θ n θ = [ a... a b... b ] n m φ( t) = [ y( t )... y( t n) u( t )... u( t m)] k k kyk k= k= θ ˆ Ν = φ φ φ m

18 Γραμμική παλινδρόμηση και δυναμικά γραμμικά συστήματα k k Ο πίνακας Rφ( Ν ) = φφ k k και το διάνυσμα φ y περιέχουν αθροίσματα της μορφής: k = k = R φ ( Ν ) = yt ( iyt ) ( j), i, j n ij k = αλλά και όρους της μορφής u(t-i)u(t-j) και u(t-i)y(t-j). Ουσιαστικά αυτοί οι όροι αποτελούν εκτιμήσεις των συναρτήσεων αυτοσυσχέτισης και ετεροσυσχέτισης (αναλογία με ανάλυση αλληλοσυσχέτισης) Στα προηγούμενα θεωρήσαμε τον πίνακα Φ ντετερμινιστικό. Στη γενική περίπτωση (Φ στοχαστικός) ˆ * * E{ θ θ } = ( R ) f LS * Φ * 0 Φ R = E{ φ() t φ ()} t f = E{ φ()()} t e t Άρα για να έχουμε αμερόληπτη εκτίμηση θα πρέπει: * Ο πίνακας R Φ να είναι μη ιδιάζων (non singular) και * f = 0 το οποίο συμβαίνει όταν Ο θόρυβος e(t) είναι λευκός (ανεξάρτητα δείγματα, μηδενική μέση τιμή) Η τιμή e(t) είναι ανεξάρτητη από την τιμή σε κάθε άλλη χρονική στιγμή (t, t κλπ) Ο θόρυβος έχει μηδενική μέση τιμή δεν είναι όμως λευκός, η είσοδος u(t) είναι ανεξάρτητη του θορύβου και δεν υπάρχουν όροι της μορφής y(t i). Αλλιώς το διάνυσμα φ(t) περιέχει το y(t ), το οποίο περιέχει τον όρο e(t ), ο οποίος είναι συσχετισμένος με το e(t)

19 Γραμμική παλινδρόμηση και δυναμικά γραμμικά συστήματα Στην περίπτωση που έχουμε «χρωματισμένο» θόρυβο (colored noise) και υποθέσουμε ότι μπορεί να περιγραφεί από ένα μοντέλο AR (δηλ μορφής /D(q)) τάξης r: Aq ( qy ) yt ( ) = B ( q ) ut ( ) + et ( ) Aq ( ) D ( qyt ) ( ) = B ( q ) D ( q ) ut ( ) + et ( ) D( q) μπορούμε να πάρουμε την εκτίμηση ελάχιστων τετραγώνων αυτού του συστήματος (με τάξεις n+r, m+r) οπότε επειδή το e είναι λευκό, και έχουμε αμερόληπτη εκτίμηση παίρνουμε σωστή εκτίμηση της συνάρτησης μεταφοράς μεταξύ u και y καθώς: BqDq ( ) ( ) Bq ( ) = A( qdq ) ( ) Aq ( )

20 Εκτίμηση μέγιστης πιθανοφάνειας (maximum likelihood estimation) Η πιθανοφάνεια της τυχαίας (διανυσματικής) μεταβλητής y δεδομένης της τιμής των παραμέτρων θ ορίζεται ως η συνδυασμένη εξαρτημένη συνάρτηση πυκνότητας πιθανότητας (joint conditional probability density function) p ( y θ ) Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ψάχνει την τιμή των παραμέτρων θ η οποία μεγιστοποιεί την πιθανότητα παρατήρησης των δεδομένων εξόδου, δηλ. μεγιστοποιεί την: θˆ arg max p( y θ) ML = θ όπου y οι παρατηρήσεις μας. Για το μοντέλο γραμμικής παλινδρόμησης y () t = φ () t θ + e () t 0 {()} 0, e (0, Ι) Eet = λ Επειδή υπάρχει μετασχηματισμός μεταξύ e και y, μπορούμε ισοδύναμα να θεωρήσουμε την πιθανοφάνεια του θορύβου: L ( π) λ L( θ) = exp e ( t) / / ( π) (det[ λ ]) Ι λ t = ( θ) = exp ( Υ- Φθ) ( λ Ι) ( Υ - Φθ) / /

21 Εκτίμηση μέγιστης πιθανοφάνειας (maximum likelihood estimation) Μπορούμε να μεγιστοποιήσουμε το λογάριθμο της πιθανοφάνειας (πιο εύκολο) log( L( θ)) = ( Υ- Φθ) ( Υ - Φθ) log( π ) log( λ ) λ Για λ γνωστό: Μόνο ο πρώτος όρος εξαρτάται από το θ οπότε θέτοντας την πρώτη παράγωγο ως προς θ ίση με μηδέν καταλήγουμε στο ίδιο αποτέλεσμα με την εκτίμηση ελάχιστων τετραγώνων, και επειδή η δεύτερη παράγωγος είναι έχουμε μέγιστο. Αν το λ είναι άγνωστο μπορούμε να το εκτιμήσουμε μηδενίζοντας την πρώτη παράγωγο ως προς λ Μπορεί να αποδειχθεί ότι για τις εκτιμήσεις αυτές ισχύουν τα εξής κάτω όρια:

22 Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας (maximum a posteriori estimation) Η Μπευζιανή προσέγγιση (Bayesian approach) προσφέρει ένα πολύ γενικό υπόβαθρο για την εκτίμηση παραμέτρων. Όλες οι παράμετροι θεωρούνται τ.μ. και ο σκοπός είναι ο υπολογισμός της συνάρτησης πυκνότητας πιθανότητάς τους με βάση τις παρατηρήσεις (εκ των υστέρων πιθανότητα posterior probability) bilit Βασική σχέση (Bayes rule): p(, ) p( ) p( ) Likelihood Prior p( ) = y θ Posterior= p( ) = y θ θ θ y y p( y) ormalizing Constant p(θ): Prior probability p( y) = p( y θ) p( θ) dθ Μπορούμε σε κάποιες περιπτώσεις να υπολογίσουμε την εκ των υστέρων πιθανότητα επιλέξουμε την τιμή του θ που μεγιστοποιεί αυτή την πιθανότητα, δηλ. θˆ arg max p( θ y) MAP = θ p ( θ y ) και να Η προσέγγιση αυτή μας δίνει ολόκληρες κατανομές ανομές και όχι συγκεκριμένες τιμές! Η εκ των προτέρων πιθανότητα p(θ) αντικατοπτρίζει την γνώση που μπορεί να έχουμε για την κατανομή των παραμέτρων μας Όσο πιο σίγουροι είμαστε γι αυτή την κατανομή, τόσο πιο πολύ μπορεί να επηρεάσουμε την τελική εκτίμηση

23 Μέθοδοι σφάλματος πρόβλεψης (prediction error methods) ο κριτήριο ελάχιστων τετραγώνων είναι ειδική περίπτωση μιας γενικής μεθοδολογίας για την αναγνώριση συστημάτων μέθοδοι αναγνώρισης σφάλματος πρόβλεψης (prediction error identification methods) Στη γενική περίπτωση: V( θ) = ( ef( t)) k = e () t = L ( q )() et F ( e ( t)) υπικά η συνάρτηση F έχει θετικές τιμές Φιλτράρισμα των σφαλμάτων: μπορεί να μη μας ενδιαφέρουν οι υψίσυχνες διαταραχές Είδαμε για τη μέθοδο ελάχιστων τετραγώνων ότι είναι μια λογική επιλογή και ότι πιο θεωρητικές προσεγγίσεις όπως η εκτίμηση μέγιστης πιθανοφάνειας δίνουν εντελώς ανάλογα αποτελέσματα υπό προϋποθέσεις Είναι λοιπόν σημαντικό ότι πρακτικά η ελαχιστοποίηση ενός κριτηρίου της ανωτέρω μορφής είναι λογική, έστω και χωρίς ένα αυστηρό θεωρητικό υπόβαθρο

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 6 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων κανονικές τυχαίες μεταβλητές Εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9-10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 6 7 Συνάφεια (συνέχεια Συστήματα πολλαπλών εισόδων Μη παραμετρική αναγνώριση γραμμικών συστημάτων Εκτίμηση άσματος Ισχύος Περιοδόγραμμα, Bartlett/Welch, Παραμετρική

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 2 Πάτρα 2008 Εμπειρικός προσδιορισμός συνάρτησης μεταφοράς

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις Επιλογή τάξης μοντέλου και επικύρωση Επαναληπτική αναγνώριση Βέλτιστη μέθοδος συμβαλλουσών μεταβλητών (opimal IV mehod) P P P IV IV, op PEM z() = H ( q) φ () Γενική

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις 7 8 Μέθοδοι πρόβλεψης σφάλματος (prediction error methods) Συνέχεια Σήματα εισόδου Instrumental variable methods Η γραμμικής παλινδρόμηση μπορεί να εφαρμοστεί

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα