PRELEGEREA 1 INTRODUCERE LA METODA ELEMENTELOR FINITE
|
|
- Ρεία Ζάρκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PRELEGEREA 1 INTRODUCERE LA METODA ELEMENTELOR FINITE 1.1 Desprea studiul realităţii fizice Consideraţii generale Nu este lipsită de temei afirmaţia că realitatea fenomenologică sau comportamentală a unui spațiu/sistem material/fizic nu poate fi cunoscută în toată coplexitatea ei, dar că poate fi cunoscută în simplitatea ce o caracterizează esențial la un moment dat, prin aproximare; deci, am stabilit că în spațiul/sistemul material/fizic se manifestă fenomene fizice. Problematica fenomenelor fizice cunoaște abordări: - teoretice, care stabilesc principii şi legi funcţionale ce fundamentează modul de cunoaştere a realităţii fizice, prin identificarea unor moduri de comportare ideală (bazate pe legi precum cea a lui Hooke, a lui Navier-Stokes, a lui Fourier etc.); consecinţa: crearea de teorii matematice care operează cu modele matematice, aşa cum se întâmplă în cazul: - fenomenului deformării corpurilor solide, - fenomenului deformării/curgerii corpurilor fluide, - fenomenului transferului căldurii etc.; - inginereşti, care adaptează cunoştinţele teoretice la cerinţele tehnice impuse sistemelor tehnice; consecința: crearea de metode inginerești care operează cu modele inginereşti. Problematica comportarii sistemelor tehnice stabilește modelele inginereşti cu care operează: - după nivelul de introspecţie al sistemului analizat: - modele care evidenţiază discontinuitatea sistemului (la nivel microscopic, atomic şi molecular: pentru studiul corpurilor cristaline, proiectarea şi fabricarea materialelor etc.); - modele care evidenţiază continuitatea sistemului (la nivel macroscopic: pentru studiul deformării solidelor, curgerii fluidelor, transferului căldurii etc.); - modele care evidenţiază interactivitatea sistemului (la nivelul interfetelor: pentru studiul interacţiunii fluid-solid etc.); - după modul de considerare a timpului în analiză: - modele la care timpul nu este evidențiat, pentru analizele statice/staţionare; - modele la care timpul este evidențiat implicit, pentru analizele ale valorilor şi vectorilor proprii; - modele la care timpul este evidențiat explicit, pentru analizele dinamice/nestaţionare; - după caracterul constitutiv: - modele fizice, cazul analizelor experimentale; - modele virtuale, cazul analizelor matematice: - continue, pentru calcule analitice: - diferenţiale; - integrale; - discrete, pentru calcule numerice: - diferenţiale: Metoda Diferenţelor Finite (MDF); - integrale: Metoda Elementelor Finite (MEF), Metoda Elementelor de Contur (MEC), Metoda Volumelor Finite (MVF); - alte metode: Metoda Spectrală, Metoda Reţelei Libere etc.. 9
2 Scopul demersului de față este iniţierea în utilizarea Metodei Elementului Finit (MEF) pentru analiza fenomenelor fizice în general şi pentru analiza deformării corpurilor solide/sistemelor structurale cu comportare liniar-elastică în particular. Ce este MEF?: este o tehnică numerică de studiu a fenomenelor fizice şi dezvoltată, cu precădere, pentru studiul manifestării acestora în spaţii bidimensionale (2D) şi tridimensionale (3D); este des utilizată în soluţionarea aplicaţiilor inginereşti (cazul deformării solidelor, curgerii fluidelor, transferului căldurii etc.). În ce constă analiza cu MEF?: în înlocuirea domeniului real, în care se petrece un fenomen dificil de studiat, cu un alt domeniu (numit model discret), în care studiul fenomenului este mai uşor de efectuat şi rezultatele mai uşor de obţinut chiar dacă sunt aproximative pentru domeniul iniţial, dar acceptabile dintr-un punct de vedere practic; înlocuirea domeniului de studiat/analizat urmează unui proces (numit modelare) de împărţire (sau discretizare) în subdomenii (numite elemente finite), conectate la extremităţile lor (numite şi noduri exterioare ale elementului finit), în nodurile modelului discret cu elemente finite, unde se definesc parametrii caracteristici (principali şi secundari). Cum se aplică MEF?: pornind de la stabilirea, în mod specific, a ecuaţiei matriceale de echilibru pentru fiecare element finit (prin una dintre formulările: directă, cu reziduuri ponderate, variaţională, energetică etc.) şi continuând cu un proces de refacere a modelului discret (numit asamblare) pentru obţinerea ecuaţiei de echilibru a acestuia, după care, prin introducerea condiţiilor la limită/pe contur şi rezolvare se obţin valorile parametrilor principali în nodurile modelului discret Aproximarea prin discretizare a realităţii fizice Încă din antichitate aproximarea a fost utilizată ca formă de cunoaştere a realităţii înconjurătoare, discretizarea fiind un procedeu de aplicare a ei. Exodus şi Arhimede au pus la punct o metodă pentru evaluarea ariilor figurilor plane (complexe) având conturul curb, prin împărţirea în suprafeţe date de figuri simple (simplexe, precum triunghiul, pentru care se cunoaşte modul de calcul al ariei) şi a căror arii însumate aproximează aria suprafeţei figurii complexe; cu cât numărul suprafeţelor figurilor simple este mai mare cu atât suma ariilor acestora va fi mai apropiată de aria suprafeţei figurii complexe. Această metodă este denumită şi metoda exhaustivă a lui Arhimede. Să aplicăm această metodă la determinarea ariei suprafeţei unui cerc prin împărţirea lui întrun număr de suprafeţe triunghiulare egale pornind din centrul acestuia (figura 1.1). Această împărţire sau discretizare se poate realiza atât prin înscrierea triunghiurilor în cerc (figura 1.1a) cât şi prin circumscrierea acestora cercului (figura 1.1b). Crescând numărul triunghiurilor şi reprezentând, într-un sistem de referinţă, punctele definite de numărul triunghiurilor pentru discretizare şi suma ariilor suprafeţelor acestora se poate observa tendinţa punctelor de a se apropia de dreapta stabilită la nivelul valorii ariei suprafeţei cercului, π r 2 (figura 1.1c). În felul acesta ilustrăm conceptual de convergenţă a soluţiei aproximative către soluţia exactă, prin creşterea numărului triunghiurilor; se poate observa că aproximarea se poate realiza atât prin adaos cât şi prin lipsă. 10
3 Figura 1.1 Aproximarea ariei cercului prin discretizare 1.2 Analiza cu elemente finite a sistemelor tehnice Metoda elementelor finite în cazul structurilor deformabile MEF, porneşte de la ideea că pentru analiza deformării unei structuri continue (cu geometrie oarecare şi condiţii la limită complexe) valorile exacte ale parametrilor (deplasări, forţe) nu pot fi calculate sau dacă pot fi efortul de calcul ar fi nejustificat. În cazul în care este posibilă o soluţionare aproximativă, mai uşor de efectuat, şi gradul de aproximare este, inginereşte, rezonabil această soluţie este acceptată ca soluţie pentru structura iniţială. Altfel spus, analiza cu MEF a unei structuri presupune înlocuirea acesteia cu alta pentru care calculul parametrilor este mai uşor de efectuat, valorile parametrilor fiind aproximative pentru structura de analizat, dar acceptabile din punctul de vedere ingineresc. MEF, pentru cazul structurilor, poate fi privită ca extinderea metodei staticii matriceale clasice (dezvoltată pentru studiul ansamblurilor cu elemente structurale unidimensionale, structurilor din bare) la structuri continue bidimensionale şi tridimensionale. MEF implică un proces pentru discretizarea (naturală şi/sau artificială) a structurilor analizate şi un mod specific de stabilire a ecuaţiei matriceale de echilibru (obişnuit utilizând o formulare directă) pentru fiecare element finit (sub forma unui sistem de ecuaţii algebrice). Elementul finit al modelului discret trebuie să fie compatibil cu dezvoltarea în spaţiu a structurii şi modelul matematic care îl defineşte să simuleze, cât mai bine, comportarea structurii în zona pe care o acoperă; astfel, în cazul în care structura are o dezvoltare unidirecţională elementele finite corespunzătoare să fie unidimensionale (1D), drepte sau curbe, în cazul unei dezvoltări plane elementele finite corespunzătoare să fie bidimensionale (2D), cu laturi drepte sau curbe, şi în cazul unei dezvoltări spaţiale elementele finite corespunzătoare să fie tridimensionale (3D), cu feţe plane sau curbe (figura 1.2). 11
4 Figura 1.2 Tipuri generice de elemente finite În afară de extremităţi (numite şi noduri exterioare ale elementului finit), elementele finite pot prezenta noduri şi între acestea (vezi cazul elementelor finite cu laturi curbe) sau la interiorul elementelor finite (vezi cazul elementelor finite cu laturi curbe sau feţe curbe) şi care nu sunt utilizate la cuplarea elementelor finite, numite şi noduri necompatibile (se utilizează pentru îmbunătățirea simulării realității). Componentele matricelor şi vectorilor ce intervin sunt date, cel mai adesea, sub formă de integrală simplă pentru elementele finite cu o dimensiune (1D), dublă pentru elementele finite cu două dimensiuni (2D) şi triplă pentru elementele finite cu trei dimensiuni (3D). Rezolvarea integralelor poate fi exactă, dar, cel mai adesea aproximativă şi atunci se apelează la integrări numerice (după o direcţie în cazul elementelor finite 1D, după două direcţii în cazul elementelor finite 2D şi după trei direcţii în cazul elementelor finite 3D). Principial, analiza unei structuri cu MEF urmează aceleaşi etape de calcul cunoscute din metoda staticii matriceale clasice Modelele virtuale cu elemente finite în cazul structurilor deformabile Discretizarea cu elemente finite, la modul cel mai general, fiind artificială, depinde, calitativ şi cantitativ, de experienţa şi abilitatea analistului de a o efectua. La alcătuirea modelului virtual discret cu elemente finite trebuie respectată o serie de reguli principiale (valabile şi în cazul altor tehnici numerice de analiză a structurilor) care se referă la: - asigure preciziei urmărite a rezultatelor; soluţia aproximativă este mai apropiată de cea exactă cu cât numărul elementelor finite utilizat la discretizare este mai mare (cel puţin în principiu), dar şi timpul de calcul necesar atingerii acesteia, deci şi costul, este mai mare; - surprinderea particularităţilor de formă, de comportare, de distribuire a materialului, de rezemare şi încărcare pe care structura le prezintă; - numerotarea optimă a nodurilor (iar în cazul metodei frontale de asamblare, numerotarea elementelor finite), ce poate îmbunătăţi procesul de memorare şi de rezolvare pe calculator a sistemului de ecuaţii de echilibru static şi/sau dinamic al structurii analizate; - realizarea modelului virtual în mai multe variante de discretizarea, ce trebuie să confirme convergenţa rezultatelor. 12
5 În ce privește creșterea calității analizelor cu elemente finite prin creșterea numărului de elemente finite utilizate la discretizarea modelului virtual, trebuie avute în vedere situații care se referă la: - variaţia accentuată a geometriei structurii, prezenţa mai multor materiale în alcătuirea structurii şi/sau prezenţa unor încărcări/rezemări concentrate sau distribuite discontinuu, ce necesită poziţionarea nodurilor, respectiv a frontierei elementului finit; - prezenţa golurilor şi/sau incluziunilor de material, prezenţa încărcărilor/rezemărilor concentrate şi/sau variaţia bruscă a geometriei, ce necesită utilizarea unei discretizări graduale pentru că, în aceste zone, variaţia funcţiei parametru este pronunţată; - prezența curburilor (linii curbe şi/sau suprafeţe curbe) pe conturul structurilor, ce necesită, în procesul discretizării, utilizarea elementelor finite care să urmărească în mod fidel conturul acesteia: fie un număr mare de elemente cu contururi drepte (laturi sau feţe), fie un număr mic de elemente cu contururi curbe (laturi sau feţe); este de preferat ca raportul lungimilor oricăror două laturi ale aceluiaşi element finit să tindă la 1, în caz contrar, să nu depăşească raportul 1/5. Finalul metodei elementului finit constă în rezolvarea unui sistem de ecuaţii algebrice (ecuaţia de echilibru matriceal a modelului virtual discret cu elemente finite) pentru a cărui memorare este necesar un efort din partea calculatorului, efort ce depinde nu numai de numărul parametrilor nodali ai modelului discret, ci şi de modul de numerotare a nodurilor acestuia (mai precis, de numerotare a parametrilor asociaţi nodului). Mărimea spaţiului alocat în memoria calculatorului pentru stocarea elementelor matricei sistemului de ecuaţii (numită, la modul general, matrice caracteristică a structurii), mai întâi la nivelul elementului finit şi, ca o consecinţă, la nivelul modelului virtual discret, este dată de aşa numita lăţime de bandă, care trebuie să fie cât mai mică. Lăţimea de bandă este dată de numărul maxim de coloane care conţin măcar o componentă diferită de zero, situată la stânga şi la dreapta diagonalei principale a matricei caracteristice (componentele din afara lăţimii de bandă fiind egale cu zero). Astfel, pentru fiecare element finit se va urmări realizarea unei diferenţe minime între oricare doi indecşi nodali corespunzând extremităţilor sale (mai corect spus între oricare două grade de libertate ale elementului finit). Matricea caracteristică capătă semnificaţii fizice (de rigiditate sau permeabilitate şi flexibilitate sau rezistenţă) funcţie de fenomenul studiat (deformarea solidului sau transferul căldurii şi curgerea fluidelor etc.) şi de parametrii principali ai problemei (necunoscutele problemei). În deformarea solidului, dacă rezolvarea problemei se face prin metoda deplasărilor parametrii principali (necunoscutele problemei) sunt deplasările nodurilor modelului virtual discret şi matricea caracteristică este de rigiditate (atât la nivelul elementului cât şi la nivelul structurii), dar dacă rezolvarea problemei se face prin metoda forţelor parametrii principali (necunoscutele problemei) sunt forţele din nodurile modelului structural şi matricea caracteristică este de flexibilitate (atât la nivelul elementului cât şi la nivelul structurii). Din considerente de implementare pe calculator a programelor bazate pe MEF, unele forme de exprimare ale acesteia au fost preferate altora. Astfel, în deformarea solidului, programele bazate pe MEF, exprimarea în deplasări, cunosc o dezvoltare amplă pentru că sistemul static de bază, cu care începe procedura de calcul, este unic şi deci nu pune probleme de dubiu calculatorului sau evită efortul analistului de depăşire a dubiului şi de depăşire a riscului introducerii de erori. 13
6 14
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
1 NOŢIUNI INTRODUCTIVEDESPRE METODA ELEMENTELOR FINITE
1 NOŢIUNI INTRODUCTIVEDESPRE METODA ELEMENTELOR FINITE 1.1 Generalităţi Problema analizei numerice a diverselor probleme inginereşti nu este una nouă, ea fiind utilizată de-a lungul secolelor pentru a
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...
SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor
Introducere în Metoda Elementelor Finite, cu aplicaţii în Mecanica construcţiilor
Introducere în Metoda Elementelor Finite, cu aplicaţii în Mecanica construcţiilor Domeniul de studiu al Mecanicii poate fi structurat pe trei subdomenii distincte: TEORETICĂ MECANICA APLICATĂ abordată
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Capitolul 30. Transmisii prin lant
Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare
METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale
Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Matrice. Determinanti. Sisteme liniare
Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina
Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
METODE DE CALCUL ENERGETICE ŞI APROXIMATIVE ÎN REZISTENŢA MATERIALELOR
3. METODE DE CALCUL ENERGETICE ŞI APROXIMATIVE ÎN REZISTENŢA MATERIALELOR 3.1. Generalităţi Scopul primordial al activităţilor inginereşti este realizarea de maşini, aparate, instalaţii etc. În istoria
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
Studiu privind soluţii de climatizare eficiente energetic
Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Capitolul 2 NELINIARITĂŢI GEOMETRICE - II Metode de determinare a soluţiei în calculul neliniar al structurilor
Capitolul 2 NELINIARITĂŢI GEOMETRICE - II - 2.4. Metode de determinare a soluţiei în calculul neliniar al structurilor În problemele de calcul neliniar al structurilor rigiditatea structurii, sarcinile
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Laborator 6. Integrarea ecuaţiilor diferenţiale
Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul
Capitolul 4 Amplificatoare elementare
Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector
Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu
INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
CUPRINS 9. Echilibrul sistemelor de corpuri rigide... 1 Cuprins..1
CURS 9 ECHILIBRUL SISTEMELOR DE CORPURI RIGIDE CUPRINS 9. Echilibrul sistemelor de corpuri rigide........... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 9.1. Generalităţi. Legături intermediare...2
CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă?
CURS 11 Rezolvarea ecuaţiilor transcendente Fie ecuatia: f(x)=0 algebrică - dacă poate fi adusă la o formă polinomială transcendentă dacă nu este algebrică Ecuaţii algebrice: 3x=9; 2x 2-3x+2=0; x5=x(2x-1);
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
1.4 Schimbarea bazei unui spaţiu vectorial
Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem