a. P = b. P = c. P = d. P = (2p)
|
|
- ÊΦάνης Ζάνος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 A. MECANICA Se considera acceleratia gravitationala g= 10 m/s 2. (15puncte) Pentru itemii 1-5 scrieţi pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Asupra unui corp de masă m = 0,4 kg acţionează o forţă constantă, pe direcţia şi în sensul vitezei iniţiale. Într-un interval de timp Δt = 2 s variaţia vitezei corpului este Δv = 9 m/s. Valoarea forţei este: a. F = 1,2 N b. F=0,8 N c. F= 1,8 N d. F= 0,3 N (3p) 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia care reprezintă o putere este: a. P = b. P = c. P = d. P = (2p) 3. Un automobil aflat în mişcare rectilinie uniformă, parcurge jumătate din drumul său cu viteza v 1, iar restul drumului cu viteza v 2. Viteza medie a automobilului pe distanţa d este: a. b. c. d. (4p) 4. Un corp de masă m se deplasează cu viteza constantă pe o suprafaţă orizontală cu frecare, sub acţiunea unei forţe orientate sub un unghi α faţă de orizontală, ca în figură. Coeficientul de frecare la alunecare are expresia: a. b. c. d. (4 p) 5. Un corp de masă m este aruncat vertical în sus, iar la înălţimea h faţă de pămant are viteza v. Neglijand forţele de rezistenţă din partea aerului, energia totală a corpului la înaltimea h, poate fi exprimată astfel: a. b. c. d. (2p) Asupra unui corp cu masa m = 12kg, aflat iniţial în repaus pe o suprafaţă orizontală, acţionează o forţă orizontală având modulul F = 100N. Forţa de frecare la alunecare are modulul egal cu o treime din greutatea corpului. Corpul parcurge, din momentul în care începe să acţioneze forţa F, distanţa d = 10m în intervalul de timp t = 2s. Determinaţi: a. Puterea medie dezvoltată de forţa de tracţiune. b. Lucrul mecanic efectuat de forţa de frecare pe distanţa d. c. Energia cinetică a corpului după parcurgerea distanţei d. d. Viteza şi acceleraţia corpului după parcurgerea distanţei d. Mişcarea celor două corpuri pe planele înclinate fixe reprezentate în figura alăturată se face fără frecare. Iniţial, sistemul de corpuri se află în repaus. Firul inextensibil şi de masă neglijabilă este trecut peste un scripete fără frecări şi lipsit de inerţie. Se cunosc masele m 1 = 3kg, m 2 = 2kg şi unghiurile α = 30 0, β= a. Reprezentaţi toate forţele care acţionează asupra celor două corpuri. b. Calculaţi acceleraţia sistemului de corpuri. c. Determinaţi viteza sistemului de corpuri după intervalul de timp t = 5 s. d. Determinaţi tensiunea din fir şi valoarea forţei care acţionează asupra scripetelui. e. Expresia acceleraţiei sistemului, dacă mişcarea se face cu frecare, coeficienţii de frecare fiind µ 1 =0,1 (corpul cu masa m 1 ), µ 2 =0,2 (corpul cu masa m 2 ) şi considerăm că între mase există relaţia : m 2 =2m 1. 1
2 B. ELEMENTE DE TERMODINAMICĂ Se consideră: numărul lui Avogadro N A = 6, mol -1, constanta gazelor ideale R = 8,31 J mol -1 K -1. Între parametrii de stare ai gazului ideal într-o stare dată există relaţia: p V =νrt. 1. O cantitate dată de gaz ideal este supusă unei transformări izobare în cursul căreia presiunea gazului rămâne constantă, iar temperatura acestuia creşte. În timpul acestei transformări: a. densitatea gazului rămâne constantă b. densitatea gazului crește c. densitatea gazului scade d. volumul gazului scade. (3p) 2. Pentru fiecare ciclu al unui motor Diesel, raportul dintre lucrul mecanic efectuat şi modulul căldurii cedate sursei reci este 4/7 ; raportul dintre căldura primită şi lucrul mecanic efectuat este: a. 0,57 b. 2,75 c. 1,75 d. 1,57 (3p) 3. Simbolurile mărimilor fizice fiind cele utilizate în manuale de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul p/r este: a. b. c. d. 4. Variaţia temperaturii unui gaz, măsurată cu un termometru etalonat în scara Celsius, este Δt = 57 C. Variaţia temperaturii absolute a acestui gaz este: a. ΔT = 357 K b. ΔT = 0 K c. ΔT = 57 K d. ΔT = 330 K (3p) 5. Un mol de gaz ideal monoatomic (C V =1,5R) se destinde adiabatic între temperaturile de 400K și 627 C. Lucrul mecanic efectuat de gaz în acest proces are valoarea: a. 2829,5 J b J c. 6232,5 J d. 5659,1 J (3p) (3p) Un cilindru este închis cu ajutorul unui piston mobil, etanş, de masă neglijabilă, care se poate deplasa fără frecare. Cilindrul conţine o cantitate de azot (μ = 28 g/mol ), considerat gaz ideal care în starea iniţială ocupă volumul V = 3 litri la temperatura T = 300K şi presiunea p = 8, N/m 2. Gazul din cilindru se încălzeşte la presiune constantă până când temperatura creşte cu o fracţiune f=50%. Determinaţi: a. cantitatea de substanţă (în moli) de azot din cilindru; b. masa de azot din cilindru; c. volumul ocupat de gaz în starea finală; d. cu ce procent și în ce sens se modifică densitatea finală a gazului față de cea inițială? Un motor termic foloseşte ca fluid de lucru o cantitate ν = 0,5 moli de gaz ideal poliatomic (C V = 3R). Procesul ciclic de funcţionare este reprezentat, în coordonate V- T, în figura alăturată, volumul în starea 1 fiind dublu față de cel din starea 2, iar temperatura minimă atinsă în timpul funcționării fiind de 300 K. Se aproximează ln 2 0,7. a. Determinați raportul presiunilor. b. Pe ce transformare a ciclului se absoarbe cea mai multă căldură și ce valoare numerică are aceasta? c. Calculați lucrul mecanic efectuat pe parcursul ciclului. d. Exprimați numeric randamentul ciclului în procente. 2
3 C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU Pentru itemii 1-5 scrieţi pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Printr-un rezistor de rezistență R, conectat la o sursă de tensiune electromotoare E și rezistență internă r, trece un curent electric de intensitate 4 A. Înlocuind acest rezistor cu altul de rezistență 2R, curentul prin circuit are valoarea 2,4 A. Între rezistențele R și r există relaţia: a. R/r = 2 b. R/r = 2/3 c. R/r = 5I2 d. r/r= 1I2 (3p) 2. Ştiind că simbolurile mărimilor fizice şi ale unităţilor de măsură sunt cele utilizate în manualele de fizică, e 2 Rf Wd unitatea de măsură în SI pentru mărimea exprimată prin raportul este: a. J.s b. A/m c. V/m 3 d. 1/m (3p) 3. Un număr n de rezistori de rezistențe electrice egale, se grupează mai întai în serie și apoi în paralel. Dacă rezistența echivalentă a grupării serie este de 16 ori mai mare decât cea a grupării paralel, atunci numărul de rezistori este: a. 3 b. 2 c. 4 d. 16 (3p) 4. Două elemente galvanice identice cu t.e.m. de 2 V și rezistența internă r, se leagă în serie printr-un rezistor cu rezistența de 3 Ω. Știind că o singură sursă ar debita prin rezistor un curent de 0,5 A, să se calculeze intensitatea curentului în cazul legării în serie cât și în cazul legării în paralel a elementelor galvanice: a. 3A, 1A b. 2A, 0,5A c. 0,8A, 0,57A d. 0,8A, 0,4A (3p) 5. La bornele unei surse de tensiune de 220 V se leagă în paralel un reșou de 440 W și o pernă electrică de 55 W. Rezisteța electrică a celor două consumatoare este: a. 110 Ω, 800 Ω b. 110 Ω, 880 Ω c. 100 Ω, 800 Ω d. 11 Ω, 800 Ω (3p) Un bec și un reostat legate în serie într-un circuit electric, consumă împreună 200 W. Știind că tensiunea la bornele becului este de 60 V, iar rezistența reostatului este de 20 Ω, se cere: a) intensitatea curentului din circuit; (6p) b) energia consumată de bec în 10 ore și costul acestei energii daca 1kWh costă 0,50 lei; (4p) c) temperatura filamentului în becul electric, dacă rezistența la 0 0 C este 2,5 Ω, iar coeficientul de temperatură a 3 1 filamentului este 5 10 grd. (5p) În circuitul din figură R 1 =2,5 Ω, R 2 =7,5 Ω, R A =1 Ω, iar rezistorul R este construit din fir de nichelină cu diametrul d=1 mm, rezistivitate nichelinei având valoarea ρ=0,42x10-6 Ω.m. Ampermetrul A din circuit indică o valoare I 1 =1 A când comutatorul K este deschis și o valoare I 2 =0,8 A când comutatorul K este închis. Să se calculeze: a) lungimea firului de nichelină din care este construit rezistorul R, dacă puterea disipată în acesta când comutatorul K este deschis este P=9 W; (4p) b) rezistența exterioară a circuitului când comutatorul K este închis; (4p) c) tensiunea electromotoare E și rezistența internă r ale bateriei. (7p) 3
4 4
5 D. OPTICA Se consideră viteza luminii în vid c = m/s, constanta lui Planck h = 6, J s, sarcina electrică elementară e = 1, C, masa electronului m e = 9, kg, 1eV = 1, J. Pentru itemii 1-5, scrieţi litera corespunzătoare răspunsului considerat corect. 1. Convergența unei lentile subțiri plan-convexe, cu raza de curbură de 20 cm și indicele de refracție egal cu 1,5, este: a. 2,5 m b. 2,5 m -1 c. 0,25 cm d. 0,25 cm -1 (3p) 2. O lentilă subțire divergentă formează imaginea unui obiect cu înălțimea de 30 mm, la distanța de 40 mm față de obiect. Dacă înălțimea imaginii este de 20 mm, atunci modulul distanței focale a lentilei este: a. 32 cm b. 42 cm c. 24 cm d. 15 cm (3p) 3. Un obiect se află în fața unei oglinzi sferice concave, la distanța de 5 cm față de oglindă. Dacă distanța focală a oglinzii este de 10 cm, imaginea obiectului este: a. virtuală, dreaptă și mai mare decât obiectul b. reală, răsturnată și mai mare decât obiectul c. virtuală, dreaptă și mai mică decât obiectul d. reală, dreaptă și mai mică decât obiectul (3p) 4. Ce diametru minim trebuie să aibă o plută aflată pe suprafața unui lac cu adâncimea apei de 1,5 m, astfel încât o comoară aflată pe fundul lacului, sub centrul plutei, să nu poată fi văzută de deasupra apei? Indicele de refracție al apei este egal cu 4/3. a. 3 m b. 2,4 m c. 5,4 m d. 3,4 m (3p) 5. Un dispozitiv Young are distanța dintre fante a = 0,2 mm. Dacă se folosește lumină monocromatică cu lungimea de undă λ = 500 nm, iar figura de interferență se urmărește pe un ecran aflat la distanța D = 4 m față de dispozitiv, distanța dintre centrul celui de-al cincilea minim și centrul maximului central este: a. 2,5 cm b. 3,5 cm c. 5,5 cm d. 4,5 cm (3p) Un microscop este format din două lentile subțiri convergente: obiectivul, cu distanța focală de 5,4 mm, și ocularul, cu distanța focală de 20 mm. a. Care trebuie să fie lungimea tubului microscopului (distanța dintre obiectiv și ocular), astfel încât imaginea unui obiect aflat la distanța de 5,6 mm față de obiectiv să se formeze la 25 cm față de ocular? b. Construiți imaginea obiectului. c. Care este mărirea transversală dată de microscop? Pe catodul unei celule fotoelectrice cad două radiații cu lungimile de undă 1 =500 nm și, respectiv, 2 =350 nm. Lucru mecanic de extracție al metalului din care este confecționat catodul este L extr = 3 ev. a. Stabiliți dacă cele două radiații produc efect fotoelectric. b. În cazul producerii efectului fotoelectric, determinați energia cinetică maximă a fotoelectronilor emiși. c. Calculați tensiunea electrică de stopare. d. Determinați viteza maximă a fotoelectronilor emiși. 5
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραPentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect.
A. MECANICĂ Se consideră accelerația gravitațională g = 10 m/s 2. SUBIECTUL I Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Trenul unui metrou dezvoltă
Διαβάστε περισσότεραI. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte)
A. MECANICĂ e consideră accelerația gravitațională g = 0 m/s. I. Pentru itemii -5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.. Un automobil se deplasează în lungul axei Ox. Dependența
Διαβάστε περισσότεραENUNŢURI ŞI REZOLVĂRI 2013
ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l
Διαβάστε περισσότεραPROBLEME DE ELECTRICITATE
PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραClasa a X-a, Producerea si utilizarea curentului electric continuu
1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότεραExamenul de bacalaureat național 2013 Proba E. d) Fizică
Examenul de bacalaureat național 03 Proba E. d) Fizică Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TEMODINAMICĂ,
Διαβάστε περισσότεραClasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότερα1. Examenul de bacalaureat național 2015 Proba E. d)- Fizică A. MECANICĂ
1. Examenul de bacalaureat național 2015 Proba E. d)- Fizică A. MECANICĂ Se consideră acceleraṭia gravitaṭională g = 10m/s 2. I. Pentru itemii 1-5 scrieṭi pe foaia de răspuns litera corespunzătoare răspunsului
Διαβάστε περισσότεραALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ
Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.
Διαβάστε περισσότεραc c. se anulează (5p) 3. Imaginea unui obiect real dată de o lentilă divergentă este întotdeauna:
Varianta 1 - optica B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, elementară e = 1,6 10 19 C, masa electronului m e = 9,1 10 31 kg. SUBIECTUL I Varianta 001 1. O rază de
Διαβάστε περισσότεραContinue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3
Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui
Διαβάστε περισσότεραReflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
Διαβάστε περισσότερα145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.
Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie
Διαβάστε περισσότεραTEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ
ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραM. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.
Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se
Διαβάστε περισσότεραMinisterul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar
A. SUBIECTUL III Varianta 001 (15 puncte) O locomotivă cu puterea P = 480 kw tractează pe o cale ferată orizontală o garnitură de vagoane. Masa totală a trenului este m = 400 t. Forţa de rezistenţă întâmpinată
Διαβάστε περισσότεραContinue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.
Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότερα1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
Διαβάστε περισσότεραEXAMEN DE FIZICĂ 2012 [1h] FIMM
Alocare în medie 4 minute/subiect. Punctaj: 1/4 judecata, 1/4 formula finală, 1/4 rezultatul numeric, 1/4 aspectul. EXAMEN DE FIZICĂ 2012 [1h] IM 1. Un automobil cu dimensiunile H=1.5m, l=2m, L=4m, puterea
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραLucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Διαβάστε περισσότεραV O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Διαβάστε περισσότεραIII. Rezolvaţi următoarea problemă: v c. m v. = (3p)
Ministerul Educaţiei, Cercetării, Tineretului şi Sportului Centrul Naţional de Evaluare şi Examinare Examenul de bacalaureat 0 Proba E. d) Proba scrisă la FIZICĂ Filiera teoretică profilul real, Filiera
Διαβάστε περισσότεραVII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραElectronică anul II PROBLEME
Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le
Διαβάστε περισσότεραFIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU
FIZICA CAPITOLUL: LCTICITAT CUNT CONTINUU. Curent electric. Tensiune electromotoare 3. Intensitatea curentului electric 4. ezistenţa electrică; legea lui Ohm pentru o porţiune de circuit 4.. Dependenţa
Διαβάστε περισσότεραLucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
Διαβάστε περισσότερα1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραeste sarcina electrică ce traversează secţiunea transversală a conductorului - q S. I.
PRODUCRA ŞI UTILIZARA CURNTULUI CONTINUU 1. CURNTUL LCTRIC curentul electric Mişcarea ordonată a purtătorilor de sarcină electrică liberi sub acţiunea unui câmp electric se numeşte curent electric. Obs.
Διαβάστε περισσότερα10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Διαβάστε περισσότεραPROBLEME DE ELECTRICITATE ȘI MAGNETISM GIMNAZIU
Colegiul Național Moise Nicoară Arad Catedra de fizică PROBLEME DE ELECTRICITATE ȘI MAGNETISM GIMNAZIU Cuprins 1. Electrostatica.... 3 2. Producerea şi utilizarea curentului continuu... 4 2.1. Curentul
Διαβάστε περισσότερα2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότερα2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3
SINTEZE DE BACALAUREAT - ELECTRICITATE 1. Lungimea (l) metrul (m) ELECTRICITATEA 2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE 1. Tensiunea electrică,
Διαβάστε περισσότεραExamenul de bacalaureat la fizica, 18 iunie 2007 Profilul real
Examenul de bacalaureat la fizica, 18 iunie 007, profilul real 1 Examenul de bacalaureat la fizica, 18 iunie 007 Profilul real I In itemii 1-3 raspundeti scurt la intrebari conform cerintelor inaintate
Διαβάστε περισσότεραCurentul electric stationar
Curentul electric stationar 1 Curentul electric stationar Tensiunea electromotoare. Legea lui Ohm pentru un circuit interg. Regulile lui Kirchhoft. Lucrul si puterea curentului electric continuu 1. Daca
Διαβάστε περισσότεραSeminar electricitate. Seminar electricitate (AP)
Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =
Διαβάστε περισσότεραLucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Διαβάστε περισσότεραTipul F2. m coboară cu frecare ( 0,5 ) pe prisma de. masă M 9 kg şi unghi 45. Dacă prisma se deplasează pe orizontală fără frecare şi
Tiul F. În sistemul din figură, corul de masă 4 kg m coboară cu frecare ( 0, ) e risma de 0 masă M 9 kg şi unghi 4. Dacă risma se delasează e orizontală fără frecare şi g 0 m/s, modulul acceleraţiei rismei
Διαβάστε περισσότερα1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE
1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότερα1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă.
.Cum se schimbă deformaţia elastică ε = Δ l o a unei sîrme de oţel dacă mărim de n ori : a)sarcina, b)secţiunea, c) diametrul, d)lungimea? Răspuns: a) creşte de n ori, b) scade de n ori, c) scade de n,
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότερα4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραMĂRIMI ELECTRICE Voltul (V)
SINTEZE DE BACALAUREAT ELECTRICITATE www.manualdefizica.ro NR. DENUMIREA MĂRIMII FIZICE UNITATEA DE MĂSURĂ 1. Lungimea (l) metrul (m). Masa (m) kilogramul (kg) ELECTRICITATEA. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ
Διαβάστε περισσότερα5. Un camion a frânat pe o distanţă d= 75 m într-un timp t = 10 s. Care a fost viteza camionului înainte de frânare?
1. Un mobil, mişcându-se cu acceleraţia a = 2,0 m/s 2, a parcurs distanţa d = 100 m în timpul t = 5,0 s. Care a fost viteza iniţială? 2. Ce distanţă a parcurs un automobil în timp ce viteza sa a crescut
Διαβάστε περισσότεραTest de evaluare Măsurarea tensiunii şi intensităţii curentului electric
Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Subiectul I Pentru fiecare dintre cerinţele de mai jos scrieţi pe foaia de examen, litera corespunzătoare răspunsului corect. 1.
Διαβάστε περισσότεραDinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.
Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa
Διαβάστε περισσότεραFENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραCapitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραClasa a IX-a - Set 1. Completat: Saturday, 10 May 2003 Nota: 100/100
Φ: Set file:///e:/stoleriu/artwork/web_stoner/rezultate003/0/teste/... of 3/0/008 :0 PM Raspunsuri corecte Clasa a IX-a - Set Completat: Saturday, 0 May 003 Nota: 00/00 (LA)In figura este reprezentat un
Διαβάστε περισσότεραUnităŃile de măsură pentru tensiune, curent şi rezistenńă
Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,
Διαβάστε περισσότεραPROBLEME - CIRCUITE ELECTRICE
LEGEA LU OHM LEGLE LU KCHHOFF POBLEME - CCUTE ELECTCE POBLEMA 0 / Se dau : 0 Ω 0 Ω 0 Ω 0 Ω V V Se cer : ezisten a echivalent ntensitatea curentului Ampermetru ezolvare : Calculez rezisten a, i rezisten
Διαβάστε περισσότεραJ. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNVĂŢĂMÂNTUL SUPERIOR. Electricitate Termodinamică Optică Atomică Nucleară
J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNĂŢĂMÂNTUL SUPERIOR Electricitate Termodinamică Optică Atomică Nucleară UMF Craiova 009 Fizică Teste Grilă Fizică Teste Grilă 3 Fizică
Διαβάστε περισσότεραMinisterul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare
Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă
Διαβάστε περισσότερα15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul
INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραSistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal
Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine
Διαβάστε περισσότερα2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE
2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραCircuite electrice in regim permanent
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραNoțiuni termodinamice de bază
Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραSIGURANŢE CILINDRICE
SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE CH Curent nominal Caracteristici de declanşare 1-100A gg, am Aplicaţie: Siguranţele cilindrice reprezintă cea mai sigură protecţie a circuitelor electrice de control
Διαβάστε περισσότεραLUCRAREA NR. 3 DETERMINAREA DISTANŢEI FOCALE A OGLINZILOR SFERICE
LUCRAREA NR. 3 DETERMINAREA DISTANŢEI FOCALE A OGLINZILOR SFERICE Tema lucrării: 1) Determinarea distanţei focale a unei oglinzi concave ) Determinarea distanţei focale a unei oglinzi convexe 3) Studiul
Διαβάστε περισσότερα( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (
Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0
Διαβάστε περισσότεραEDITURA FUNDAŢIEI MOISE NICOARĂ
EDITURA FUNDAŢIEI MOISE NICOARĂ ARSENOV BRANCO ARSENOV SIMONA BIRIŞ SOFIA MAJOR CSABA ŞTEFAN ALEXANDRU PROBLEME DE FIZICĂ CLASA A IX A ARAD 2009 Descrierea CIP a Bibliotecii Naţionale a României Probleme
Διαβάστε περισσότεραMaşina sincronă. Probleme
Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala
Διαβάστε περισσότεραStabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραOvidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Διαβάστε περισσότεραSTUDIUL MICROSCOPULUI
LUCRAREA NR. 6 STUDIUL MICROSCOPULUI Tema lucrării: 1) Etalonarea micrometrului ocular. 2) Măsurarea dimensiunilor unui obiect mic. 3) Determinarea aperturii numerice. 4) Determinarea grosismentului microscopului
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
Διαβάστε περισσότερα2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότερα